Lecture 3
 From (Integer) Programs to Formulas

Viktor Kuncak

Verification Condition Generation Example

We examine algorithms for going from programs to their verification conditions.

Program and postcondition:

```
deff(x: Int): Int = {
    if (x>0)
        2*x + 1
    else 42
} ensuring (res => res > 0)
```

Verification condition saying "program satisfies postcondition":

$$
[((x>0) \wedge r e s=2 x+1) \vee(\neg(x>0) \wedge r e s=42)] \rightarrow r e s>0
$$

We check validity: all variables are universally quantified

Verification Condition Generation (VCG) For Functions

```
deff(\overline{x}:||\mp@subsup{|}{}{n}): | Int ={
    b(\overline{x})
} ensuring (res => Post(\overline{x},res))
```

- Function f with arguments \bar{x} and body $b(\bar{x})$, built from:
- Presburger Arithmetic (PA) expressions, as well as $x / K, x \% K$
- if statement, and local value definitions (val in Scala)
- Postcondition Post($\bar{x}, r e s)$ written in quantifier-free PA

Claim: there is polynomial-time algorithm to construct formula $V(\bar{x})$ such that

- the execution of f on input \bar{x} meets the Post iff $V(\bar{x})$ Hence, it always meets postcondition iff $\forall \bar{x} . V(\bar{x})$
- $V(\bar{x})$ is quantifier-free or has only top-level \forall quantifiers Idea: perhaps $V(\bar{x})$ could be $\operatorname{Post}(\bar{x}, b(\bar{x}))$? Yes, if it was in PA

PA with $x / K, x \% K$, if, val

Context-Free grammar (syntax) of extended PA formulas
F: Boolean, t: Int

$$
\begin{aligned}
F & ::=b\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\neg F| \exists x . F|\forall x . F| t_{1}<t_{2} \mid t_{1}=t_{2} \\
& |\{\mathbf{v a l} \mathbf{x}=\mathbf{t} ; \mathbf{F}\}|\left\{\text { val } \mathbf{b}=\mathbf{F}_{\mathbf{1}} ; \mathbf{F}\right\} \\
t & ::=x|K| t_{1}+t_{2} \mid K \cdot t \\
& |\mathbf{t} / \mathbf{K}| \mathbf{t} \mathbf{\%} \mathbf{K} \mid \mathbf{i f}(\mathbf{F}) \mathbf{t}_{\mathbf{1}} \text { else } \mathbf{t}_{\mathbf{2}} \mid\left\{\text { val } \mathbf{x}=\mathbf{t}_{\mathbf{1}} ; \mathbf{t}_{\mathbf{2}}\right\}
\end{aligned}
$$

We can translate $x / K, x \% K$, if, val into other constructs

- in polynomial time
- without changing the meaning of a formula
- without adding alternations of quantifiers

Notation: Free Variables

$F V(t), F V(F)$ denotes free variables in term t or formula F Normally we just collect all variables:

$$
F V(x+y<z)=\{x, y, z\}
$$

We do not count quantified occurrences of variables:

$$
F V(\exists x . x+y<z)=\{y, z\}
$$

Even if it occurs quantified somewhere, if there is a path in formula tree that reaches it without being blocked by quantifiers, then the variables is free:

$$
F V((\exists x . \exists y \cdot x<y+u) \wedge(\exists y . x+y<z+100))=\{u, x, z\}
$$

General rules are of two kinds: operations and binders

$$
\begin{aligned}
& F V\left(F_{1} \odot F_{2}\right)=F V\left(F_{1}\right) \cup F V\left(F_{2}\right) \\
& F V(Q x . F)=F V(F) \backslash\{x\}
\end{aligned}
$$

Notation: Substitutions

One possible convention: write $F(x)$ and later $F(t)$. Then F is not a formula but function from terms to formulas
(Or we do not even know what F is.)
Alternative notation: write F, and instead of $F(t)$ write $F[x:=t]$

- closer to a typical implementation

Definition:

$$
\begin{aligned}
& \left(F_{1} \odot F_{2}\right)[x:=t] \leadsto F_{1}[x:=t] \odot F_{2}[x:=t] \\
& (Q y . F)[x:=t] \sim Q y .(F[x:=t])
\end{aligned}
$$

Capture:
The following formula is true in integers for all x : $\exists y . x<y$ If we naively substitute x with $y+1$ we obtain: $\exists y . y+1<y$ Problem: t has y free. A solution: rename y to fresh y_{1}

$$
(Q y \cdot F)[x:=t] \leadsto\left(Q y_{1} \cdot F\left[y:=y_{1}\right]\right)[x:=t] \leadsto Q y_{1} \cdot\left(F\left[y:=y_{1}\right][x:=t]\right)
$$

How to Translate Value Definitions

Construct: $\{$ val $x=t ; F\}$ where we require $x \notin F V(t)$ (otherwise just rename it to $\left\{\right.$ val $\left.x_{1}=t ; F\left[x:=x_{1}\right]\right\}$)

Example

$$
\{\text { val } x=y+1 ; x<2 x+5\}
$$

Becomes one of these:

How to Translate Value Definitions

Construct: $\{$ val $x=t ; F\}$ where we require $x \notin F V(t)$ (otherwise just rename it to $\left\{\right.$ val $\left.x_{1}=t ; F\left[x:=x_{1}\right]\right\}$)

Example

$$
\{\text { val } x=y+1 ; x<2 x+5\}
$$

Becomes one of these:

$$
\begin{array}{ll}
(y+1)<2(y+1)+5 & \text { substitution } \\
\exists x . x=y+1 \wedge x<2 x+5 & \text { one-point rule } \\
\forall x . x=y+1 \rightarrow x<2 x+5 & \text { dual one-point rule }
\end{array}
$$

Rule to Translate Value Definitions

In general, for $x \notin F V(t)$

$$
\{\text { val } x=t ; F\}
$$

Becomes one of these:

Rule to Translate Value Definitions

In general, for $x \notin F V(t)$

$$
\{\text { val } x=t ; F\}
$$

Becomes one of these:

$$
\begin{array}{ll}
F[x:=t] & \text { substitution } \\
\exists x \cdot x=t \wedge F & \text { one-point rule } \\
\forall x \cdot x=t \rightarrow F & \text { dual one-point rule }
\end{array}
$$

Substitution can square formula size

- Do it several times \leadsto exponential increase

The other rules add quantified variables

- but we can choose which way they are quantified, to avoid adding quantifier alternations

Flattening: Remove All Nested Terms

Similar to compilation
Example:

$$
x+3 y<z
$$

flattening $3 y$ and denoting it by y_{1} we get

$$
\left\{\text { val } y_{1}=3 y ; x+y_{1}<z\right\}
$$

and then flattening $x+y_{1}$ denoting it by y_{2} we get

$$
\left\{\text { val } y_{1}=3 y ;\left\{\text { val } y_{2}=x+y_{1} ; y_{2}<z\right\}\right\}
$$

which we may write as
$\{$ val $\mathrm{y} 1=3 \mathrm{y}$
val $\mathrm{y} 2=\mathrm{x}+\mathrm{y} 1$
y2 < z
\}

Flattening Rule

Suppose F contains $t_{1} \odot t_{2}$ somewhere and we wish to pull it out. For some fresh y_{1} then F becomes

Flattening Rule

Suppose F contains $t_{1} \odot t_{2}$ somewhere and we wish to pull it out. For some fresh y_{1} then F becomes

$$
\left\{\text { val } y_{1}=t_{1} \odot t_{2} ; \quad F\left[t_{1} \odot t_{2}:=y_{1}\right]\right\}
$$

We can now handle val for formulas. What about terms?

Lifting val-s outside until they reach formulas

$$
\{\text { val } x=a+1 ; 2 x\}+5<y
$$

becomes

We can now handle val for formulas. What about terms?

Lifting val-s outside until they reach formulas

$$
\{\text { val } x=a+1 ; 2 x\}+5<y
$$

becomes

$$
\{\text { val } x=a+1 ; 2 x+5<y\}
$$

val given by val rule

$$
\{\text { val } x=\{\text { val } y=a+1 ; y+y\} ; x<2 x\}
$$

becomes

val given by val rule

$$
\{\text { val } x=\{\text { val } y=a+1 ; y+y\} ; x<2 x\}
$$

becomes

$$
\{\operatorname{val} y=a+1 ;\{\operatorname{val} x=y+y ; x<2 x\}\}
$$

which we pretty-print as

$$
\{\text { val } y=a+1 ; \text { val } x=y+y ; x<2 x\}
$$

Flat form:

- each operation \odot is inside a $\left\{\right.$ val $\left.x=y_{1} \odot y_{2} ; F\right\}$
- atomic formulas only use variables
- val applies to formulas only (not terms)

Translating if

F: Boolean, t: Int

$$
\begin{aligned}
F & ::=b\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\neg F| \exists x . F|\forall x . F| t_{1}<t_{2} \mid t_{1}=t_{2} \\
& |\quad\{\mathbf{v a l} \mathbf{x}=\mathbf{t} ; \mathbf{F}\}|\left\{\mathbf{v a l} \mathbf{b}=\mathbf{F}_{\mathbf{1}} ; \mathbf{F}\right\} \\
t & ::=x|K| t_{1}+t_{2} \mid K \cdot t \\
& |\mathbf{t} / \mathbf{K}| \mathbf{t} \% \mathbf{K} \mid \text { if }(\mathbf{F}) \mathbf{t}_{\mathbf{1}} \text { else } \mathbf{t}_{\mathbf{2}} \mid\left\{\text { val } \mathbf{x}=\mathbf{t}_{\mathbf{1}} ; \mathbf{t}_{\mathbf{2}}\right\}
\end{aligned}
$$

Suppose terms are in flat form. We only need to handle:

$$
\left\{\text { val } x=\left(i f\left(b_{1}\right) t_{1} \text { else } t_{2}\right) ; F\right\}
$$

Note that the logical equality

$$
\begin{equation*}
x=\left(i f\left(b_{1}\right) t_{1} \text { else } t_{2}\right) \tag{*}
\end{equation*}
$$

is equivalent to

$$
\left(b_{1} \wedge x=t_{1}\right) \vee\left(\neg b_{1} \wedge x=t_{2}\right)
$$

as well as to:

$$
\left(\left(b_{1} \rightarrow x=t_{1}\right) \wedge\left(\neg b_{1} \rightarrow x=t_{2}\right)\right)
$$

Translating if

From two one-point rule translations of val, we can thus transform

$$
\left\{\text { val } x=\left(i f\left(b_{1}\right) t_{1} \text { else } t_{2}\right) ; F\right\}
$$

into any of these:

$$
\begin{aligned}
& \exists x .\left[\left(\left(b_{1} \wedge x=t_{1}\right) \vee\left(\neg b_{1} \wedge x=t_{2}\right)\right) \wedge F\right] \\
& \exists x .\left[\left(\left(b_{1} \rightarrow x=t_{1}\right) \wedge\left(\neg b_{1} \rightarrow x=t_{2}\right)\right) \wedge F\right] \\
& \forall x .\left[\left(\left(b_{1} \wedge x=t_{1}\right) \vee\left(\neg b_{1} \wedge x=t_{2}\right)\right) \rightarrow F\right] \\
& \forall x .\left[\left(\left(b_{1} \rightarrow x=t_{1}\right) \wedge\left(\neg b_{1} \rightarrow x=t_{2}\right)\right) \rightarrow F\right]
\end{aligned}
$$

This translates if-else without duplicating sub-formulas (thanks to boolean variable b_{1}).

Integer Division by a Constant

Consider

$$
\{\text { val } q=p / K ; F\}
$$

The corresponding equality $q=p / K$ is equivalent to

$$
K q \leq p \wedge p<K(q+1)
$$

Which gives corresponding translations:

$$
\begin{aligned}
& \exists x .[K q \leq p \wedge p<K(q+1) \wedge F] \\
& \forall x .[(K q \leq p \wedge p<K(q+1)) \rightarrow F]
\end{aligned}
$$

Remainder Modulo a Constant

$$
\{\text { val } r=p \% K ; F\}
$$

Remainder Modulo a Constant

$$
\{\text { val } r=p \% K ; F\}
$$

One way:

$$
\{\text { val } r=p-K(p / K) ; F\}
$$

Quantifier-Free Polynomial-Sized VC

```
deff(\overline{x}:||\mp@subsup{t}{}{n}): |nt ={
    b(\overline{x})
} ensuring (res => Post(\overline{x},res))
```

VC in quantifier-free PA extended with val, if, /, \% :

$$
\text { res }=b(\bar{x}) \rightarrow \operatorname{Post}(\text { res, } \bar{x})
$$

Quantifier-Free Polynomial-Sized VC

```
deff(\overline{x}:||\mp@subsup{t}{}{n}): |nt ={
    b(\overline{x})
} ensuring (res => Post(\overline{x},res))
```

VC in quantifier-free PA extended with val, if, /, \% :

$$
\text { res }=b(\bar{x}) \rightarrow \operatorname{Post}(\text { res, } \bar{x})
$$

Eliminate extensions, choosing always existential quantifiers for new variables \bar{z}. Moreover, such existentials can be pulled to top-level, because we only introduced \vee, \wedge and never \neg for sub-formulas. We obtain:

$$
(\exists \bar{z} . F(\text { res }, \bar{x}, \bar{z})) \rightarrow \operatorname{Post}(\text { res }, \bar{x})
$$

which is equivalent to

$$
\forall \bar{z} .[F(r e s, \bar{x}, \bar{z}) \rightarrow \operatorname{Post}(r e s, \bar{x})]
$$

So, all variables are universally quantified.

Explaining $(\exists F) \rightarrow G$

Indeed, from first-order logic we have these equivalent formulas:

$$
\begin{aligned}
& (\exists \bar{z} . F(\text { res }, \bar{x}, \bar{z})) \rightarrow \operatorname{Post}(\text { res, } \bar{x}) \\
& \neg(\exists \bar{z} . F(\text { res }, \bar{x}, \bar{z})) \vee \operatorname{Post}(\text { res }, \bar{x}) \\
& (\forall \bar{z} . \neg F(\text { res }, \bar{x}, \bar{z})) \vee \operatorname{Post}(\text { res, } \bar{x}) \\
& \forall \bar{z} .[\neg F(\text { res }, \bar{x}, \bar{z}) \vee \operatorname{Post}(\text { res }, \bar{x})] \\
& \forall \bar{z} .[F(\text { res }, \bar{x}, \bar{z}) \rightarrow \operatorname{Post}(\text { res }, \bar{x})]
\end{aligned}
$$

Checking validity is same as showing that

$$
F(\text { res, } \bar{x}, \bar{z}) \rightarrow \operatorname{Post}(\text { res }, \bar{x})
$$

is true for all values of variables, or that

$$
F(r e s, \bar{x}, \bar{z}) \wedge \neg \operatorname{Post}(r e s, \bar{x})
$$

has no satisfying assignments.

VC Generation for Imperative Non-Deterministic Programs

Program can be represented by a formula relating initial and final state.

$$
\begin{array}{rc}
\text { program: } & x=x+2 ; y=x+10 \\
\text { relation: } & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\text { formula: } & x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z
\end{array}
$$

Specification: $z=\operatorname{old}(z) \wedge(\operatorname{old}(x)>0 \rightarrow(x>0 \wedge y>0))$ Adhering to specification is relation subset:

$$
\begin{aligned}
& \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z\right\} \\
\subseteq & \left\{\left(x, y, z, x^{\prime}, y^{\prime}, z^{\prime}\right) \mid z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)\right\}
\end{aligned}
$$

or validity of the following implication:

$$
\begin{aligned}
& x^{\prime}=x+2 \wedge y^{\prime}=x+12 \wedge z^{\prime}=z \\
\rightarrow \quad & z^{\prime}=z \wedge\left(x>0 \rightarrow\left(x^{\prime}>0 \wedge y^{\prime}>0\right)\right)
\end{aligned}
$$

Adding State and Non-Determinism

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$ Imperative statements:

- $\mathbf{x}=\mathbf{t}$: change $x \in V$ to have value given by t; leave vars in $V \backslash\{x\}$ unchanged
- if(F) $\mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: if F holds, execute c_{1} else execute c_{2}
- $\mathbf{c}_{\mathbf{1}} ; \mathbf{c}_{\mathbf{2}}$: first execute c_{1}, then execute c_{2}

Statements for introducing and restricting non-determinism:

- havoc(\mathbf{x}): non-deterministically change $x \in V$ to have an arbitrary value; leave vars in $V \backslash\{x\}$ unchanged
- if $(*) \mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: arbitrarily choose to run c_{1} or c_{2}
- assume(F): block all executions where F does not hold Given such loop-free program c with conditionals, compute a polynomial-sized formula $R(c)$ of form: $\exists \bar{z} . F\left(\bar{x}, \bar{z}, \bar{x}^{\prime}\right)$ describing relation between initial values of variables x_{1}, \ldots, x_{n} and final values of variables $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$

Construction Formula that Describe Relations

c - imperative command
$R(c)$ - formula describing relation between initial and final states of execution of c

If $\rho(c)$ describes the relation, then $R(c)$ is formula such that

$$
\rho(c)=\left\{\left(\bar{v}, \bar{v}^{\prime}\right) \mid R(c)\right\}
$$

$R(c)$ is a formula between unprimed variables \bar{v} and primed variables \bar{v}^{\prime}

Formula for Assignment

$$
x=t
$$

Formula for Assignment

$$
x=t
$$

$R(x=t):$

$$
x^{\prime}=t \wedge \bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Formula for if-else

After flattening,
if $(b) c_{1}$ else c_{2}

Formula for if-else

After flattening,

$$
\text { if }(b) c_{1} \text { else } c_{2}
$$

$R\left(i f(b) c_{1}\right.$ else $\left.c_{2}\right)$:

$$
\left(b \wedge R\left(c_{1}\right)\right) \vee\left(\neg b \wedge R\left(c_{2}\right)\right)
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b .(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b .(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

What are $R\left(c_{1}\right)$ and $R\left(c_{2}\right)$ and in terms of which variables they are expressed?

Command semicolon

$$
c_{1} ; c_{2}
$$

Reminder about relation composition and its definition:

$$
r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b \cdot(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}
$$

What are $R\left(c_{1}\right)$ and $R\left(c_{2}\right)$ and in terms of which variables they are expressed?
$R\left(c_{1} ; c_{2}\right) \equiv$

$$
\exists \bar{z} . \quad R\left(c_{1}\right)\left[\bar{x}^{\prime}:=\bar{z}\right] \wedge R\left(c_{2}\right)[\bar{x}:=\bar{z}]
$$

where \bar{z} are freshly picked names of intermediate states.

havoc

Definition of HAVOC

1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
$y=12 ; \operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)$
Translation, $R(\operatorname{havoc}(x))$:

havoc

Definition of HAVOC

1. wide and general destruction: devastation
2. great confusion and disorder

Example of use:
$y=12 ; \operatorname{havoc}(x) ; \operatorname{assume}(x+x=y)$
Translation, $R(\operatorname{havoc}(x))$:

$$
\bigwedge_{v \in V \backslash\{x\}} v^{\prime}=v
$$

Non-deterministic choice

$$
\text { if }(*) c_{1} \text { else } c_{2}
$$

Non-deterministic choice

$$
\text { if }(*) c_{1} \text { else } c_{2}
$$

$R\left(i f(*) c_{1}\right.$ else $\left.c_{2}\right):$

$$
R\left(c_{1}\right) \vee R\left(c_{2}\right)
$$

assume

$$
\operatorname{assume}(F)
$$

assume

$$
\text { assume }(F)
$$

$R(\operatorname{assume}(F))$:

$$
F \wedge \bigwedge_{v \in V} v^{\prime}=v
$$

Example of Translation

$$
\begin{aligned}
& \text { (if }(b) x=x+1 \text { else } y=x+2) \text {; } \\
& 1 \\
& x=x+5 \\
& 2 \\
& (\text { if }(*) y=y+1 \text { else } x=y)
\end{aligned}
$$

becomes
$\exists x_{1}, y_{1}, x_{2}, y_{2} .\left(\left(b \wedge \mathbf{x}_{\mathbf{1}}=\mathbf{x}+\mathbf{1} \wedge y_{1}=y\right) \vee\left(\neg b \wedge x_{1}=x \wedge \mathbf{y}_{\mathbf{1}}=\mathbf{x}+\mathbf{2}\right)\right)$

$$
\begin{aligned}
& \wedge\left(\mathbf{x}_{\mathbf{2}}=\mathbf{x}_{\mathbf{1}}+\mathbf{5} \wedge y_{2}=y_{1}\right) \\
& \wedge\left(\left(x^{\prime}=x_{2} \wedge \mathbf{y}^{\prime}=\mathbf{y}_{2}+\mathbf{1}\right) \vee\left(\mathbf{x}^{\prime}=\mathbf{y}_{2} \wedge y^{\prime}=y_{2}\right)\right)
\end{aligned}
$$

Think of execution trace $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ where

- $\left(x_{0}, y_{0}\right)$ is denoted by (x, y)
- $\left(x_{3}, y_{3}\right)$ is denoted by $\left(x^{\prime}, y^{\prime}\right)$

Imperative Presburger Arithmetic Programs

F - formulas, t - terms - as in functional programs so far
Fixed number of mutable integer variables $V=\left\{x_{1}, \ldots, x_{n}\right\}$ Imperative statements:

- $\mathbf{x}=\mathbf{t}$: change $x \in V$ to have value given by t; leave vars in $V \backslash\{x\}$ unchanged
- if(F) $\mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: if F holds, execute c_{1} else execute c_{2}
- $\mathbf{c}_{\mathbf{1}} ; \mathbf{c}_{\mathbf{2}}$: first execute c_{1}, then execute c_{2}

Statements for introducing and restricting non-determinism:

- havoc(\mathbf{x}): non-deterministically change $x \in V$ to have an arbitrary value; leave vars in $V \backslash\{x\}$ unchanged
- if $(*) \mathbf{c}_{\mathbf{1}}$ else $\mathbf{c}_{\mathbf{2}}$: arbitrarily choose to run c_{1} or c_{2}
- assume(F): block all executions where F does not hold Given such loop-free program c with conditionals, compute a polynomial-sized formula $R(c)$ of form: $\exists \bar{z} . F\left(\bar{x}, \bar{z}, \bar{x}^{\prime}\right)$ describing relation between initial values of variables x_{1}, \ldots, x_{n} and final values of variables $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$

Justifying the name for assume(F)

Compute and simplify as much as possible each of the following expressions:

1. $R(\operatorname{assume}(F) ; c)$
2. $R(c ; \operatorname{assume}(F))$

Expressing if through non-deterministic choice and assume

Expressing if through non-deterministic choice and assume

if (b) c1 else c2
\square
if $(*)\{$ assume(b); c1
\} else \{
assume(!b);
c2
\}

Expressing assignment through havoc and assume

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume $(x==e)$

Under what conditions this holds?

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume $(x==e)$

Under what conditions this holds? $x \notin F V(e)$

Illustration of the problem: havoc (x); assume $(x==x+1)$

Expressing assignment through havoc and assume

$$
x=e
$$

havoc (x); assume ($x==e$)

Under what conditions this holds? $x \notin F V(e)$

Illustration of the problem: havoc (x); assume $(x==x+1)$
Luckily, we can rewrite it into $x_{\text {fresh }}=x+1 ; x=x_{\text {fresh }}$

Synthesis: From Specification to Code

From Quantifier Elimination to Synthesis

Quantifier Elimination

If \bar{y} is a tuple of variables not containing x, then

$$
\exists x \cdot(x=t(\bar{y}) \wedge F(x, \bar{y})) \Longleftrightarrow F(t(\bar{y}), \bar{y})
$$

Synthesis

$$
\text { choose } x .(x=t(\bar{y}) \wedge F(x, \bar{y}))
$$

gives:

- precondition $F(t(\bar{y}), \bar{y})$, as before, but also
- program that realizes x, in this case, $t(\bar{y})$

