
Quiz
Synthesis, Analysis, and Verification 2012

Tuesday, April 17th, 2012

Last Name :

First Name :

Exercise Points Achieved Points
1 10
2 10
3 20
4 30
5 15
6 15

Total 100

Problem 1: Relations (10 points)

Task a) Prove that for every P ⊆ S,

sp(P, r) = sp(S,∆P ◦ r)

Solution:

sp(S,∆P ◦ r) = {s′|∃s.s ∈ S ∧ (s, s′) ∈ (∆P ◦ r)}
= {s′|∃s, t.s = t ∧ t ∈ P ∧ (t, s′) ∈ r}
= {s′|∃s.s ∈ P ∧ (s, s′) ∈ r}
= sp(P, r)

Task b) Prove that for every P ⊆ S,

wp(r, P) = {x|sp({x}, r) ⊆ P}

Solution:

{x|sp({x}, r) ⊆ P} = {x|∀s′.s′ ∈ sp({x}, r)→ s′ ∈ P}
= {x|∀s′.(∃s.s ∈ {x} ∧ (s, s′) ∈ r)→ s′ ∈ P}
= {x|∀s′.(∃s.s = x ∧ (s, s′) ∈ r)→ s′ ∈ P}
= {x|∀s′.(x, s′) ∈ r → s′ ∈ P}
= wp(r, P)

Problem 2: Fixpoints (10 points)

Let r ⊆ A×A.

Task a) Let D = {r | r ⊆ A×A} and let Fr : D → D be defined as

Fr(s) = ∆A ∪ s ◦ r ◦ s

Compute the least fixpoint of F according to the subset relation ⊆ and give an alternative short descrip-
tion of it.

Solution: We want to compute the least fixpoint, say t. We claim that r∗ = t. From

Fr(r
∗) = ∆A ∪ r∗ ◦ r ◦ r∗ = r∗

we see that it is a fixpoint. We can apply Tarski’s fixpoint theorem, to get that r∗ is the least fixpoint
(with some work).
Task b) Now let

Fr(s) = s ◦ r ◦ s

What is the least fixpoint now?
Solution: Trying Fr on ∅: Fr(∅) = ∅ ◦ r ◦∅ = ∅ we see that the empty set is a fixpoint, and since it
is the least in the ordering, it’s the least fixpoint.

1

Problem 3: Nice Invariants (20 points)

Suppose that R(v, v′) is a formula describing a piece of code and let r = {(v, v′) | R(v, v′)} be the
relation corresponding to R. Let T (v, v′) be a formula such that, for t = {(v, v′) | T (v, v′)}, the
following holds:

(1) ∆ ⊆ t
(2) r ⊆ t
(3) t ◦ t ⊆ t

Let P (v) and Q(v) be formulas and assume that the following formula is valid:

(4) P (v) ∧ T (v, v′)→ Q(v′)

We will say that I(v) is a nice invariant if all of the following formulas are valid:

P (v)→ I(v)
I(v)→ Q(v)
I(v) ∧R(v, v′)→ I(v′)

Task a) Prove or disprove that sp(P, t) is a nice invariant.
Solution: We will prove it is a nice invariant.

• P (v)→ sp(P, t)
We want to show

P (v)→ ∃v′.P (v′) ∧ (v′, v) ∈ t
Taking v′ = v, the implication holds, since (v, v) ∈ t by assumption.

• sp(P, t)(v)→ Q(v)
We have

∃v1.P (v1) ∧ (v1, v) ∈ t→ ∃v1.Q(v)→ Q(v)

as required from (4).

• sp(P, t)(v) ∧R(v, v′)→ sp(P, t)(v′)
We want to show

[(∃v1.P (v1) ∧ (v1, v) ∈ t) ∧ (v, v′) ∈ r]→ ∃v2.P (v2) ∧ (v2, v
′) ∈ t

Take v2 = v1 and by (v2, v
′) ∈ t ◦ r ⊆ t ◦ t ⊆ t the implication holds.

Task b) Prove or disprove that wp(t, Q) is a nice invariant.
Solution:
We will prove it is a nice invariant.

• P (v)→ wp(t, Q)(v)
We want to show

P (v)→ (∀v1.(v, v1) ∈ t→ Q(v1))

⇔ ∀v1.P (v)→ ((v, v1) ∈ t→ Q(v1))

⇔ ∀v1.P (v) ∧ (v, v1) ∈ t→ Q(v1)

which is valid by assumption.

2

• wp(t, Q)(v)→ Q(v)
We want to show

(∀v′.((v, v′) ∈ t→ Q(v′)))→ Q(v)

Take v′ = v and since (v, v) ∈ t the above holds.

• wp(t, Q)(v) ∧R(v, v′)→ wp(t, Q)(v′)

(∀v1.(v, v1) ∈ t→ Q(v1)) ∧R(v, v′)→ (∀v2.(v′, v2) ∈ t→ Q(v2))

⇔∀v2.(∀v1.(v, v1) ∈ t→ Q(v1)) ∧R(v, v′) ∧ (v′, v2) ∈ t→ Q(v2))

⇔∀v2.(∀v1.(v, v1) ∈ t→ Q(v1)) ∧ (v, v2) ∈ t→ Q(v2))

By taking v1 = v2 the condition holds.

Task c) How do the answers in a) and b) change if we replace the condition t ◦ t ⊆ t with the condition
r ◦ t ⊆ t? Recall that we define relation composition ◦ such that r ◦ t = {(v, v′) | ∃v′′.(v, v′′) ∈
r ∧ (v′′, v′) ∈ t}
Solution:
For part a) we have used t ◦ r ⊆ t ◦ t ⊆ t, which does not hold anymore. In fact, one can find a
counterexample for the condition sp(P, t)(v) ∧R(v, v′)→ sp(P, t)(v′).

3

Problem 4: Hoare Triples and Loop Invariants (30 points)

Consider a programming language that supports integer variables, as well as variables that denote sets of
integers and binary relations on integers (all integers are unbounded).
The command lookup(k, r) looks up a value v such that (k, v) ∈ r. If such value exists, it returns one
such value as a singleton set {v}. If no such value exists, it returns the emptyset {}. (Note that, for each
k, there can in general be zero, one, or more values v such that (k, v) ∈ r.)

Task a) Write a Hoare triple describing lookup(k, r1) in the form

{precondition} v1 = lookup(k, r1) {postcondition}

where the precondition is as permissive (weak) as possible (so that it does not restrict the application
of the lookup operation unnecessarily). Given as week precondition as you can find, specify the most
precise postcondition that follows from the above description of how lookup should work.
Solution:

{>} v1 = lookup(k, r1) {(∃v.(k, v) ∈ r1 ∧ v1 = {v}) ∨ (∀v.(k, v) /∈ r1 ∧ v1 = ∅)}

Task b) Consider the following program, where the variables r1,r are relations, v1,W are sets of integers,
and k is an integer.

// Precondition: ∀i.∀v.(i, v) ∈ r → 0 ≤ i
r1 = r;
k = 0;
W = {};
while // invariant Inv

(r1 != {})
{

v1 = lookup(k,r1);
if (v1 = {}) {

k = k + 1
} else {

W = W ∪ v1;
r1 = r1 \ ({k} × v1)
}
}
// Postcondition: W = range(r)

We use the notation
range(r) = {v | ∃i.(i, v) ∈ r}

Find an appropriate loop invariant, Inv, and use it to prove that, whenever we run the above program in a
state that satisfies the Precondition, its final state satisfies the Postcondition. You need to explain why (1)
the invariant holds initially in all states that satisfy the precondition, why (2) it is inductive (preserved on
each execution of the loop body starting from any state satisfying only the invariant), and why (3) it can
be used to prove the Postcondition. State each of these conditions as a Hoare triple, and prove it. Your
proof of individual Hoare triples need not be very detailed.

4

Feel free to use any notation of sets, relations, and quantifiers in your invariants and Hoare triples. It is
crucial that your invariant is correct (conditions (1),(2),(3) hold). Hint: using r \ r1 as part of your loop
invariant may be helpful.
Solution: There were two suggested invariants in the solutions of the students.

• W = range(r \ r1)

• W ∪ range(r1) = range(r)

Notice that the first invariant is stronger than the second one. You can easily prove the following lemma:
(W = range(r \ r1) ∧ (r1 ⊆ r)) → (W ∪ range(r1) = range(r)) However the following does not
necessarily hold:
(W ∪ range(r1) = range(r) ∧ (r1 ⊆ r)) → (W = range(r \ r1)) Although the second invariant
allows more freedom to the variables both of them are correct for the given program. Here we give the
proof for the inductive case; entrance and exit can easily be proved. Notice that the second invariant can
also be written as the following. The new form is a union of two sets in which the first is similar to the
invariant:
W = (range(r) \ range(r1)) ∪ (W ∩ range(r1))
Let’s show the three properties for the first invariant:

1.
{∀i.∀v.(i, v) ∈ r → 0 ≤ i} r1 = r; k = 0; W = {W = range(r \ r1)}

We have range(r \ r1) = range(∅) = ∅ = W

2.
{W = range(r \ r1)} loop body {W ′ = range(r \ r1′)}

We have two cases to consider. In the first case, v1 = {} and k′ = k + 1 and all other variables
remain unchanged, hence the Hoare triple trivially holds.
In the second case, v1 6= {}, W ′ = W ∪ v1 and r′1 = r1 \ ({k} × v1).

range(r \ r′1) = range(r \ (r1 \ ({k} × v1)))
= range((r \ r1) ∪ (r ∩ ({k} × v1)))
= range((r \ r1) ∪ ({k} × v1)) since ({k} × v1) ⊆ r
= range(r \ r1) ∪ range({k} × v1)
= W ∪ v1
= W ′

3.
{W = range(r \ r1) ∧ r1 = ∅} {W = range(r)}

follows from r \ r1 = r.

For the second invariant cases 1 and 3 are similarly easy, for the case 2, we want to prove W ′ ∪
range(r′) = range(r) for v1 6= {}.

W ′ ∪ range(r′1) = W ∪ v1 ∪ range(r1 \ ({k} × v1))
= W ∪ range(r1) ∪ v1
= W ∪ range(r1)
= range(r)

Bonus Task c) Suppose that we modify the code above by inserting the assignment command ’k = k +
1’ also in the second branch of ’if’. Does your original invariant still apply to the modified program?
Solution: Only if there are no duplicates.

5

Problem 5: Interval Analysis (15 points)

Consider interval analysis of a program with two integer variables x and y.
The state of the program is a map of the form {x 7→ i, y 7→ j} where i, j ∈ Z.
The abstract domain A associates an interval to each variable: it is the set of maps of the form

{x 7→ [lx, ux], y 7→ [ly, uy]}

with lx, ly ∈ Z ∪ {−∞} and ux, uy ∈ Z ∪ {∞}.
The abstraction function α is such that given a set of concrete states S, α(S)(x) is the most precise
interval containing all values of x found in S and α(S)(y) is the most precise interval containing all
values of y found in S.
The concretization function γ is such that

γ({x 7→ [lx, ux], y 7→ [ly, uy]}) = {s.s(x) ∈ [lx, ux] ∧ s(y) ∈ [ly, uy]}

Finally we define
sp](a, c) = α(sp(γ(a), c))

In the following questions the abstract postconditions need to be computed with respect to an arbitrary
abstract precondition represented by {x 7→ [lx, ux], y 7→ [ly, uy]}. Please make sure that the abstract
postconditions you give are as precise as possible.

Task a) Give the abstract strongest postcondition for each of the following statements

i) y = 5*xˆ2 - 26*x +5

ii) x = x*y

iii) x = a*x + b*y

Solution:

i) The polynomial P = 5x2 − 26x + 5 is a vertical parabola with minimum at x = 13/5. Hence
there are four cases:

• lx ≤ ux ≤ 13/5. In this case we have sp](c) = {x 7→ [lx, ux], y 7→ [P (ux), P (lx)]}
• lx ≤ 13/5 ≤ ux and 13/5 − lx > ux − 13/5. In this case sp](c) = {x 7→ [lx, ux], y 7→

[P (ux), P (lx)]}.
• lx ≤ 13/5 ≤ ux and 13/5 − lx ≤ ux − 13/5. In this case sp](c) = {x 7→ [lx, ux], y 7→

[P (lx), P (ux)]}.
• 13/5 ≤ lx ≤ ux. In this case sp](c) = {x 7→ [lx, ux], y 7→ [P (lx), P (ux)]}

ii) Let c be the statement x = x*y.

• If lx, ly, ux, uy ≤ 0 then sp](c) = {y 7→ [ly, uy], x 7→ [ux ∗ uy, lx ∗ ly]}
• If lx, ly ≤ 0 and ux, uy ≥ 0 then sp](c) = {y 7→ [ly, uy], x 7→ [min(ux ∗ ly, lx ∗
uy),max(ux ∗ uy, lx ∗ ly)]}
• If lx, ly, ux, uy ≥ 0 then sp](c) = {y 7→ [ly, uy], x 7→ [lx ∗ ly, ux ∗ uy]}
• If lx, ux ≤ 0 and ly, uy ≥ 0 then sp](c) = {y 7→ [ly, uy], x 7→ [lx ∗ uy, ux ∗ ly]}
• If ly, uy ≤ 0 and lx, ux ≥ 0 then sp](c) = {y 7→ [ly, uy], x 7→ [ly ∗ ux, uy ∗ lx]}

6

iii) Let c be the statement x = a*x + b*y. Let lax, uax, lby, uby be the bounds on a ∗ x and b ∗ y
as determined above. Then sp](c) = {x 7→ [lax + lbx, uax + ubx], y 7→ [ly, uy]}.

Task b) Use the rules you determined above to compute the abstract postcondition for the following
program:

y = 5*x - 1;
x = x - 5;
y = y*x;

Solution:
Let x0 and y0 be the initial values of the variables. Observe that, at the end of the program, x = x0−5 and
y = (5∗x0−1)(x0−5) = 5∗x20−26∗x0+5. Hence we have that sp](p) = {x 7→ [lx−5, ux−5], y 7→
[l′y, u

′
y]} where l′y and u′y are as determined in question 1.1.

Problem 6: Predicate Abstraction (15 points)

Consider the set of predicates
P = {false, 0 ≤ x, 0 ≤ y, x ≤ y}

Let A = 2P . The meaning of a set of predicates a ∈ A, denoted γ(a) is, as usual, the set of states that
satisfies the conjunction of all predicates in a.
The precise semantics of a command cmd is the relation associated with cmd. For example, the precise
semantics of the command

x = y; y = x + 1

in a program with two variables is the relation

{((x, y), (x′, y′)) | x′ = y ∧ y′ = y + 1}

For a given command cmd whose precise semantics is given by a relation r, let sp#(a,cmd) denote the
least element a′ ∈ A such that sp(γ(a), r) ⊆ γ(a′).
As usual in programming languages, let x++ denote a command that increments an integer variable x by
1 (assume that integer variables are unbounded).
Let a0 = {0 ≤ x, 0 ≤ y, x ≤ y}.
Compute the following values:

a) sp#(a0,x++)

b) sp#(sp#(a0,x++),y++)

c) sp#(a0, (x++;y++))

Solution:

a) sp#(a0,x++) = {0 ≤ x, 0 ≤ y}

b) sp#(sp#(a0,x++),y++) = {0 ≤ x, 0 ≤ y}

c) sp#(a0, (x++;y++)) = a0

7

