
Exercises 1

SAV 2013

1 PL validity

For each of the following propositional logic formulae determine whether it is valid or not. If it is
valid prove it, otherwise give a counterexample.

(i) P ∧Q→ P → Q

(ii) (P → Q) ∨ P ∧ ¬Q

(iii) (P → Q→ R)→ P → R

(iv) (P → Q ∨R)→ P → R

(v) ¬(P ∨Q)→ R→ ¬R→ Q

2 FOL validity

For each of the following predicate logic formulae determine whether it is valid or not. If it is valid
prove it, otherwise give a counterexample.

(i) (∀x, y.p(x, y)→ p(y, x))→ ∀z.p(z, z)

(ii) ∀x, y.p(x, y)→ p(y, x)→ ∀z.p(z, z)

(iii) (∃x.p(x))→ ∀y.p(y)

(iv) (∀x.p(x))→ ∃y.p(y)

(v) ∃x, y.(p(x, y)→ (p(y, x)→ ∀z.p(z, z)))

3 FOL Normal forms

Put the following formulae into prenex normal form:

(i) (∀x.∃y.p(x, y))→ ∀x.p(x, x)

(ii) ∃z.(∀x.∃y.p(x, y))→ ∀x.p(x, z)

(iii) ∀w.¬(∃x, y.∀z.p(x, z)→ q(y, z)) ∧ ∃z.p(w, z)



4 Redundant logical connectives

a) Given >,∧ and ¬, prove that ⊥,∨,→ and ↔ are redundant logical connectives. That is,
show that each of ⊥, F1 ∨F2, F1 → F2 and F1 ↔ F2 is equivalent to a formula that uses only
F1, F2,>,∧ and ¬.

b) Now extend propositional formulas with a NAND operator, denoted Z and defined by

x Z y = ¬(x ∧ y)

Show that for each propositional formula F there exists an equivalent formula that uses Z as
the only operator.

5 Complexity of normal forms

a) We define the size of a formula as the number of nodes in its syntax tree. For example,
size(P ∧ ¬R) = 4, where P and R are propositional variables.

Now consider propositional formulas containing only ∧,∨,→,¬ and the recursive definition
of NNF for propositional logic.

Find an integer constant K such that, for every such formula G we have:

size(NNF (G)) ≤ K · size(G)

Once you guess the value K, prove that the above inequation holds for this K, using mathe-
matical induction.

b) Prove that there is no polynomial-time algorithm for transforming a propositional formula
into an equivalent formula in conjunctive normal form. You do not need to use any deep
results of complexity theory.

Specifically, prove that there exists an infinite family of formulas F1, F2, . . . such that for each
n, every algorithm that transforms Fn to CNF needs exponential time. (Note that it is not
enough to prove that one particular algorithm will take exponential time, you need to prove
that every algorithm would need exponential time.)



6 Relations

Prove the following or give a counterexample.

(i) (r ∪ s) ◦ t = (r ◦ t) ∪ (s ◦ t)

(ii) (r ∩ s) ◦ t = (r ◦ t) ∩ (s ◦ t)

(iii) (r1 ◦ r2)−1 = (r−12 ◦ r
−1
1 )

(iv) S • r = ran(4S ◦ r)

(v) If r1 ⊆ r′1 then r1 ◦ r2 ⊆ r′1 ◦ r2 and r2 ◦ r1 ⊆ r2 ◦ r′1.

(vi) If r1 ⊆ r′1 then r1 ∪ r2 ⊆ r′1 ∪ r2 and r2 ∪ r1 ⊆ r2 ∪ r′1.

7 Composition of partial functions

Given two partial functions r1 and r2, show that r = r1 ◦ r2 is also a partial function.

8 Transitive relations

Given a relation r ⊆ A×A, prove that r is transitive if and only if r ◦ r ⊆ r.

9 Symmetric relations

Recall that a relation r ⊆ A×A is symmetric if ∀x, y ∈ A. (x, y) ∈ r → (y, x) ∈ r.
Now let r be an arbitrary relation. Prove that r−1 ◦ (r ∪ r−1)∗ ◦ r is symmetric.

10 Transitive closure

Recall that we define the powers of a relation r ⊆ A×A as follows:

r0 = 4A, r1 = r, and rn+1 = rn ◦ r

We showed that the reflexive and transitive closure r∗ =
⋃

n≥0 r
n is the smallest reflexive and

transitive relation on A containing r. Show that for any relation r on a set A, (r ∪ r−1)∗ is the
least equivalence relation containing r. Precisely, show that

(i) (r ∪ r−1)∗ is an equivalence relation, and

(ii) if s is an equivalence relation containing r, then (r ∪ r−1)∗ ⊆ s.

11 Monotonicity of relation composition

Let E(r1, r2, ..., rn) be a relation composed of relations ri with an arbitrary combination of relation
composition and union, e.g. one possible expression could be (r1◦r2)∪r3. Show that this operation
is monotone, that is show that for any i ri ⊆ r′i → E(r1, r2, ..., ri, ..., rn) ⊆ E(r1, r2, ..., r

′
i, ..., rn)


