
Lecturecise 23: Satisfiability Modulo Theory Solvers

2013

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true?

yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true? No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y) : unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) : x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true? yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true? No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y) : unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) : x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true? yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true?

No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y) : unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) : x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true? yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true? No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y) : unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) : x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true? yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true? No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y)

: unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) : x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true? yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true? No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y) : unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) : x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true? yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true? No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y) : unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1)

: x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true? yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true? No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y) : unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) : x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Satisfiability Modulo Theories
SAT = Satisfiability for Propositional Logic

I formula: p ∧ (¬q ∨ r) ∧ s

I Do there exist truth values p, q, r , s that make formula true? yes, e.g.,
p 7→ 1, q 7→ 0, s 7→ 1 (r is any)

SMT = Satisfiability Modulo Theories (e.g. Z3 solver)

I formula: a = b ∧ (¬(f (a) = f (b)) ∨ b = c) ∧ ¬(f (a) = f (c))

I Do there exist values of a, b, c that makes formula true? No. We have:
a = b, f (a) = f (b), b = c , a = c , f (a) = f (c), ¬(f (a) = f (c)) �

I Another example: x = y ∧ f (x) < f (y) : unsatisfiable

I Another example: 1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) : x 7→ 2

Large formulas with few no or few quantifiers (unlike pure FOL provers)

I propositional structure explored using SAT solver

I function and relation symbols come from decidable theories
(quantifier-free linear arithmetic, algebraic data types)

I atomic formulas solved using decision procedures (theory solvers)

I quantifiers handled mostly by instantiation

Flattening and Extracting Propositional Structure

a = b ∧ (f (a) 6= f (b) ∨ b = c) ∧ f (a) 6= f (c)

for each atomic formula introduce propositional variable:

p ∧ (¬q ∨ r) ∧ ¬s
p ⇔ a = b
q ⇔ f (a) = f (b)
r ⇔ b = c
s ⇔ f (a) = f (c)

flatten: give name to each subterm, e.g. fa denotes f (a):

p ∧ (¬q ∨ r) ∧ ¬s} give to SAT solver, who returns e.g. p ∧ ¬q ∧ s
p ⇔ a = b
q ⇔ fa = fb
r ⇔ b = c
s ⇔ fa = fc


maps prop. assignment to conjunction of literals
a = b ∧ fa 6= fb ∧ fa 6= fc

fa = f (a)
fb = f (b)
fc = f (c)


each theory uses its conjuncts and definitions
... ∧ a = b ∧ fa 6= fb ∧ fa 6= fc
UNSAT, give to SAT solver : ¬(p ∧ ¬q ∧ s)

Flattening and Extracting Propositional Structure

a = b ∧ (f (a) 6= f (b) ∨ b = c) ∧ f (a) 6= f (c)

for each atomic formula introduce propositional variable:

p ∧ (¬q ∨ r) ∧ ¬s
p ⇔ a = b
q ⇔ f (a) = f (b)
r ⇔ b = c
s ⇔ f (a) = f (c)

flatten: give name to each subterm, e.g. fa denotes f (a):

p ∧ (¬q ∨ r) ∧ ¬s} give to SAT solver, who returns e.g. p ∧ ¬q ∧ s
p ⇔ a = b
q ⇔ fa = fb
r ⇔ b = c
s ⇔ fa = fc


maps prop. assignment to conjunction of literals
a = b ∧ fa 6= fb ∧ fa 6= fc

fa = f (a)
fb = f (b)
fc = f (c)


each theory uses its conjuncts and definitions
... ∧ a = b ∧ fa 6= fb ∧ fa 6= fc
UNSAT, give to SAT solver : ¬(p ∧ ¬q ∧ s)

Flattening and Extracting Propositional Structure

a = b ∧ (f (a) 6= f (b) ∨ b = c) ∧ f (a) 6= f (c)

for each atomic formula introduce propositional variable:

p ∧ (¬q ∨ r) ∧ ¬s
p ⇔ a = b
q ⇔ f (a) = f (b)
r ⇔ b = c
s ⇔ f (a) = f (c)

flatten: give name to each subterm, e.g. fa denotes f (a):

p ∧ (¬q ∨ r) ∧ ¬s} give to SAT solver, who returns e.g. p ∧ ¬q ∧ s

p ⇔ a = b
q ⇔ fa = fb
r ⇔ b = c
s ⇔ fa = fc


maps prop. assignment to conjunction of literals
a = b ∧ fa 6= fb ∧ fa 6= fc

fa = f (a)
fb = f (b)
fc = f (c)


each theory uses its conjuncts and definitions
... ∧ a = b ∧ fa 6= fb ∧ fa 6= fc
UNSAT, give to SAT solver : ¬(p ∧ ¬q ∧ s)

Flattening and Extracting Propositional Structure

a = b ∧ (f (a) 6= f (b) ∨ b = c) ∧ f (a) 6= f (c)

for each atomic formula introduce propositional variable:

p ∧ (¬q ∨ r) ∧ ¬s
p ⇔ a = b
q ⇔ f (a) = f (b)
r ⇔ b = c
s ⇔ f (a) = f (c)

flatten: give name to each subterm, e.g. fa denotes f (a):

p ∧ (¬q ∨ r) ∧ ¬s} give to SAT solver, who returns e.g. p ∧ ¬q ∧ s
p ⇔ a = b
q ⇔ fa = fb
r ⇔ b = c
s ⇔ fa = fc


maps prop. assignment to conjunction of literals
a = b ∧ fa 6= fb ∧ fa 6= fc

fa = f (a)
fb = f (b)
fc = f (c)


each theory uses its conjuncts and definitions
... ∧ a = b ∧ fa 6= fb ∧ fa 6= fc
UNSAT, give to SAT solver : ¬(p ∧ ¬q ∧ s)

Flattening and Extracting Propositional Structure

a = b ∧ (f (a) 6= f (b) ∨ b = c) ∧ f (a) 6= f (c)

for each atomic formula introduce propositional variable:

p ∧ (¬q ∨ r) ∧ ¬s
p ⇔ a = b
q ⇔ f (a) = f (b)
r ⇔ b = c
s ⇔ f (a) = f (c)

flatten: give name to each subterm, e.g. fa denotes f (a):

p ∧ (¬q ∨ r) ∧ ¬s} give to SAT solver, who returns e.g. p ∧ ¬q ∧ s
p ⇔ a = b
q ⇔ fa = fb
r ⇔ b = c
s ⇔ fa = fc


maps prop. assignment to conjunction of literals
a = b ∧ fa 6= fb ∧ fa 6= fc

fa = f (a)
fb = f (b)
fc = f (c)


each theory uses its conjuncts and definitions
... ∧ a = b ∧ fa 6= fb ∧ fa 6= fc
UNSAT, give to SAT solver : ¬(p ∧ ¬q ∧ s)

Formula containing function symbols and arithmetic

I f is uninterpreted symbol (as in FOL)

I +, <,≤, 1, 3, 5 are as in linear integer arithmetic; x is of type integer

1 ≤ x︸ ︷︷ ︸
p

∧ x < 3︸ ︷︷ ︸
q

∧
(
(f (1) + 1 ≤ f (x)︸ ︷︷ ︸

r

∧ f (x) < f (2)︸ ︷︷ ︸
s

) ∨ 4 = 2x︸ ︷︷ ︸
t

)

p ∧ q ∧ ((r ∧ s) ∨ t)∧
p ⇔ 1 ≤ x ∧
q ⇔ x < 3 ∧
r ⇔ u1 ≤ u2 ∧ u1 = u3 + 1 ∧ u3 = f (u4) ∧ u2 = f (x) ∧ u4 = 1
s ⇔ u2 < u5 ∧ u5 = f (u6) ∧ u6 = 2
t ⇔ u7 = u8 ∧ u7 = 4 ∧ u8 = 2x

Who handles which part in this example:
propositional formula SAT solver

pure equalities (u7 = u8) both theory solvers

highlighted formulas solver for theory of uninterpreted functions

remaining ones solver for theory of integer linear arithmetic

Formula containing function symbols and arithmetic

I f is uninterpreted symbol (as in FOL)

I +, <,≤, 1, 3, 5 are as in linear integer arithmetic; x is of type integer

1 ≤ x︸ ︷︷ ︸
p

∧ x < 3︸ ︷︷ ︸
q

∧
(
(f (1) + 1 ≤ f (x)︸ ︷︷ ︸

r

∧ f (x) < f (2)︸ ︷︷ ︸
s

) ∨ 4 = 2x︸ ︷︷ ︸
t

)
p ∧ q ∧ ((r ∧ s) ∨ t)∧
p ⇔ 1 ≤ x ∧
q ⇔ x < 3 ∧
r ⇔ u1 ≤ u2 ∧ u1 = u3 + 1 ∧ u3 = f (u4) ∧ u2 = f (x) ∧ u4 = 1
s ⇔ u2 < u5 ∧ u5 = f (u6) ∧ u6 = 2
t ⇔ u7 = u8 ∧ u7 = 4 ∧ u8 = 2x

Who handles which part in this example:
propositional formula SAT solver

pure equalities (u7 = u8) both theory solvers

highlighted formulas solver for theory of uninterpreted functions

remaining ones solver for theory of integer linear arithmetic

Formula containing function symbols and arithmetic

I f is uninterpreted symbol (as in FOL)

I +, <,≤, 1, 3, 5 are as in linear integer arithmetic; x is of type integer

1 ≤ x︸ ︷︷ ︸
p

∧ x < 3︸ ︷︷ ︸
q

∧
(
(f (1) + 1 ≤ f (x)︸ ︷︷ ︸

r

∧ f (x) < f (2)︸ ︷︷ ︸
s

) ∨ 4 = 2x︸ ︷︷ ︸
t

)
p ∧ q ∧ ((r ∧ s) ∨ t)∧
p ⇔ 1 ≤ x ∧
q ⇔ x < 3 ∧
r ⇔ u1 ≤ u2 ∧ u1 = u3 + 1 ∧ u3 = f (u4) ∧ u2 = f (x) ∧ u4 = 1
s ⇔ u2 < u5 ∧ u5 = f (u6) ∧ u6 = 2
t ⇔ u7 = u8 ∧ u7 = 4 ∧ u8 = 2x

Who handles which part in this example:
propositional formula SAT solver

pure equalities (u7 = u8) both theory solvers

highlighted formulas solver for theory of uninterpreted functions

remaining ones solver for theory of integer linear arithmetic

Completeness for Combination of Theories
Suppose that we have conjuncts that talk about two different theories, e.g.

I integers
I algebraic data types on some infinite set (ADTs)

Group conjuncts into those for integers and those for ADTs: F1 ∧ F2
I If F1 is unsat in theory of integers, then F1 ∧ F2 is unsat
I If F2 is unsat in the theory of ADTs, then F1 ∧ F2 is unsat

I What if F1 has a model and F2 has a model?

Can two models can be merged?
I If yes, we have complete combination of two decision procedures

Basic idea: two theories can build models as long as the parts of models
that overlap are isomorphic (so they can be merged)
In practice, this works because operations are mostly disjoint.

ADTs have constructors and selectores, integers have +

Merging models is like merging graphs with disjoint edges. Must sure:
I distinct variables are distinct in both models (share equalities!)
I models can be made to have same cardinality (often: require each

model can be made infinite)

Completeness for Combination of Theories
Suppose that we have conjuncts that talk about two different theories, e.g.

I integers
I algebraic data types on some infinite set (ADTs)

Group conjuncts into those for integers and those for ADTs: F1 ∧ F2
I If F1 is unsat in theory of integers, then F1 ∧ F2 is unsat
I If F2 is unsat in the theory of ADTs, then F1 ∧ F2 is unsat
I What if F1 has a model and F2 has a model?

Can two models can be merged?
I If yes, we have complete combination of two decision procedures

Basic idea: two theories can build models as long as the parts of models
that overlap are isomorphic (so they can be merged)
In practice, this works because operations are mostly disjoint.

ADTs have constructors and selectores, integers have +

Merging models is like merging graphs with disjoint edges. Must sure:
I distinct variables are distinct in both models (share equalities!)
I models can be made to have same cardinality (often: require each

model can be made infinite)

Theory of Uninterpreted Function Symbols

Quantifier-free first-order logic with equality
Assume it is interpreted over an infinite domain
Assume no relation symbols: replace R(t1, . . . , tn) with fR(t1, . . . , tn) = T
for some fresh constant T
SAT solver handles disjunctions: assume conjunction of equalities and
disequalities
Key inference rule, for each function symbol f of n arguments:

t1 = t ′1 . . . tn = t ′n
f (t1, . . . , tn) = f (t ′1, . . . , t

′
n)

Also: “=” is equivalence relation and t 6= t is contradictory
Apply these rules only to those terms that occur in the formula
Implementation: E -graph stores congruence relation computed so far.
Applying rules: merging nodes in this graph

Example of Running the Algorithm

Let f k(a) denote f (. . . f (a) . . .) with k-fold application of f . Consider

f 3(a) = a ∧ f 5(a) = a ∧ f 2(a) 6= a

Apply the congruence closure algorithm to check its satisfiability.
Initial graph of all ground terms and the given equalities:

a f (a) f 2(a)) f 3(a)) f 4(a) f 5(a)
f f f f f

Congruence rule in this case: x = y → f (x) = f (y)
Equivalence maintained using union-find algorithm
Conjunction is satisfiable ⇔ there is literal t1 6= t2 where t1, t2 are merged
⇐): by properties of equality, conclusions are sound
⇒): computed congruence extends to congruence on the Herbrand model

Herbrand-Like Theorem for Equality
For every set of formulas with equality S the following are equivalent

I S has a model

I S ′ ∪ AxEq has a model (where AxEq are Axioms for Equality:
congruence+equivalence), and S ′ is result of replacing in S ’=’ with ’eq’
symbol that is axiomatized;

I S has a model whose domain is the quotient [GT] of the set of ground terms
under some congruence.

Given Herbrand model (GT , α) where eq satisfies axioms of equality, we define
quotient of Herbrand model. For each element x ∈ GT , define
[x] = {y | (x , y) ∈ α(eq)} and [GT] = {[x] | x ∈ GT}
The constructed model is IQ = ([GT], αQ) where

αQ(R) = {([x1], . . . , [xn]) | (x1, . . . , xn) ∈ α(R)}

In particular, when R is eq we have

alphaQ(eq) = {([x1], [x2]) | (x1, x2) ∈ α(eq)} = {(a, a) | a ∈ D}

Functions are a special case of relations (note that result is unique):

αQ(f) = {([x1], . . . , [xn], [xn+1]) | (x1, . . . , xn, xn+1) ∈ α(f)}

Quantifier Instantiation During SMT Solving Process

G ∧ ∀x .F (x) ; G ∧ F (t) ∧ ∀x .F (x)

where t is a term occurring in G

I this can go on forever
I in general this is incomplete: may need to invent terms that do not

occur
I even in the limit it is not complete with respect to the ideal semantics

of e.g. integers (theory of quantified integers is not even enumerable)

Controlling the instantiation process using triggers
I for each quantified formula ∀x̄ .F (x̄) require a pattern P(x̄) that

contains all free variables in F (x̄)
I instantiate F (x̄) only if the the pattern P(x) occurs in the ground

formula so far
I introduced in Simplify: a theorem prover for program checking

More information in these papers

I Solving Quantified Verification Conditions using Satisfiability Modulo Theories

I Efficient E-matching for SMT solvers

http://doi.acm.org/10.1145/1066100.1066102

