
Lecturecise 18
Bounded Model Checking. Reachability Graphs.

Interpolation

2013

Concrete program semantics and verification

States per program point are given by (c1, . . . , cn) ∈ Cn for some concrete
lattice (C ,⊆), where C = 2S .
For each program there is a monotonic ω-continuous function F : Cn → Cn

such that
c̄∗ =

⋃
n≥0

F n(∅, . . . , ∅)

is the set of reachable states for each program point.
(Safety) verification can be stated as saying that the semantics remains
within the set of good states G , that is c∗ ⊆ G , or⋃

n≥0
F n(∅, . . . , ∅)

 ⊆ G

which is equivalent to
∀n. F n(∅, . . . , ∅) ⊆ G

Unfolding for Counterexamples: Bounded Model Checking

∀n. F n(∅, . . . , ∅) ⊆ G

The above condition is false iff there exists k and c̄ ∈ Cn such that

c̄ ∈ F k(∅, . . . , ∅) ∧ c̄ /∈ G

For a fixed k this can often be expressed as a quantifier-free formula.
Example: replace a loop ([c]s) ∗ [!c] with finite unrolding ([c]s)k [!c]
Example: n = 1, S = Z2, C = 2S , and F : C → C describes the program:
x=0;while(*)x=x+y

F (B) = {(x , y) | x = 0} ∪ {(x + y , y) | (x , y) ∈ B}

We have F (∅) = {(x , y) | x = 0} = {(0, y) | y ∈ Z}

F 2(∅) = {(0, y) | y ∈ Z} ∪ {(y , y) | y ∈ Z}

F 3(∅) = {(x , y) | x = 0 ∨ x = y ∨ x = 2 ∗ y}

Formula for Bounded Model Checking

Let PB(x , y) be a formula in Presburger arithmetic such that
B = {(x , y) | PB(x , y)} then the formula

x = 0 ∨ (∃x0, y0.x = x0 + y0 ∧ y = y0 ∧ PB(x0, y0))

describes F (B). Suppose the set F k(B) can be described by a PA formula
Pk . If G is given by a formula PG then the program can reach error in k
steps iff

Pk ∧ ¬PG

is satisfiable.
Suppose PG is x ≤ y . For k = 3 we obtain

(x = 0 ∨ x = y ∨ x = 2 ∗ y) ∧ ¬(x ≤ y)

By checking satisfiability of the formula we obtain counterexample values
x = −1, y = −2.

Bounded Model Checking Algorithm

B = ∅
while (∗) {

checksat(!(B ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat =>
B ′ = F (B)
if (B ′ ⊆ B) return Valid
else B = B ′

}

Good properties

I subsumes testing up to given depth for all possible initial states

I for a buggy program k, can be small, Leon and other tools can find
many bugs fast

I a semi-decision procedure for finding all possible errors:

Bounded Model Checking is Bounded

Bad properties

I can prove correctness only if F n+1(∅) = F n(∅)
I errors after initializations of long arrays require unfolding for large n.

This program requires unfolding past all loop iterations, even if the
property does not depend on the loop:

i = 0
z = 0
while (i < 1000) {

a(i) = 0
}
y = 1/z

I For large k formula F k becomes large, so deep bugs are hard to find

Transition Relation and CFG
(V ,E , L) where L : E → Formula and variables are Vars
Formula T (x̄ , v , x̄ ′, v ′) describing one step of execution:

I from CFG node v and values of variables x̄

I to CFG node v ′ and values of variables x̄ ′

T (x̄ , v , x̄ ′, v ′) ≡ (L(v , v ′))(x̄ , x̄ ′)

≡
∨

(w ,w ′)∈E

(v = w ∧ v ′ = w ′ ∧ L(w ,w ′)(x̄ , x̄ ′))

If I (x̄ , v) is a formula describing states reachable in some number of steps,
then states reachable in one more step are given by this formula

∃x̄ , v . (I (x̄ , v) ∧ T (x̄ , v , x̄ ′, v ′)

whose free variables are x̄ ′, v ′.
Execution fragment x̄i , vi , x̄i+1, vi+1, . . . , x̄i+k , vi+k is given by formula Pi ,k :

k−1∧
j=0

T (x̄i+j , vi+j , x̄i+j+1, vi+j+1)

Bounded Model Checking for Transition Relation

We have derived formula Pi ,k describing paths by iterating transition
relation T
To check whether

I starting from the program entry point ventry
with initial variables satisfying Init(x̄0)

I the program can reach in k steps control flow graph point verror
with values of variables satisfying Error(x̄)

we check the satisfiability of the formula

(v0 = verror ∧ Init(x̄0)) ∧ P0,k ∧ (vk = verror ∧ Error(x̄k))

Unfolding for Proving Correctness: k-Induction

Goal: ∀n. F n(∅, . . . , ∅) ⊆ G (1)

Suppose that, for some k ≥ 1

F k(G) ⊆ G (2)

By induction on p,
F pk(G) ⊆ G

Suppose also
∀q < k . F q(∅̄) ⊆ G (3)

By monotonicity of F pk then for every p ≥ 0 and q < k

F pk+q(∅̄) = F pk(F q(∅̄)) ⊆ F pk(G) ⊆ G

Every non-negative integer can be decomposed as pk + q, so (1) holds.
Algorithm: check (2) and (3) for increasing k

k-induction Algorithm

Prove or find counterexample for:

∀n. F n(∅, . . . , ∅) ⊆ G

Fk = F
while (∗) {

checksat(!(Fk(G) ⊆ G)) match
case Unsat => return Valid
case Assignment(v0) =>

checksat(!(Fk(∅) ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk ◦ F ′ // unfold one more

}

F ′(c) can be F (c) or F (c) ∩ G
Saving work: preserve the state of solver in both checksats across different k
Lucky test:
if (!(lfp(F)(initState(v0)) ⊆ G)) return Counterexample(v0)

Divergence in k-Induction

Fk = F
while (∗) {

checksat(!(Fk(G) ⊆ G)) match
case Unsat => return Valid
case Assignment(v0) =>

checksat(!(Fk(∅) ⊆ G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk ◦ F ′ // unfold one more

}

Subsumes bounded model checking, so finds all counterexamples
Often cannot find proofs when lfp(F) ⊆ G . Then G may be too weak to be
inductive, (F ′)n(G) may remain too weak:

F n(∅̄) ⊆ lfp(F) ⊆ (F ′)n(G)

Need weakening of F n(∅) or strengthening of (F ′)n(G)

Taking Approximate Postcondition
Suppose we did not find counterexample yet and we have sequence

c0 ⊆ c1 ⊆ . . . ck ⊆ G

where ci = F i (∅̄), so
F (ci) = ci+1

Instead of simply increasing k , we try to obtain larger values by finding
another solution a0 of constraints

c0 ⊆ a0, F k−1(a0) ⊆ G

so we obtain a sequence

a0 ⊆ F (a0) ⊆ . . . ⊆ F k−1(a0) ⊆ G

I if F (F k−1(a0)) ⊆ F k−1(a0), then F k−1(a0) is inductive invariant
I if F (F k−1(a0)) ⊆ G , repeat the process: find a new initial element a1

by solving a0 ⊆ a1, F k−1(a1) ⊆ G
I if not F (F k−1(a0)) ⊆ G , then we “overshot” the specification G . We

then increase k and restart.

Solving Inclusion Constraints

The previous procedure also finds all counterexamples of length up to k ,
and uses specification in a different way than k-induction.
Key question: how to obtain interesting solutions of inequality constraints
Solution: interpolation

Abstract Reachability Tree
Consider a control-flow graph (V ,E , L) where L : E → Formula describes
the statement on CFG edges using variables x̄ and x̄ ′.
Given a set of predicates P, the complete abstract reachability graph
(cARG) (VA,EA) for (V ,E , L) and P is given by

I VA = V × 2P . Thus, each ARG node (v , a) ∈ VA has a CFG node
v ∈ V and a set of predicates a ⊆ P

I ((v , a), (v ′, a′) ∈ EA iff
I (v , v ′) ∈ E
I a′ = {P ∈ P | ∀x , x̄ . ((

∧
a) ∧ L(v , v ′)→ P)}

Total number of nodes in cARG can be as much as |V | × 2|P|

In practice:
I we construct subgraphs of cARG, exploring additional edges using

some exploration strategy
I we do not use all predicates at all program points, but discover

predicates on the fly, using a set of predicates specific to each cARG
node

For example, given predicates {x ≥ 0, x > 0, x = 0} the successors of the
node (v0, ∅) under a statement L(v0, v1) ≡ (x ′ = 1) is (v1, {x > 0}).

Splitting in ARG
The above exploration strategy does not discover all disjunctions of
invariants.
Given an edge (v , v ′) ∈ E and an ARG node (v , a) we can achieve more
precise representation of the command L(v , v ′) by introducing not one but
a set of abstract edges such that

(
∧

a) ∧ L(v , v ′)→
∨

((v ,a),(v ′,a′))∈EA

a′

For example, given predicates {x < 0, x > 0, x = 0} and edge x = x + 1, if
we do not use splitting the successors of the node (v0, ∅) under a statement
L(v0, v1) ≡ x ′ = x + 1 is (v1, ∅) because no single predicate is guaranteed
to hold. On the other hand, if we are allowed to use multiple edges, we can
introduce instead three edges into EA:

((v0, ∅), (v1, {x < 0}))
((v0, ∅), (v1, {x > 0}))
((v0, ∅), (v1, {x = 0}))

Predicate Sequence that Eliminates False Path

ARG construction only checks feasibility of one step at a time
Therefore, ARG is finite, but also some paths can be infeasible
Consider sequence of nodes

v0, v1, . . . , vk

The condition that this path is feasible is

k−1∧
i=0

L(vi , vi+1)[x̄ := x̄i , x̄
′ := x̄ ′i]

If the path is not feasible it means that the above formula is unsatisfiable.
Then there is a Hoare triple proof for it:

{I0} L(v0, v1) {I1} L(v1, v2) {I2} . . . {Ik−1} L(vk−1, vk) {Ik}

where I0 ≡ true and Ik ≡ false.
How to find such predicates I1, . . . , In?

Interpolation Sequence

{I0} L(v0, v1) {I1} L(v1, v2) {I2} . . . {Ik−1} L(vk−1, vk) {Ik}

where I0 ≡ true and Ik ≡ false.
Finding predicates Ij :

I define Ij as the strongest postcondition of I0 with respect to the
composition of statements L(v0, v1), . . . , L(v0, vj).

I define Ij as the weakest precondition of false with respect to the
composition of statements L(vj , vj+1),. . . ,L(vk−1, k).

I in general, use the notion of interpolating sequence

Sequence of Length Two: Binary Interpolation

Fix some class of formulas F (e.g. quantifier-free formulas)
Binary interpolation for A,B ∈ F is formula I ∈ F such that, for all free
variables

I A→ I

I I → B

I I has only variables that are common for both A and B

Claim: if we can find binary interpolants, we can find interpolating
sequences.
Claim: if logic has quantifier elimination, then we can find binary
interpolants.

