Lecturecise 18
Bounded Model Checking. Reachability Graphs.
Interpolation

2013



Concrete program semantics and verification

States per program point are given by (ci,...,c,) € C" for some concrete
lattice (C, C), where C = 2°.
For each program there is a monotonic w-continuous function F : C" — C”

such that
& =|JF0,....0)

n>0

is the set of reachable states for each program point.
(Safety) verification can be stated as saying that the semantics remains
within the set of good states G, that is ¢, C G, or

UF@®....00)ce
n>0

which is equivalent to

V. F(0,....0) C G



Unfolding for Counterexamples: Bounded Model Checking
Vn. F"(,...,0) C G
The above condition is false iff there exists k and ¢ € C” such that
ce FK®,....0)ncé¢ G
For a fixed k this can often be expressed as a quantifier-free formula.
Example: replace a loop ([c]s) * [!c] with finite unrolding ([c]s)*[!c]

Example: n=1, S = 72, C =25 and F: C — C describes the program:
x=0;while(*)x=x+y

F(B)={(x,y) | x=0}U{(x+y,y) | (x,y) € B}
We have F(0) = {(x,y) | x =0} = {(0,y) | y € Z}
20)={0,y) |y € Z}U{(y,y) |y € Z}

F
F30)={(x,y) [ x=0Vx=yVx=2xy}



Formula for Bounded Model Checking

Let Pg(x,y) be a formula in Presburger arithmetic such that
B = {(x,y) | Pa(x,y)} then the formula

x =0V (Ixo, y0.x = X0+ Yo Ay = yo A Pa(x0, ¥0))

describes F(B). Suppose the set F¥(B) can be described by a PA formula
Pk. If G is given by a formula Pg then the program can reach error in k
steps iff

P N =Pg

is satisfiable.
Suppose P¢ is x < y. For k = 3 we obtain

(x=0Vx=yVx=2xy)A-(x<y)

By checking satisfiability of the formula we obtain counterexample values
x=-1ly=-2



Bounded Model Checking Algorithm

B=10
while () {
checksat(!(B C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat =>
B' = F(B)
if (B’ C B) return Valid
else B=FB
}

Good properties
» subsumes testing up to given depth for all possible initial states

» for a buggy program k, can be small, Leon and other tools can find
many bugs fast

> a semi-decision procedure for finding all possible errors:



Bounded Model Checking is Bounded

Bad properties
» can prove correctness only if F™1(()) = F"(()

» errors after initializations of long arrays require unfolding for large n.
This program requires unfolding past all loop iterations, even if the
property does not depend on the loop:
i=0
z=10
while (i < 1000) {

a(i) =0

y=1/z

» For large k formula FX becomes large, so deep bugs are hard to find



Transition Relation and CFG
(V,E, L) where L: E — Formula and variables are Vars
Formula T(x,v,X’,v') describing one step of execution:

» from CFG node v and values of variables X
» to CFG node v/ and values of variables X’
T(x,v,x', V)= (L(v,V))(x,X)
= \/ (v=wAVv =w ALw,w)(x,X))
(w,w')eE
If /(x,v) is a formula describing states reachable in some number of steps,
then states reachable in one more step are given by this formula

Ix,v. (I(x,v) A T(x,v,%, V)
whose free variables are X', v/.
Execution fragment X;, vi, Xi41, Vit1, - . -, Xi+k, Vi+k 1S given by formula P; x:

k-1
N\ TRisjs vidjs Rigjon, Vi)
Jj=0



Bounded Model Checking for Transition Relation

We have derived formula P; , describing paths by iterating transition
relation T
To check whether

» starting from the program entry point Venry,
with initial variables satisfying Init(xp)

» the program can reach in k steps control flow graph point vesror
with values of variables satisfying Error(X)

we check the satisfiability of the formula

(Vo = Verror A Init(X0)) A Pox A (Vk = Verror N Error(Xy))



Unfolding for Proving Correctness: k-Induction

Goal: Vn. F"(0,...,0) C G (1)
Suppose that, for some k > 1
FK(G)C G (2)
By induction on p,
FPE(G)C G
Suppose also B
Vg < k. FA()) C G (3)

By monotonicity of FPX then for every p > 0 and g < k
FPra(d) = FPA(FI(D)) € FP(6) C G

Every non-negative integer can be decomposed as pk + g, so (1) holds.
Algorithm: check (2) and (3) for increasing k



k-induction Algorithm
Prove or find counterexample for:

V. F(0,...,0)C G

Fk =F
while (%) {
checksat(!(Fk(G) C G)) match
case Unsat => return Valid
case Assignment(v0) =>
checksat(!(Fk(0) C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fko F' // unfold one more

}

F'(c) can be F(c) or F(c)N G

Saving work: preserve the state of solver in both checksats across different k
Lucky test:

if (!(/fp(F)(initState(v0)) C G)) return Counterexample(v0)



Divergence in k-Induction

Fk=F
while (x) {
checksat(!(Fk(G) C G)) match
case Unsat => return Valid
case Assignment(v0) =>
checksat(!(Fk(0) C G)) match
case Assignment(v) => return Counterexample(v)
case Unsat => Fk = Fk o F' // unfold one more

}

Subsumes bounded model checking, so finds all counterexamples
Often cannot find proofs when Ifp(F) C G. Then G may be too weak to be
inductive, (F')"(G) may remain too weak:

F"(0) C ifp(F) € (F')(G)

Need weakening of F"()) or strengthening of (F')"(G)



Taking Approximate Postcondition
Suppose we did not find counterexample yet and we have sequence
wCcaC...cx C€G
where ¢; = Fi(), so
F(ci) = cit1
Instead of simply increasing k, we try to obtain larger values by finding
another solution ag of constraints

o Cag, FFl(a)CG
so we obtain a sequence

a0 C F(a) C...C Fkla) CG

» if F(FA=Y(ap)) € F¥~1(ap), then F¥~1(ap) is inductive invariant

» if F(FA=1(ap)) C G, repeat the process: find a new initial element a;
by solving ag C a1, F<"1(a1) C G

» if not F(FK=1(ap)) C G, then we “overshot” the specification G. We
then increase k and restart.



Solving Inclusion Constraints

The previous procedure also finds all counterexamples of length up to k,
and uses specification in a different way than k-induction.

Key question: how to obtain interesting solutions of inequality constraints
Solution: interpolation



Abstract Reachability Tree

Consider a control-flow graph (V, E, L) where L : E — Formula describes
the statement on CFG edges using variables x and X'.
Given a set of predicates P, the complete abstract reachability graph
(cARG) (Va, Ea) for (V,E,L) and P is given by
» V4=V x 2P, Thus, each ARG node (v,a) € V4 has a CFG node
v € V and a set of predicates a C P
> ((v,a),(v',d") € Eaiff
» (v,V)€eE
» d ={PeP|Vx,x. (Aa)AL(v,v')— P)}
Total number of nodes in cARG can be as much as |V/| x 2/7|
In practice:
» we construct subgraphs of cARG, exploring additional edges using
some exploration strategy
» we do not use all predicates at all program points, but discover
predicates on the fly, using a set of predicates specific to each cARG
node
For example, given predicates {x > 0,x > 0,x = 0} the successors of the
node (vp, @) under a statement L(vp,v1) = (X' = 1) is (v1,{x > 0}).



Splitting in ARG

The above exploration strategy does not discover all disjunctions of
invariants.

Given an edge (v, V') € E and an ARG node (v, a) we can achieve more
precise representation of the command L(v, v’) by introducing not one but
a set of abstract edges such that

(/\a)/\L(v,v’)—> \/ a

((V’a)’(vlva/))GEA

For example, given predicates {x < 0,x > 0,x = 0} and edge x = x + 1, if
we do not use splitting the successors of the node (vp, () under a statement
L(vo,v1) = x' = x+ 1is (v1,0) because no single predicate is guaranteed
to hold. On the other hand, if we are allowed to use multiple edges, we can
introduce instead three edges into Ex:

((vo, ), (va, {x < 0}))
((v0,0), (v1, {x > 0}))
((vo, 0), (vi, {x = 0}))



Predicate Sequence that Eliminates False Path

ARG construction only checks feasibility of one step at a time
Therefore, ARG is finite, but also some paths can be infeasible
Consider sequence of nodes

Vo, Vi,..., Vg

The condition that this path is feasible is

k—1
/\ L(vi,viz1)[x = x;, X" :==X]]
i=0

If the path is not feasible it means that the above formula is unsatisfiable.
Then there is a Hoare triple proof for it:

{l} L(vo,v1) {h} L(vi,v2) {k} ... {lk—1} L(vk—1,vk) {lk}

where Iy = true and I, = false.
How to find such predicates Iy, ..., /,?



Interpolation Sequence

{/0} L(Vo, V1) {Il} L(Vl7 V2) {I2} '--{kal} L(kal, Vk) {Ik}
where Iy = true and I, = false.
Finding predicates /;:

» define /; as the strongest postcondition of Iy with respect to the
composition of statements L(vo, v1), ..., L(v, vj).

» define /; as the weakest precondition of false with respect to the
composition of statements L(vj, vjy1),...,L(vk—1, k).

> in general, use the notion of interpolating sequence



Sequence of Length Two: Binary Interpolation

Fix some class of formulas F (e.g. quantifier-free formulas)
Binary interpolation for A, B € F is formula | € F such that, for all free
variables

> A— |

» | - B

» | has only variables that are common for both A and B
Claim: if we can find binary interpolants, we can find interpolating
sequences.

Claim: if logic has quantifier elimination, then we can find binary
interpolants.



