Lecturecise 4
Refinement. Synthesis Procedures

Viktor Kuncak

2013

Local Variables

Global variables V = {x,%}
Program P:

x=x+1{vary,y=x+3z=x+y+z}hx=x+z

R(P) should be a relation between (x,%) and (x',2).
Each statement should be relation between variables in scope

z=x+y+z

is relation between x, y,z and x,y’, 2/
Convention: consider the initial values of variables to be arbitrary
Ry=x+3iz=x+y+z)=y=2x+3n2'= 2x4+342Z A=

;‘f.‘j\. ‘4‘:)(&"11\2\: 22442 Atz X
R({var y;y =x+3;z=x+y +z}) =

Local Variable Translation

R . pYOdroms Forumules

Ry (P) is formula for P in the scope that has the set of variables P

For example,

Then define
Ry({var yiP}) = iy Rl P)

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables P
For example,

Then define
Rv({var y; P}) = 3y.Ryugy(P)

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables P
For example,

Then define
Rv({var y; P}) = 3y.Ryugy(P)

Exercise: express havoc(x) using var.

Local Variable Translation

Ry (P) is formula for P in the scope that has the set of variables P
For example,

Then define
Rv({var y: P}) = 3y;Ruvugyy(P)

Exercise: express havoc(x) using var.
Ve fxii]

- Ry(havoc(x)) < Ry({vary, x=y}) ‘
a\ﬂg%(x'-_L; A\',';‘-fﬂ 2 :3)

Jy. x'=y oA 2=z

7'=2

2'=2

Havoc Multiple Variables at Once

Variables V' = {x1,...,xn}
Translation of R(havoc(yi,...,ym)):

Havoc Multiple Variables at Once

Variables V' = {x1,...,xn}
Translation of R(havoc(yi,...,ym)):

A v
veV\{yi,...,ym}

Exercise: the resulting formula is the same as for:

Programs and Specs are Relations

P program: x=x4+2;y=x+10
{(X’y7Z7X,ay/aZ/) | X/=X+2/\ylzx+12/\z’:z}

2(?) relation:
r(p formula: X =x+2N Ny =x+12NZ =z

Specification:

Z=zA(x>0—=(xX>0Ay >0)

Adhering to specification is relation subset:

=x4+2Ny =x+12NZ =2z}

{(X7.y’ Z7X,7.y/7z/) |X/
|z =zA(x>0—=(X>0Ay >0))}

C {(x,y,z,x.,y',2)

Non-deterministic programs are a way of writing specifications

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0

Corresponding program:

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:

havoc(x,y); assume(x >0 Ay > 0)

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?
Use local variables to store initial values.

Writing Specs Using Havoc and Assume: Examples
Program variables V = {x, y, z}
Formula for relation (talks only about resulting state):

Z=zAX >0Ay >0
Corresponding program:
havoc(x,y); assume(x >0 Ay > 0)
Formula for relation:
Z=zAX >xNy >y

Corresponding program?
Use local variables to store initial values.

{ var x0; var y0; vor 28]
X0 =x;y0 =y, 2az2"
havoc(x,y)») /
assume(x > x0 && y > y0)3& 2=20

}

Writing Specs Using Havoc and Assume

Global variables V = {x1,...,xp}
Specification
F(X15 ey Xy Xes o5 X0)

Becomes

Writing Specs Using Havoc and Assume

Global variables V = {x1,...,xp}
Specification
F(X15 0oy Xy XYy ey X0

Becomes

{ var yi,...,¥Ym
Yi=Xt;.--7Yn = Xnm;
havoc(xi, ..., Xn);
assume(F(y1, .-, Yns X1, -+, X)) }

Uy

Program Refinement

For two programs, define P; C P, iff
R(Pl) — R(Pz)

is a valid formula. As usual, P, O Py iff P, C P,.
> P1E Py iff p(P1) C p(P2)

Define PL =P, iff PLC P, AP, C Py
> Py = Py iff p(P1) = p(P2)

Example for V = {x,y}
xo ¥
{var x0; havoc(x); assume(x > x0)} J (x = x+1)

Proof: Use R to compute formulas for both sides and simplify
them.

Program Refinement

For two programs, define P; C P, iff
R(Pl) — R(Pz)

is a valid formula. As usual, P, O Py iff P, C P,.
> P1 E P2 iff p(Pl) g p(Pg)

Define PL=P iff PLC P, AP, C Pg
> P1 = P, iff p(P1) = p(P2)

Example for V = {x, y}

{var x0; havoc(x); assume(x > x0)} J (x = x + 1)

Proof: Use R to compute formulas for both sides and simplify
them.
X =x+1-=x >x

Stepwise Refinement Methodology

Start form a possibly non-deterministic specification Py
Refine the program until it becomes deterministic and efficiently
executable.

Po3d P 3...3P,

Example:

72X
havoc(x); assume(x > 0); havoc(y); assume(x==y)
havoc(x); assume(x > 0);y = x + 1
x=42;y =x+1
x=42;y =43

I

In the last step program equivalence holds as well

Monotonicity with Respect to Refinement

Theorem: if P; C P, then (Py1; P) C (P2; P)
Theorem: if P; C P, then (P; P1) C (P; Pz)
Theorem: if P; C P and P] C P} then

(if (%)Py else Py) C (if (x)Ps else P})

Preserving Domain

It is not interesting program development step P 3 P is P’ is
false, or is false for most inputs.
Example:

(havoc(x); assume(x + x = y)) 2 (assume(y = 6);x = 3)
;('-\—yf‘:l-f)\ y'=y — 1‘:&{.\\1'16 A=z
When doing refinement P J P’, which ensures
P

R(P' R(P "
dam ()= x| 2. (‘*m‘)(_\-%()_> () do (@,’(P))

we also wish to preserve the domain of the relation between X, X’
» if P has some execution from X ending in x’

» then P’ should also have some execution, ending in some x”
(even if it has fewer choices)

(3% .R(P)) — (IX".R(P"))

This is weaker than R(P) — R(P').
Definition: domain formula of P is the formula 3X".R(P)

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» R(P) =

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x'4+x=yny =y
> R(Pl):

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x'"+xX'=yANy' =y 63
> R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:

» domain of P is

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:
» domainof Pis 3x',y/ X'+ x' =y Ay =y

> equivalent to:

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:
» domainof Pisax',y/ X' +xX' =y Ay =y
» equivalent to: y%2 =10
» domain of P is:

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6); x

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:
» domainof Pis 3x',y/ X'+ x' =y Ay =y
» equivalent to: y%2 =10
» domain of Plis: 3x',y/ X' =3Ay =6Ay =y

» equivalent to:

Domains in the Example

Consider our example P J P’

(havoc(x); assume(x + x =y)) 3 (assume(y = 6);x =

» RP)=x"+x'=yny' =y
| 2 R(Pl):X/:3/\y,:6/\y/:y
Does P J P’ really hold?

Now consider the right hand side:
» domainof Pis 3x',y/ X'+ x' =y Ay =y
» equivalent to: y%2 =10
» domainof Pis: 3x',y/x =3 Ay =6Ay =y
> equivalent to: y =6

Does domain formula of P’ imply the domain formula of P?

Preserving Domain: Exercise
R(P) = iy > \1\ A \1|=7
dowmain ! 3*‘,\{\.11(?} - ix‘a‘f

twe

X4 —12 ‘7
Given P: «

havoc(x); assume(x + x = y)
Find Py and P, such that Py
> PIPIP, .

havoc (), O.SSuwe ('f’x 2Y)
2% =y - =2y

» no two programs among P, P;, P, are equivalent

» programs P, P; and P, have equivalent domains

» the relation described by P, is a partial function

Pat bavoc)y besuat (xdx -1 \,) C P
P?_ I; :P‘.I. Y= -.qu(ol \1)
R (R):

\1‘”-\1 A (vY20-)C]:b{)h (4<0- x"—o)

Complete Functional Synthesis

Domain-preserving refinement algorithm that produces a partial
function €x.F

> assignment: res = choose x. F

» corresponds to: {var x; assume(F); res = x}

» we refine it preserving domain into: assume(D);res =t
(where t does not have 'choose’)

More abstractly, given formula F and variable x find
» formula D p—F = t]\
> term t not containing x v

such that, for all free variables: _’ axF
» D — F[x:=1t] (tisa term such that refinement holds)
» D <= 3Ix.F (D is the domain, says when t is correct)

Consequence of the definition: D <= F[x := t]

See Comfusy Examples on the Web

From Quantifier Elimination to Synthesis

Quantifier Elimination

If ¥ is a tuple of variables not containing x, then

Ix.(x = t(y) A F(x,7) <= F(t(7),7)

Synthesis

choose x.(x = t(¥) A F(x,¥))

gives:
» precondition F(t(y),¥), as before, but also

» program that realizes x, in this case, t(y)

Handling Disjunctions

We had
Ix.(F1(x) V F2(x))

is equivalent to

(3x.F1(x)) V (3x.F2(x))
Now:

choose x.(F1(x) V Fa(x))

becomes:
if (D1) (choose x.F1(x)) else (choose x.Fa(x))

where Dj is the domain, equivalent to 3x.F;(x) and computed
while computing choose x.Fi(x).

Framework for Synthesis Procedures

We define the framework as a transformation
» from specification formula F to

» the maximal domain D where the result x can be found, and
the program t that computes the result

(D | t) denotes: the domain (formula) D and program (term) t
Main transformation relation

choose x.F + (D | t)

means

» D — F[x:=1t] (tisa term such that refinement holds)
» D <= 3x.F (D is the domain, says when t is correct)

Rule for Synthesizing Conditionals

choose x.F1 (D1 | t1) choose x.Fp F (Dy | tp)
choose x.(F1 V Fy) + (Dy Vv Dy | if (D) t1 else tp)

To synthesize the thing below the — , synthesize the things above
and put the pieces together.

Test Terms Methods for Presburger Arithmetic Synthesis
Recall that the most complex step in QE for PA was replacing
Ix.F1(x)

with
L N

\/ \/ Fl(ak —+ i)

k=1i=1

Now we transform choose x.F1(x) first into:

L N

choose x. \/ \/(X =ax+ i A Fi(x))
k=1i=1

Then apply:

Test Terms Methods for Presburger Arithmetic Synthesis
Recall that the most complex step in QE for PA was replacing
Ix.F1(x)

with
L N

\/ \/ Fl(ak —+ i)

k=1i=1

Now we transform choose x.F1(x) first into:

L N

choose x. \/ \/(X =ax+ i A Fi(x))
k=1i=1

Then apply:

» rule for conditionals

Test Terms Methods for Presburger Arithmetic Synthesis
Recall that the most complex step in QE for PA was replacing
Ix.F1(x)

with
L N

\/ \/ Fl(ak —+ i)

k=1i=1

Now we transform choose x.F1(x) first into:

L N
choose x. \/ \/(X =ax+ i A Fi(x))
k=1i=1
Then apply:
> rule for conditionals

> one-point rule

Synthesis using Test Terms

L N

choose x. \/ \/(x =ak+iNF)
k=1i=1

produces the same precondition as the result of QE, and the
generated term is:

if (Fl[X =a; + 1]) a+1
elseif (Fi[x :=a1+2]) a1 +2

elseif (Fi[x :=ax+1i]) ax +i
elseif (Fi[x:=aL+ N])a.+ N
Linear search over the possible values, taking the first one that

works.
This could be optimized in many cases—consider a project.

Synthesizing a Tuple of Outputs

choose x.F + (Di | t1) choose y.D1 F (D5 | to)
choose (x,y).F F (Dy | (t1]y := ta], t2))

Note that y can appear inside D; and ty, but not in D, or t;

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by a and consider the
synthesis problem:
choose x. F

What is the verification condition that checks whether the solution
for x is unique?

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by@and consider the
synthesis problem: ¢

choose x. F
A

What is the verification condition that checks whether the solution
for x is unique?
Solution is not unique if this PA formula is satisfiable:

- Fa. :.]X'L,‘K?. o FlesxAF Ix:=%)

Automated Checks for Specifications: Uniqueness

Suppose we wish to give a warning if the specification F allows two
different solutions.

Let the variables in scope be denoted by a and consider the
synthesis problem:
choose x. F

What is the verification condition that checks whether the solution
for x is unique?
Solution is not unique if this PA formula is satisfiable:

FAFly =x]Ax#y

If we find such x, y, a we report them as an example that, for input
a, there are two possible outputs, x and y

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution
does not exist.

Let the variables in scope be denoted by a and consider the
synthesis problem:

choose x. F A~ <D It2

What is the verification condition that checks if there are cases
when no solution x exists?

c
)W&.E%_'J
)
RD)

Automated Checks for Specifications: Totality

Suppose we wish to give a warning if in some cases the solution
does not exist.

Let the variables in scope be denoted by a and consider the
synthesis problem:
choose x. F

What is the verification condition that checks if there are cases
when no solution x exists?
Check satisfiability of this PA formula:

—-3dx.F

If there is a solution a, report it as an example for which no
solutions exist.

Further Topics

> demo
» handling equality and the consequence of Euclid's algorithm

> synthesis for sets with cardinality bounds

Q>

Q>

