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Constructing Partial Orders using Maps

Example: Let A be the set of all propositional formulas containing only
variables p, q. For a formula F ∈ A define

[F ] = {(u, v). u, v ∈ {0, 1} ∧ F is true for p 7→ u, q 7→ v}

i.e. [F ] denotes the set of assignments for which F is true. Note that
F =⇒ G is a tautology iff [F ] ⊆ [G ]. Define ordering on formulas A by

F ≤ G ⇐⇒ [F ] ⊆ [G ]

Is ≤ a partial order? Which laws does ≤ satisfy?



Constructing Partial Orders using Maps

Lemma: Let (C ,≤) be an lattice and A a set. Let γ : A→ C be an
injective function. Define oder x v y on A by γ(x) ≤ γ(y). Then (A,v) is
a partial order.

Note: even if (C ,≤) had top and bottom element and was a lattice, the
constructed order need not have top and bottom or be a lattice. For
example, we take A to be a subset of A and define γ to be identity.



Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound (so, we have u and t as
well-defined binary operations).
Lemma: In every lattice, x t (x u y) = x .

Proof:
We trivially have x v x t (x u y).
Let’s prove that x t (x u y) v x :
x is an upper bound of x and x u y , x t (x u y) is the least upper bound of
x and x u y , thus x t (x u y) v x .
Definition: A lattice is //distributive// iff

x u (y t z) = (x u y) t (x u z)
x t (y u z) = (x t y) u (x t z)

Lattice of all subsets of a set is distributive. Linear order is a distributive
lattice.



Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound (so, we have u and t as
well-defined binary operations).
Lemma: In every lattice, x t (x u y) = x .

Proof:
We trivially have x v x t (x u y).
Let’s prove that x t (x u y) v x :
x is an upper bound of x and x u y , x t (x u y) is the least upper bound of
x and x u y , thus x t (x u y) v x .
Definition: A lattice is //distributive// iff

x u (y t z) = (x u y) t (x u z)
x t (y u z) = (x t y) u (x t z)

Lattice of all subsets of a set is distributive. Linear order is a distributive
lattice.



Products of Lattices

Note: for n = 2 a function f : {1, 2} → (L1 ∪ L2) with f (1) ∈ L1,
f (2) ∈ L2 is isomorphic to an ordered pair (f (1), f (2)). We denote the
product by (L1,≤1)× (L2,≤2).
Example: Let R = {a, b, c , d} denote set of values. Let A1 = A2 = 2R . Let

s1 ≤1 s2 ⇐⇒ s1 ⊆ s2

and let
t1 ≤2 t2 ⇐⇒ t1 ⊇ t2

Then we can define the product (A1,≤1)× (A2,≤2). In this product,
(s1, t1) ≤ (s2, t2) iff: s1 ≤ s2 and t1 ⊇ t2. The original partial orders were
lattices, so the product is also a lattice. For example, we have

({a, b, c}, {a, b, d}) u ({b, c , d}, {c , d}) = ({b, c}, {a, b, c , d})



Products of Lattices

Lattice elements can be combined into finite or infinite-dimensional vectors,
and the result is again a lattice.
Lemma: Let (A1,≤1), . . . , (An,≤n) be partial orders. Define (L,≤) by

A = {f | f : {1, . . . , n} → (A1 ∪ . . . ∪ An) where ∀i .f (i) ∈ Ai}

For f , g ∈ A define
f ≤ g ⇐⇒ ∀i .f (i) ≤i g(i)

Then (A,≤) is a partial order. We denote (A,≤) by

n∏
i=1

(Li ,≤i )

Moreover, if for each i , (Ai ,≤i ) is a lattice, then (A,≤) is also a lattice.



Properties of uS and tS

Consider a partial order (A,v).

I Suppose S1 ⊆ S2 ⊆ A and tS1 and tS2 exist. In what relationship are
these two elements?

I Suppose S1 ⊆ S2 ⊆ A and uS1 and uS2 exist. In what relationship are
these two elements?

I Suppose t∅ exists. Describe this element.

I Suppose u∅ exists. Describe this element.

t∅ = ⊥ and u∅ = >. This is because every element is an upper bound and
a lower bound of ∅ : ∀x .∀y ∈ ∅.y v x is valid, as well as ∀x .∀y ∈ ∅.y w x .
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Complete Semilattice is a Complete Lattice

If we have all u-s we then also have all t-s:
Theorem: Let (A,v) be a partial order such that every set S ⊆ A has the
greatest lower bound (u). Prove that then every set S ⊆ A has the least
upper bound (t).



Example: Application of the Previous Theorem

Let U be a set and A ⊆ U × U the set of all equivalence relations on this
set. Consider the partial order (A,⊆).

Lemma
If I ⊆ A is a set of equivalence relations, then ∩I is also an equivalence
relation.

Consequence: Given I ⊆ A there exists the least equivalence relation
containing every relation from I (equivalence closure of relations in I ).

Note: congruence is equivalence relation that agrees with some
operations. For example, x ∼ x ′ and y ∼ y ′ implies (x + y) ∼ (x ′ + y ′).
The analogous properties hold for congruence relations.



Complete Lattices

Definition: A complete lattice is a lattice where for every set S (including
empty set and infinite sets) there exist tS and uS .



Monotonic functions

Given two partial orders (C ,≤) and (A,v), we call a function α : C → A
monotonic iff for all x , y ∈ C ,

x ≤ y → α(x) v α(y)



Reminder: Fixpoints

Definition: Given a set A and a function f : A→ A we say that x ∈ A is a
fixed point (fixpoint) of f if f (x) = x .

Definition: Let (A,≤) be a partial order, let f : A→ A be a monotonic
function on (A,≤), and let the set of its fixpoints be S = {x | f (x) = x}. If
the least element of S exists, it is called the least fixpoint, if the greatest
element of S exists, it is called the greatest fixpoint.



Fixpoints

Let (A,v) be a complete lattice and G : A→ A a monotonic function.

Definition:
Post = {x | G (x) v x} - the set of postfix points of G
(e.g. > is a postfix point)
Pre = {x | x v G (x)} - the set of prefix points of G
Fix = {x | G (x) = x} - the set of fixed points of G .

Note that Fix ⊆ Post.



Tarski’s fixed point theorem

Theorem: Let a = uPost. Then a is the least element of Fix (dually, tPre
is the largest element of Fix).

Proof:
Let x range over elements of Post.

I applying monotonic G from a v x we get G (a) v G (x) v x

I so G (a) is a lower bound on Post, but a is the greatest lower bound,
so G (a) v a

I therefore a ∈ Post

I Post is closed under G , by monotonicity, so G (a) ∈ Post

I a is a lower bound on Post, so a v G (a)

I from a v G (a) and G (a) v a we have a = G (a), so a ∈ Fix

I a is a lower bound on Post so it is also a lower bound on a smaller set
Fix

In fact, the set of all fixpoints Fix is a lattice itself.



Tarski’s fixed point theorem

Tarski’s Fixed Point theorem shows that in a complete lattice with a
monotonic function G on this lattice, there is at least one fixed point of G ,
namely the least fixed point uPost.

I Tarski’s theorem guarantees fixpoints in complete lattices, but the
above proof does not say how to find them.

I How difficult it is to find fixpoints depends on the structure of the
lattice.

Let G be a monotonic function on a lattice. Let a0 = ⊥ and an+1 = G (an).
We obtain a sequence ⊥ v G (⊥) v G 2(⊥) v · · · . Let a∗ =

⊔
n≥0 an.

Lemma: The value a∗ is a prefix point.
Observation: a∗ need not be a fixpoint (e.g. on lattice [0,1] of real
numbers).



Omega continuity

Definition: A function G is ω-continuous if for every chain
x0 v x1 v . . . v xn v . . . we have

G (
⊔
i≥0

xi ) =
⊔
i≥0

G (xi )

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 Gn(⊥) is
the least fixpoint of G .



Iterating sequences and omega continuity

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 G n(⊥) is the least
fixpoint of G .

Proof:

I By definition of ω-continuous we have
G (

⊔
n≥0 G n(⊥)) =

⊔
n≥0 G n+1(⊥) =

⊔
n≥1 G n(⊥).

I But
⊔

n≥0 G n(⊥) =
⊔

n≥1 G n(⊥) t ⊥ =
⊔

n≥1 G n(⊥) because ⊥ is the least
element of the lattice.

I Thus G (
⊔

n≥0 G n(⊥)) =
⊔

n≥0 G n(⊥) and a∗ is a fixpoint.

Now let’s prove it is the least. Let c be such that G (c) = c . We want⊔
n≥0 G n(⊥) v c . This is equivalent to ∀n ∈ N.G n(⊥) v c .

We can prove this by induction : ⊥ v c and if G n(⊥) v c , then by monotonicity

of G and by definition of c we have G n+1(⊥) v G (c) v c .



Iterating sequences and omega continuity

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 Gn(⊥) is
the least fixpoint of G .

When the function is not ω-continuous, then we obtain a∗ as above (we
jump over a discontinuity) and then continue iterating. We then take the
limit of such sequence, and the limit of limits etc., ultimately we obtain the
fixpoint.



Exercise

Let C [0, 1] be the set of continuous functions from [0, 1] to the reals.
Define ≤ on C [0, 1] by f ≤ g if and only if f (a) ≤ g(a) for all a ∈ [0, 1].

i) Show that ≤ is a partial order and that C [0, 1] with this order forms a
lattice.

ii) Does an analogous statement hold if we consider the set of
differentiable functions from [0, 1] to the reals? That is, instead of
requiring the functions to be continuous, we require them to have a
derivative on the entire interval. (The order is defined in the same
way.)



Exercise
Let A = [0, 1] = {x ∈ R | 0 ≤ x ≤ 1} be the interval of real numbers. Recall that,
by definition of real numbers and complete lattice, (A,≤) is a complete lattice
with least lattice element 0 and greatest lattice element 1. Here t is the least
upper bound operator on sets of real numbers, also called supremum and denoted
sup in real analysis.
Let function f : A→ A be given by

f (x) =


1
2 + 1

4x , if x ∈ [0, 23 )

3
5 + 1

5x , if x ∈ [ 23 , 1]

(It may help you to try to draw f .)

a) Prove that f is monotonic and injective (so it is strictly monotonic).

b) Compute the set of fixpoints of f .

c) Define iter(x) = t{f n(x) | n ∈ {0, 1, 2, . . .}}. (This is in fact equal to
limn→∞ f n(x) when f is a monotonic bounded function.)

Compute iter(0) (prove that the computed value is correct by definition of
iter , that is, that the value is indeed t of the set of values). Is iter(0) a
fixpoint of f ? Is iter(iter(0)) a fixpoint of f ?


