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Constructing Partial Orders using Maps

Example: Let A be the set of all propositional formulas containing only
variables p, q. For a formula F € A define

[F] ={(u,v). u,v € {0,1} A F is true for p — u,q+ v}

i.e. [F] denotes the set of assignments for which F is true. Note that
F = G is a tautology iff [F] C [G]. Define ordering on formulas A by

F<G < [F]C[G]

Is < a partial order? Which laws does < satisfy?



Constructing Partial Orders using Maps

Lemma: Let (C, <) be an lattice and A a set. Let v: A — C be an
injective function. Define oder x C y on A by v(x) < ~(y). Then (A,C) is
a partial order.

Note: even if (C, <) had top and bottom element and was a lattice, the
constructed order need not have top and bottom or be a lattice. For
example, we take A to be a subset of A and define v to be identity.



Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound (so, we have M and U as
well-defined binary operations).

Lemma: In every lattice, x L (x M y) = x.



Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound (so, we have M and U as
well-defined binary operations).

Lemma: In every lattice, x L (x M y) = x.

Proof:

We trivially have x C x LI (x M y).

Let's prove that x U (xMy) C x:

x is an upper bound of x and x My, x U (xy) is the least upper bound of
x and x My, thus x U (xMy) C x.

Definition: A lattice is //distributive// iff

xMN(yUz)=(xMNy)U(xMz)
xU(yMNz)=(xUy)N(xUz)

Lattice of all subsets of a set is distributive. Linear order is a distributive
lattice.



Products of Lattices

Note: for n = 2 a function f : {1,2} — (L3 U L») with f(1) € Ly,

f(2) € Ly is isomorphic to an ordered pair (f(1), f(2)). We denote the
product by (L1, <1) x (L2, <2).

Example: Let R = {a, b, c, d} denote set of values. Let A; = Ay = 2R. Let

51518 <— s1C %

and let
hh<ohh <= th2b

Then we can define the product (Az, <1) X (A2, <2). In this product,
(s1,t1) < (s2, t2) iff: 51 € sp and t; D to. The original partial orders were
lattices, so the product is also a lattice. For example, we have

({a,b,c},{a,b,d}) N ({b,c,d},{c,d}) = ({b,c},{a, b, c,d})



Products of Lattices

Lattice elements can be combined into finite or infinite-dimensional vectors,
and the result is again a lattice.
Lemma: Let (A1, <1),...,(An, <p) be partial orders. Define (L, <) by

A={f|f:{1,...,n} = (AL U...UA,) where Vi.f(i) € A}
For f,g € A define
f<g < Vif(i) <;g(i)
Then (A, <) is a partial order. We denote (A, <) by

n

H(Li,Si)

i=1

Moreover, if for each i, (Aj, <;) is a lattice, then (A, <) is also a lattice.



Properties of MS and LIS I | CX

(

Consider a partial order (A, C).

» Suppose 51 € S, C A and LISy and LIS, exist. In what relationship are
these two elements? Us, Cus, — ¥x€S, xEUS,

» Suppose S; € S, C A and MS; and MS, exist. In what relationship are

these two eIem.ents? | n Sz. C NS, YYES ns, -[-:"f
> Suppose Uf) exists. Describe this element. |

» Suppose M{) exists. Describe this element. T

Ug=a &= L
(¥xe® ¥ Ca)  Mx.wefo..,
vb. qu,,hégs ng - ath b E}Eb

rwe.



Properties of MS and LS

Consider a partial order (A, C).

» Suppose 51 € S, C A and LISy and LIS, exist. In what relationship are
these two elements?

» Suppose S; € S, C A and MS; and MS, exist. In what relationship are
these two elements?

» Suppose LIj) exists. Describe this element.
» Suppose M{ exists. Describe this element.

L) = L and M) = T. This is because every element is an upper bound and
a lower bound of () : Vx.Vy € ().y C x is valid, as well as Vx.Vy € 0.y 3 x.



Complete Semilattice is a Complete Lattice

If we have all M-s we then also have all Li-s:

Theorem: Let (A,C) be a partial order such that every set S C A has the
greatest lower bound (I1). Prove that then every set S C A has the least
upper bound (L).



Example: Application of the Previous Theorem

Let U be a set and A C U x U the set of all equivalence relations on this
set. Consider the partial order (A, C).

Lemma
If I C A is a set of equivalence relations, then NI is also an equivalence

relation.

Consequence: Given | C A there exists the least equivalence relation
containing every relation from / (equivalence closure of relations in /).

Note: congruence is equivalence relation that agrees with some
operations. For example, x ~ x" and y ~ y’ implies (x + y) ~ (X' + /).
The analogous properties hold for congruence relations.



Complete Lattices

Definition: A complete lattice is a lattice where for every set S (including
empty set and infinite sets) there exist LIS and MS.



Monotonic functions

Given two partial orders (C, <) and (A,C), we call a function a: C — A
monotonic iff for all x,y € C,

x<y — afx) Ealy)



Reminder: Fixpoints

Definition: Given a set A and a function f : A— Awe say that x € Ais a
fixed point (fixpoint) of f if f(x) = x.

Definition: Let (A, <) be a partial order, let f : A— A be a monotonic
function on (A, <), and let the set of its fixpoints be S = {x | f(x) = x}. If
the least element of S exists, it is called the least fixpoint, if the greatest
element of S exists, it is called the greatest fixpoint.



Fixpoints

Let (A,C) be a complete lattice and G : A — A a monotonic function.

Definition:

Post = {x | G(x) C x} - the set of postfix points of G
(e.g. T is a postfix point)

Pre = {x | x © G(x)} - the set of prefix points of G
Fix = {x | G(x) = x} - the set of fixed points of G.

Note that Fix C Post.



Tarski's fixed point theorem

Theorem: Let a = MPost. Then a is the least element of Fix (dually, LIPre
is the largest element of Fix).

= Post
@ e Post
Proof: _ G (x) Tx a £X

Let x range over elements of Post. o, G a T~
» applying monotonic G from a C x we get G(a) C G(x) C x

» so G(a) is a lower bound on Post, but a is the greatest lower bound,

so G(a)C a )
xePost G(IEX /G
therefore a € Post G (a6 EGH)

v

\4

Post is closed under G, by monotonicity, so G(a) € Post

» ais a lower bound on Post, so a C G(a)

from a C G(a) and G(a) C a we have a = G(a), so a € Fix

> ais a lower bound on Post so it is also a lower bound on a smaller set
Fix

In fact, the set of all fixpoints Fix is a lattice itself.

v



Tarski's fixed point theorem

Tarski's Fixed Point theorem shows that in a complete lattice with a
monotonic function G on this lattice, there is at least one fixed point of G,
namely the least fixed point MPost.

» Tarski's theorem guarantees fixpoints in complete lattices, but the
above proof does not say how to find them.

» How difficult it is to find fixpoints depends on the structure of the
lattice.

Let G be a monotonic function on a lattice. Let ap = L and a,fﬁﬂ_a_g).
We obtain a sequence | C G(L)C G?(L)C ---. Let a, = Lp>0 @n-

G Ua, T G(Ud)
Lemma: The value a, is a prefix point. Wz vZo
Observation: a, need not be a fixpoint (e.g. on lattice [0,1] of real
numbers). 6, EG (Glﬂ r G( m
“1/'——‘ m,o/\:rc (L.)/G\
6 ()



Omega continuity

Definition: A function G is w-continuous if for every chain
xCx1C...Cx,C...we have

G(| |x) =] ]6(a)

i>0 i>0

Lemma: For an w-continuous function G, the value a, = | |,~o G"(L) is
the least fixpoint of G.



lterating sequences and omega continuity

Lemma: For an w-continuous function G, the value a, = | |,~, G"(L) is the least
fixpoint of G.

Proof:

> By definition of w-continuous we have
G(Lnzo G"(1)) = Lyzo 6" (L) = Lpz1 G"(L).

> But |, G"(L) =],>; G"(L) UL =]],5; G"(L) because L is the least
element of the lattice. B

> Thus G(|,50 G"(L)) =50 G"(L) and a, is a flxpomt C(a}.\ Ay

Now let's prove it is the least. Let ¢ be such that G(c) = ¢. We want

Ll,>0 G"(L) E c. This is equivalent to Vn € N.G"(L) C c.

We can prove this by induction : L C ¢ and if G"(L) C ¢, then by monotonicity
of G and by definition of ¢ we have G™(L) C G(c)C ¢



lterating sequences and omega continuity

Lemma: For an w-continuous function G, the value a, = | |,~, G"(L) is
the least fixpoint of G.

When the function is not w-continuous, then we obtain a, as above (we
jump over a discontinuity) and then continue iterating. We then take the
limit of such sequence, and the limit of limits etc., ultimately we obtain the

fixpoint.



Exercise

Let C[0, 1] be the set of continuous functions from [0, 1] to the reals.
Define < on C[0,1] by f < g if and only if f(a) < g(a) for all a € [0, 1].

i) Show that < is a partial order and that C[0, 1] with this order forms a
lattice.

i) Does an analogous statement hold if we consider the set of
differentiable functions from [0, 1] to the reals? That is, instead of
requiring the functions to be continuous, we require them to have a
derivative on the entire interval. (The order is defined in the same

way.)



Exercise

Let A=[0,1] = {x € R| 0 < x < 1} be the interval of real numbers. Recall that,
by definition of real numbers and complete lattice, (A, <) is a complete lattice
with least lattice element 0 and greatest lattice element 1. Here Ll is the least
upper bound operator on sets of real numbers, also called supremum and denoted

sup in real analysis. Lida=y )
Let function f : A — A be given by 11 "'1 e
L2 L R A
Ji*;l.-'%"lz*al'f 09 5+ 3% n‘xe[0,§)l
x) = 3
Ia
3.0 2 442 /7 3 1 . 2
$43° 0 () A 2+ax ifxe[3,1]

1§ 3 S

(It may help you o try to draw f.) %Jr_éx: K
a) Prove that f is monotonic and injective (so it is strictly monotonic).
b) Compute the set of fixpoints of f. £ (iterp0) = vler ) = Z-;'
c) Define iter(x) = L{f"(x) | n € {0,1,2,...}}. (This is in fact equal to
lim,_ 00 f"(x) when f is a monotonic bounded function.)

Compute jter(0) (prove that the computed value is correct by definition of
iter, that is, that the value is indeed L of the set of values). Is jter(0) a
fixpoint of ? Is iter(iter(0)) a fixpoint of £?



