Lecturecise 13 Abstract Interpretation

2013

Constructing Partial Orders using Maps

Example: Let A be the set of all propositional formulas containing only variables p, q. For a formula $F \in A$ define

 $[F] = \{(u, v). \ u, v \in \{0, 1\} \land F \text{ is true for } p \mapsto u, q \mapsto v\}$

i.e. [F] denotes the set of assignments for which F is true. Note that $F \implies G$ is a tautology iff $[F] \subseteq [G]$. Define ordering on formulas A by

$$F \leq G \iff [F] \subseteq [G]$$

Is \leq a partial order? Which laws does \leq satisfy?

Constructing Partial Orders using Maps

Lemma: Let (C, \leq) be an lattice and A a set. Let $\gamma : A \to C$ be an injective function. Define oder $x \sqsubseteq y$ on A by $\gamma(x) \leq \gamma(y)$. Then (A, \sqsubseteq) is a partial order.

Note: even if (C, \leq) had top and bottom element and was a lattice, the constructed order need not have top and bottom or be a lattice. For example, we take A to be a subset of A and define γ to be identity.

Lattices

Definition: A lattice is a partial order in which every two-element set has a least upper bound and a greatest lower bound (so, we have \sqcap and \sqcup as well-defined binary operations).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Lemma: In every lattice, $x \sqcup (x \sqcap y) = x$.

Lattices

Definition: A lattice is a partial order in which every two-element set has a least upper bound and a greatest lower bound (so, we have \sqcap and \sqcup as well-defined binary operations).

Lemma: In every lattice, $x \sqcup (x \sqcap y) = x$.

Proof:

We trivially have $x \sqsubseteq x \sqcup (x \sqcap y)$. Let's prove that $x \sqcup (x \sqcap y) \sqsubseteq x$: x is an upper bound of x and $x \sqcap y$, $x \sqcup (x \sqcap y)$ is the least upper bound of x and $x \sqcap y$, thus $x \sqcup (x \sqcap y) \sqsubseteq x$. **Definition:** A lattice is //distributive// iff

$$x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z) x \sqcup (y \sqcap z) = (x \sqcup y) \sqcap (x \sqcup z)$$

Lattice of all subsets of a set is distributive. Linear order is a distributive lattice.

Products of Lattices

Note: for n = 2 a function $f : \{1, 2\} \rightarrow (L_1 \cup L_2)$ with $f(1) \in L_1$, $f(2) \in L_2$ is isomorphic to an ordered pair (f(1), f(2)). We denote the product by $(L_1, \leq_1) \times (L_2, \leq_2)$. **Example:** Let $R = \{a, b, c, d\}$ denote set of values. Let $A_1 = A_2 = 2^R$. Let

 $s_1 \leq_1 s_2 \iff s_1 \subseteq s_2$

and let

$$t_1 \leq_2 t_2 \iff t_1 \supseteq t_2$$

Then we can define the product $(A_1, \leq_1) \times (A_2, \leq_2)$. In this product, $(s_1, t_1) \leq (s_2, t_2)$ iff: $s_1 \leq s_2$ and $t_1 \supseteq t_2$. The original partial orders were lattices, so the product is also a lattice. For example, we have

$$(\{a, b, c\}, \{a, b, d\}) \sqcap (\{b, c, d\}, \{c, d\}) = (\{b, c\}, \{a, b, c, d\})$$

Products of Lattices

Lattice elements can be combined into finite or infinite-dimensional vectors, and the result is again a lattice.

Lemma: Let $(A_1, \leq_1), \ldots, (A_n, \leq_n)$ be partial orders. Define (L, \leq) by

$$A = \{f \mid f : \{1, \ldots, n\} \rightarrow (A_1 \cup \ldots \cup A_n) \text{ where } \forall i.f(i) \in A_i\}$$

For $f, g \in A$ define

$$f \leq g \iff \forall i.f(i) \leq_i g(i)$$

Then (A, \leq) is a partial order. We denote (A, \leq) by

$$\prod_{i=1}^n (L_i, \leq_i)$$

Moreover, if for each i, (A_i, \leq_i) is a lattice, then (A, \leq) is also a lattice.

Properties of $\sqcap S$ and $\sqcup S$ A is infinite

Consider a partial order (A, \sqsubseteq) .

► Suppose $S_1 \subseteq S_2 \subseteq A$ and $\sqcup S_1$ and $\sqcup S_2$ exist. In what relationship are these two elements? $\sqcup S_1 \subseteq \sqcup S_2 \longrightarrow \forall \times \epsilon S_1 \times \subseteq \sqcup S_2$

tx. LCX

Suppose S₁ ⊆ S₂ ⊆ A and □S₁ and □S₂ exist. In what relationship are these two elements?
 □ S₂ ⊆ □ S₁ → ∀ y ∈ S₁ □ S₂ ⊆ y

Suppose $\sqcup \emptyset$ exists. Describe this element.

▶ Suppose $\sqcap \emptyset$ exists. Describe this element. \intercal

Properties of $\sqcap S$ and $\sqcup S$

Consider a partial order (A, \sqsubseteq) .

- Suppose S₁ ⊆ S₂ ⊆ A and ⊔S₁ and ⊔S₂ exist. In what relationship are these two elements?
- Suppose S₁ ⊆ S₂ ⊆ A and ⊓S₁ and ⊓S₂ exist. In what relationship are these two elements?
- Suppose $\sqcup \emptyset$ exists. Describe this element.
- Suppose $\sqcap \emptyset$ exists. Describe this element.

 $\sqcup \emptyset = \bot$ and $\sqcap \emptyset = \top$. This is because every element is an upper bound and a lower bound of \emptyset : $\forall x . \forall y \in \emptyset . y \sqsubseteq x$ is valid, as well as $\forall x . \forall y \in \emptyset . y \sqsupseteq x$.

Complete Semilattice is a Complete Lattice

If we have all \square -s we then also have all \square -s:

Theorem: Let (A, \sqsubseteq) be a partial order such that every set $S \subseteq A$ has the greatest lower bound (\Box) . Prove that then every set $S \subseteq A$ has the least upper bound (\sqcup) .

Example: Application of the Previous Theorem

Let U be a set and $A \subseteq U \times U$ the set of all **equivalence relations** on this set. Consider the partial order (A, \subseteq) .

Lemma

If $I \subseteq A$ is a set of equivalence relations, then $\cap I$ is also an equivalence relation.

Consequence: Given $I \subseteq A$ there exists the least equivalence relation containing every relation from I (equivalence closure of relations in I).

Note: **congruence** is equivalence relation that agrees with some operations. For example, $x \sim x'$ and $y \sim y'$ implies $(x + y) \sim (x' + y')$. The analogous properties hold for congruence relations.

Complete Lattices

Definition: A complete lattice is a lattice where for every set *S* (including empty set and infinite sets) there exist $\sqcup S$ and $\sqcap S$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Monotonic functions

Given two partial orders (C, \leq) and (A, \sqsubseteq) , we call a function $\alpha : C \to A$ monotonic iff for all $x, y \in C$,

$$x \leq y \rightarrow \alpha(x) \sqsubseteq \alpha(y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition: Given a set A and a function $f : A \to A$ we say that $x \in A$ is a fixed point (fixpoint) of f if f(x) = x.

Definition: Let (A, \leq) be a partial order, let $f : A \to A$ be a monotonic function on (A, \leq) , and let the set of its fixpoints be $S = \{x \mid f(x) = x\}$. If the least element of S exists, it is called the **least fixpoint**, if the greatest element of S exists, it is called the **greatest fixpoint**.

Fixpoints

Let (A, \sqsubseteq) be a complete lattice and $G : A \rightarrow A$ a monotonic function.

Definition:

Post = { $x \mid G(x) \sqsubseteq x$ } - the set of *postfix points* of *G* (e.g. \top is a postfix point) Pre = { $x \mid x \sqsubseteq G(x)$ } - the set of *prefix points* of *G* Fix = { $x \mid G(x) = x$ } - the set of *fixed points* of *G*.

Note that $Fix \subseteq Post$.

Tarski's fixed point theorem

Theorem: Let $\underline{a} = \Box Post$. Then *a* is the least element of Fix (dually, $\Box Pre$ is the largest element of Fix).

- **Proof:** $G(x) \not\subseteq X$ Let x range over elements of Post.
 - ▶ applying monotonic *G* from $a \sqsubseteq x$ we get $G(a) \sqsubseteq G(x) \sqsubseteq x$
 - so G(a) is a lower bound on Post, but a is the greatest lower bound, so G(a) ⊑ a
 - ▶ therefore a ∈ Post
 - ▶ Post is closed under G, by monotonicity, so $G(a) \in Post$
 - a is a lower bound on Post, so $a \sqsubseteq G(a)$
 - ▶ from $a \sqsubseteq G(a)$ and $G(a) \sqsubseteq a$ we have a = G(a), so $a \in Fix$
 - a is a lower bound on Post so it is also a lower bound on a smaller set Fix

In fact, the set of all fixpoints Fix is a lattice itself.

XEPost G(x) EX/G G(G(x)) EG(x)

Tarski's fixed point theorem

Tarski's Fixed Point theorem shows that in a complete lattice with a monotonic function G on this lattice, there is at least one fixed point of G, namely the least fixed point \square Post.

- Tarski's theorem guarantees fixpoints in complete lattices, but the above proof does not say how to find them.
- How difficult it is to find fixpoints depends on the structure of the lattice.

Let G be a monotonic function on a lattice. Let $a_0 = \bot$ and $a_{n+1} = G(a_n)$. We obtain a sequence $\bot \sqsubseteq G(\bot) \sqsubseteq G^2(\bot) \sqsubseteq \cdots$. Let $a_* = \bigsqcup_{n \ge 0} a_n$. $\bigsqcup_{h \ge 0} a_h \sqsubseteq G(\bigsqcup_{n \ge 0} a_h)$. Lemma: The value a_* is a prefix point. Observation: a_* need not be a fixpoint (e.g. on lattice [0,1] of real numbers). $a_* \ss G(a_*)$ $a_* \ss G(a_*)$

Omega continuity

Definition: A function *G* is ω -continuous if for every chain $x_0 \sqsubseteq x_1 \sqsubseteq \ldots \sqsubseteq x_n \sqsubseteq \ldots$ we have

$$G(\bigsqcup_{i\geq 0} x_i) = \bigsqcup_{i\geq 0} G(x_i)$$

Lemma: For an ω -continuous function G, the value $a_* = \bigsqcup_{n \ge 0} G^n(\bot)$ is the least fixpoint of G.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Iterating sequences and omega continuity

Lemma: For an ω -continuous function G, the value $a_* = \bigsqcup_{n \ge 0} G^n(\bot)$ is the least fixpoint of G.

Proof:

- ▶ By definition of ω -continuous we have $G(\bigsqcup_{n\geq 0} G^n(\bot)) = \bigsqcup_{n\geq 0} G^{n+1}(\bot) = \bigsqcup_{n\geq 1} G^n(\bot).$
- ▶ But $\bigsqcup_{n\geq 0} G^n(\bot) = \bigsqcup_{n\geq 1} G^n(\bot) \sqcup \bot = \bigsqcup_{n\geq 1} G^n(\bot)$ because \bot is the least element of the lattice.
- ► Thus $G(\bigsqcup_{n\geq 0} G^n(\bot)) = \bigsqcup_{n\geq 0} G^n(\bot)$ and a_* is a fixpoint. $G(a_*) = a_*$

Now let's prove it is the least. Let c be such that G(c) = c. We want $\bigsqcup_{n\geq 0} G^n(\bot) \sqsubseteq c$. This is equivalent to $\forall n \in \mathbb{N}$. $G^n(\bot) \sqsubseteq c$. We can prove this by induction : $\bot \sqsubseteq c$ and if $G^n(\bot) \sqsubseteq c$, then by monotonicity of G and by definition of c we have $G^{n+1}(\bot) \sqsubseteq G(c) \sqsubseteq c$. Iterating sequences and omega continuity

Lemma: For an ω -continuous function G, the value $a_* = \bigsqcup_{n \ge 0} G^n(\bot)$ is the least fixpoint of G.

When the function is not ω -continuous, then we obtain a_* as above (we jump over a discontinuity) and then continue iterating. We then take the limit of such sequence, and the limit of limits etc., ultimately we obtain the fixpoint.

・ロト・日本・モート モー うへぐ

Exercise

Let C[0,1] be the set of continuous functions from [0,1] to the reals. Define \leq on C[0,1] by $f \leq g$ if and only if $f(a) \leq g(a)$ for all $a \in [0,1]$.

- i) Show that \leq is a partial order and that C[0,1] with this order forms a lattice.
- ii) Does an analogous statement hold if we consider the set of differentiable functions from [0, 1] to the reals? That is, instead of requiring the functions to be continuous, we require them to have a derivative on the entire interval. (The order is defined in the same way.)

Exercise

Let $A = [0, 1] = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$ be the interval of real numbers. Recall that, by definition of real numbers and complete lattice, (A, \le) is a complete lattice with least lattice element 0 and greatest lattice element 1. Here \sqcup is the least upper bound operator on sets of real numbers, also called *supremum* and denoted *sup* in real analysis.

sup in real analysis. Let function $f: A \to A$ be given by $\frac{1}{2} + \frac{1}{5} \times 2 = X$ $\frac{1}{2} + \frac{1}{5} \times 2 = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$ $f(x) = \begin{cases} \frac{1}{2} + \frac{1}{4}x, & \text{if } x \in [0, \frac{2}{3}] \\ \frac{3}{5} + \frac{1}{5} \times \frac{2}{3} = \frac{9+2}{15} + \frac{1}{15} \\ \frac{11}{15} & \frac{11}{15} \\ \frac{3}{5} + \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \\ \frac{3}{5} + \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \\ \frac{3}{5} + \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \\ \frac{3}{5} + \frac{1}{5} + \frac{1}{5} \\ \frac{3}{5} + \frac{1}{5} + \frac{1}{5} \\ \frac{3}{5} + \frac{1}{5} \\ \frac{3}{5} + \frac{1}{5} \\ \frac{3}{5} + \frac{1}{5} \\ \frac{3}{5} + \frac{1}{$

- a) Prove that f is monotonic and injective (so it is strictly monotonic).
- b) Compute the set of fixpoints of f. $f(i + r(x)) \neq i + r(x) = \frac{2}{3}$
- c) Define iter(x) = □{fⁿ(x) | n ∈ {0, 1, 2, ...}}. (This is in fact equal to lim_{n→∞} fⁿ(x) when f is a monotonic bounded function.)
 Compute iter(0) (prove that the computed value is correct by definition of iter, that is, that the value is indeed □ of the set of values). Is iter(0) a fixpoint of f? Is iter(iter(0)) a fixpoint of f?