Boolean Satisfiability
and SAT Solvers

Philippe Suter
SAV, April 16t, 2013

Boolean Satisfiability

e Goal: find a model that satisfies a
propositional formula.

Boolean Satisfiability

e Goal: find a model that satisfies a
propositional formula.

aAN(-bVc)

Boolean Satisfiability

e Goal: find a model that satisfies a
propositional formula.

aAN(-bVc) »a» T b—FcHF

Boolean Satisfiability

e Goal: find a model that satisfies a
propositional formula.

aAN(-bVc) »a» T b—FcHF

aA bA(-bV-a)

Boolean Satisfiability

e Goal: find a model that satisfies a
propositional formula.

aAN(-bVc) »a» T b—FcHF

aN bA(-bV-a) > unsatifiable

Boolean Satisfiability

e Goal: find a model that satisfies a
propositional formula.

aAN(-bVc) »a» T b—FcHF

aN bA(-bV-a) > unsatifiable

* The original NP-complete problem.
— “As hard and any other problem in NP.”

Boolean Satisfiability

e Goal: find a model that satisfies a
propositional formula.

aAN(-bVc) »a» T b—FcHF

aN bA(-bV-a) > unsatifiable

* The original NP-complete problem.
— “As hard and any other problem in NP.”

* S. Cook, The complexity of theorem proving
procedures, STOC 1971.

SAT In Practice

* Ubiquitous in hardware/circuit design
— E.g. equivalence checking.

* Search/Al problems
— E.g. reduce Sudoku to SAT.
— Dependency management in Eclipse.

e Software verification
— By itself, and as part of the SMT stack.

Decidability is Trivial

* For nvariables, enumerate all 2" possible assighments.

Decidability is Trivial

* For nvariables, enumerate all 2" possible assignments.

@=aA(-bvc) NN

=
:
:
:
'
.
'
.

m m 4 4 m m 44 -
m 4 m 4 m H4 m -
MM m m m - - M -

Decidability is Trivial

* For nvariables, enumerate all 2" possible assighments.

@=aA(-bvc) IEEHEN RN N

=
:
:
:
'
.
:
.

 Obviously not very efficient. SAT solving is all about
making this enumeration “smart”.

m m 4 4 m m 4 -
m 4 m 4 m H4 m -
m m m m 4 4 m -

Going to Clauses

e SAT solving (almost) always applies to
formulas normalized to conjunctive normal
form (CNF).

Going to Clauses

e SAT solving (almost) always applies to
formulas normalized to conjunctive normal
form (CNF).

(V-bVc)A(-avcvdV-e)A(bV-dVe)

Going to Clauses

e SAT solving (almost) always applies to
formulas normalized to conjunctive normal
form (CNF).

(V-bVc)A(-avcvdV-e)A(bV-dVe)

{{a,b,c} {a,cd e} {bd e}}

Going to Clauses

e SAT solving (almost) always applies to
formulas normalized to conjunctive normal
form (CNF).

(V-bVc)A(-avcvdV-e)A(bV-dVe)

{{a,b,c} {a,cd e} {bd e}}

(a+b+c)@+c+d+e)b+d+e)

Going to Clauses

e SAT solving (almost) always applies to
formulas normalized to conjunctive normal
form (CNF).

(V-bVc)A(-avcvdV-e)A(bV-dVe)

{{a,b,c} {a,cd e} {bd e}}

(a+b+c)@+c+d+e)b+d+e)

Note that a truth table is a kind of disjunctive normal form (DNF).

Going to Clauses

* You could in principle use distributivity and De
Morgan’s laws to convert any formula to CNF.

— ...but that introduces an exponential blowup...
— ...and you might as well convert to DNF, then.

Going to Clauses

* You could in principle use distributivity and De
Morgan’s laws to convert any formula to CNF.

— ...but that introduces an exponential blowup...
— ...and you might as well convert to DNF, then.

* Instead, we use an encoding based on
introducing new variables.

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.

@=(aNn(-bV(cAd))

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.

@=(aNn(-bV(cAd))
\ j

I

P

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.
p, & cAd

@=(aNn(-bV(cAd))
\ j

I

P

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.
p, & cAd

@=(aNn(-bV(cAd))
\ j

I

P

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.
p, & cAd

(pE(a/\(—-bV‘(C/\d)), eV -dVp,
I

P

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.

p,©cAd
| |
_ _ p,VvVd
cp_(a/\(bvl(c/\d)), eV -dVp,

i
P

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.

p,©cAd
| |
_ _ p,VvVd
cp_(a/\(bv‘(c/\d)), eV -dVp,

P1 p, = -bVp,

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.

p, & cAd
| |
_ p,VvVd
cp_(a/\(bv‘(c/\d)), eV -dVp,
I
P4 b

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.
p, & cAd

(pE(a/\(—-bV‘(C/:d)), eV -dVp,

P1 p, = -bVp,

Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.
p, & cAd

(pE(a/\(—-bV‘(C/:d)), eV -dVp,

P1 p, = -bVp,

Y=aip,

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

aV-b
cVa
-cVb

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

aV-b
cVa
-cVb

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

— aV-b

C b
cVa
-cVDb \

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

— aV-b
cVa
-cVb

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

V =b b
S a —
C b
— CcVa
-cVDb
—~C
. -3

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

V =b b
S a —
C b
— CcVa
-cVDb
—~C
. -3

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

V =b b
S a —
C 8 b
— CcVa
-cVDb
—~C
. -3

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

V =b b
S a —
C —X b
— CcVa ™
-cVDb
—C
\ —d

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

V =b b
— a -_
C —N b
- CV a ™~
-cVDb
~C
SAT N ~d

Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?

-b
— aV-b , R y
-— CcVa ™~
-cVb
—C
SAT \a ~d

You can solve 2-SAT in polynomial time.
Some of the techniques for 2-SAT are used in general SAT solvers.

3-SAT

* NP-complete.

— Reduction from SAT: split longer clauses using
fresh variables.

3-SAT

* NP-complete.

— Reduction from SAT: split longer clauses using
fresh variables.

* (Not so relevant to SAT solving technology.)

First Approach: Resolution

aVvV-bVf -aV-cvdyV-e

First Approach: Resolution

@—bvf ﬂchVHe

First Approach: Resolution

(ay-bvf (may-cvdV-e
N /

-bvfVv-cvdV-e

First Approach: Resolution

(ay-bvf (may-cvdV-e
N /

-bvfVv-cvdV-e

* Resolution eliminates one variable by
producing a new clause (resolvent) from
complementary ones.

Resolution

(QVb)A(aV-b)A(-aVc)A(-aV -C)

Resolution

(a (a V/\ (-aVc)A(-aV -c)

Resolution

(a (a V/\ (-aVc)A(-aV -c)

\/

aA(-aVc)A(-aV —-c)

Resolution

(a (a V/\ (-aVc)A(-aV -c)

Betes

Resolution

(a (a V/\ (-aVc)A(-aV -c)

Beies

N/

CA-C

Resolution

(a (a V/\ (-aVc)A(-aV -c)

Beies

N/
(K0

(Part of) Davis Putnam Algorithm

(Also: when a variable appears in only one
polarity, remove all clauses containing it.)

M. Davis, H. Putnam, A computing procedure for
quantification theory, JACM, 1960.

Problem: space explosion!

DP is proof-oriented. Current algorithms are
model-oriented.

Backtracking Search

(OV —C) o
A(-aV bV c)
A(-aV-b)

Backtracking Search

(OV —C) o
A(-aV bV c)
A(-aV-b)

Backtracking Search

(OV —C) o
A(-aV bV c)
A(-aV-b)

Backtracking Search

(OV —C
A(-aV bV c
A(-aV-b

—r e e
Q

!

Backtracking Search

(OV —C) o
A(-aV bV c)
A(-aV-b)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®
oV ¢)

o)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®
oV ¢)

o)

A(-aV
A(-aV -

Backtracking Search

oV -c) ! ®
oV ¢) 3
0)
o
b\
e o

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®
oV ¢)

o)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®
oV ¢)

o)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®
oV c)!

o)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®
oV ¢) 3
0)
o
b\
e o

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®
oV ¢)

o)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®
oV ¢)

o)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®

oV ¢) 3 \\:a
0)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®

oV ¢) 3 \\:a
0)

A(-aV
A(-aV -

Backtracking Search

OV —-C) ®

oV ¢) 3 \\:a
0)

Boolean Constraint Propagation

 “When all but one literal are falsified, it becomes implied.”

(OV —-C) o
A(-aV bV c)
AN(-aV-b)

Boolean Constraint Propagation

 “When all but one literal are falsified, it becomes implied.”

(OV —-C) o
A(-aV bV c)
AN(-aV-b)

Boolean Constraint Propagation

 “When all but one literal are falsified, it becomes implied.”

(OV —-C) o
A(-aV bV c)
AN(-aV-b)

Boolean Constraint Propagation

 “When all but one literal are falsified, it becomes implied.”

(OV —-C) o
A(-aV bV c)
AN(-aV-b)

Boolean Constraint Propagation

 “When all but one literal are falsified, it becomes implied.”

(OV —-C) o
A(-aV bV c)
AN(-aV-b)

Boolean Constraint Propagation

 “When all but one literal are falsified, it becomes implied.”

(OV —-C) o

A(-aV bV c) 3 -3
AN(-aV-b)

Boolean Constraint Propagation

 “When all but one literal are falsified, it becomes implied.”

(OV —-C) o

A(-aV bV c) 3 -3
AN(-aV-b)

Boolean Constraint Propagation

 “When all but one literal are falsified, it becomes implied.”

(OV —-C) o

A(-aV bV c) 3 -3
AN(-aV-b)

Two-watched-literal Scheme for BCP

BCP can cut the search tree dramatically...

..but checking each clause for potential
implications is expensive.

Observation: as long as at least two literals in
a clause are “not false”, that clause does not
imply any new literal.

ldea: for each clause, try to maintain that
Invariant.

Cutting Deeper: Learning

* |dea: compute new clauses that are logically
implied, and that may trigger more BCP.

 Use an implication graph. When a conflict is
derived, look for a small explanation.

(a V d)
A (a V-cV-h)
A(a V hv-m)
A (b VvV k)
A (-gV-cV i
A (-gV h V=i
A(g V hVv-j
A(g V jV-m)

Learning

(a V d)
A (@ V-cV-=h)
Aa V hVv-m)
A (b VvV k)
A (-gV-cV i
A (-gV h V=i
A(g V hV-j
Alg vV jVv-m)

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

Learning

-b k

O——©®

Learning

-b k

O——©®

Vv

Learning

Ab Vv ﬁ)
A (-gV -c
A (-gV h

Learning

o
-a, d
o
c, =h, -m
o
-b, k
o
g _'i; I

-(c A g A =-h)

@
@
c, =h, -m
@
=b, k
. . ‘
g 1
»"‘ i ‘
0"‘ ‘
//' _'b k
¢ &/ i oO——e
=h \
I\ ® ~(c A g A =h)
-m ...and backtrack to c, then assert -g |

Learning

* Learning has a dramatically positive impact.

* Learning also makes restarts possible:

— Idea: after some number of literal assignments,
drop the assignment stack and restart from zero.

— Goal: avoid locally difficult subtrees.

— Clauses encode previous knowledge and make
new search faster.

Picking Variable Assignments

* Potential strategies:
— Fixed ordering,
— Frequency based,
— “Maximal impact”.

Picking Variable Assignments

* Potential strategies:
— Fixed ordering,
— Frequency based,
— “Maximal impact”.

* Overall favorite are activity-based heuristics:
— Pick variables that you have seen a lot in conflicts.
— Decay weights to favor recent conflicts.
— Cheap to compute/update.

More Engineering...

e SAT dirty little secret: the enormous impact of
preprocessing.

— Problems are generated automatically
(“compiled”); many redundancies, symmetry, etc.

— Preprocessors look for subsumed clauses,
equivalent clauses, etc.

— Typically, run with timeout, then DPLL search.

More Engineering...

e SAT dirty little secret: the enormous impact of
preprocessing.

— Problems are generated automatically
(“compiled”); many redundancies, symmetry, etc.

— Preprocessors look for subsumed clauses,
equivalent clauses, etc.

— Typically, run with timeout, then DPLL search.

 Parallel SAT

— State-of-the-art is to run instances with different
parameters in parallel.

Beyond SAT

e SMT solvers

— |dea: use a SAT solver for the propositional
structure, and theory solvers for conjunction of
literals.

* QBF
— SAT with quantifiers. PSPACE complete.

