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propositional formula.

aAN(-bVc) »a» T b—FcHF

aN bA(-bV-a) > unsatifiable

* The original NP-complete problem.
— “As hard and any other problem in NP.”

* S. Cook, The complexity of theorem proving
procedures, STOC 1971.



SAT In Practice

* Ubiquitous in hardware/circuit design
— E.g. equivalence checking.

* Search/Al problems
— E.g. reduce Sudoku to SAT.
— Dependency management in Eclipse.

e Software verification
— By itself, and as part of the SMT stack.
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 Obviously not very efficient. SAT solving is all about
making this enumeration “smart”.
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e SAT solving (almost) always applies to
formulas normalized to conjunctive normal
form (CNF).
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Note that a truth table is a kind of disjunctive normal form (DNF).
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Going to Clauses

* You could in principle use distributivity and De
Morgan’s laws to convert any formula to CNF.

— ...but that introduces an exponential blowup...
— ...and you might as well convert to DNF, then.

* Instead, we use an encoding based on
introducing new variables.
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Tseitin’s Encoding

* |dea: rewrite ¢ into Y that is equisatisfiable.
p, & cAd

(pE(a/\(—-bV‘(C/:d)), eV -dVp,

P1 p, = -bVp,

Y=aip,
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Solving clauses: 2-SAT

 We can assume w.l.0.g. that each clause has at
least two literals.

 What if all clauses have exactly two literals?
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You can solve 2-SAT in polynomial time.
Some of the techniques for 2-SAT are used in general SAT solvers.
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3-SAT

* NP-complete.

— Reduction from SAT: split longer clauses using
fresh variables.

* (Not so relevant to SAT solving technology.)
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* Resolution eliminates one variable by
producing a new clause (resolvent) from
complementary ones.
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(Part of) Davis Putnam Algorithm

(Also: when a variable appears in only one
polarity, remove all clauses containing it.)

M. Davis, H. Putnam, A computing procedure for
quantification theory, JACM, 1960.

Problem: space explosion!

DP is proof-oriented. Current algorithms are
model-oriented.
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Two-watched-literal Scheme for BCP

BCP can cut the search tree dramatically...

..but checking each clause for potential
implications is expensive.

Observation: as long as at least two literals in
a clause are “not false”, that clause does not
imply any new literal.

ldea: for each clause, try to maintain that
Invariant.



Cutting Deeper: Learning

* |dea: compute new clauses that are logically
implied, and that may trigger more BCP.

 Use an implication graph. When a conflict is
derived, look for a small explanation.
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Learning

* Learning has a dramatically positive impact.

* Learning also makes restarts possible:

— Idea: after some number of literal assignments,
drop the assignment stack and restart from zero.

— Goal: avoid locally difficult subtrees.

— Clauses encode previous knowledge and make
new search faster.
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Picking Variable Assignments

* Potential strategies:
— Fixed ordering,
— Frequency based,
— “Maximal impact”.

* Overall favorite are activity-based heuristics:
— Pick variables that you have seen a lot in conflicts.
— Decay weights to favor recent conflicts.
— Cheap to compute/update.
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More Engineering...

e SAT dirty little secret: the enormous impact of
preprocessing.

— Problems are generated automatically
(“compiled”); many redundancies, symmetry, etc.

— Preprocessors look for subsumed clauses,
equivalent clauses, etc.

— Typically, run with timeout, then DPLL search.

 Parallel SAT

— State-of-the-art is to run instances with different
parameters in parallel.



Beyond SAT

e SMT solvers

— |dea: use a SAT solver for the propositional
structure, and theory solvers for conjunction of
literals.

* QBF
— SAT with quantifiers. PSPACE complete.



