Lecturecise 12 Abstract Interpretation - Solutions to exercises

2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Exercise

Prove the following:

- 1. $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
- 2. $\Box A \sqsubseteq \Box B \iff \forall x \in A. \forall y \in B. x \sqsubseteq y$
- Let (A, ⊑) be a partial order such that every set S ⊆ A has the greatest lower bound.

Prove that then every set $S \subseteq A$ has the least upper bound.

Solution

- 1. Let $(x \sqcup y) \sqcup z = a$, then $z \sqsubseteq a$ and $x \sqcup y \sqsubseteq a$ and hence $x \sqsubseteq a$ and $y \sqsubseteq a$. From $z \sqsubseteq a$ and $y \sqsubseteq a$ it follows $z \sqcup y \sqsubseteq a$ and finally $x \sqcup (y \sqcup z) \sqsubseteq a = (x \sqcup y) \sqcup z$. Symmetrically, we also get that $(x \sqcup y) \sqcup z \sqsubseteq x \sqcup (y \sqcup z)$ and hence $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$.
- 2. Let $a = \sqcup A$ and $b = \sqcap B$. Then

$$a = \sqcup A \Leftrightarrow orall x \in A.x \sqsubseteq a \land orall a'. orall x \in A.x \sqsubseteq a'
ightarrow a \sqsubseteq a'$$

and

$$b = \sqcap B \Leftrightarrow \forall y \in B.b \sqsubseteq y \land \forall b'. \forall y \in B.b' \sqsubseteq y \to b' \sqsubseteq b$$

 \Rightarrow

Suppose $a \sqsubseteq b$, then by transitivity it follows that $\forall x \in A. \forall y \in B. x \sqsubseteq y.$

Now suppose $\forall x \in A . \forall y \in B.x \sqsubseteq y$. This implies that the set A is a set of lower bounds to B, and B is a set of upper bounds on A. Hence $a \sqsubseteq b$ (intuitively).

Solution

3. Suppose we have some arbitrary set $S \subseteq A$, then we know that $\sqcap S$ exists.

Let *U* be the set of all its upper bounds, i.e. $U = \{x | \forall y \in S.y \sqsubseteq x\}$. Since every subset of *A* has a greatest lower bound, we know that $a = \Box U$ exists. Now we want to show that *a* is an upper bound on *S* and that it is the least one.

We want to show that $\forall y \in S.y \sqsubseteq a$.

Let *L* be the set of lower bounds on *U*, i.e. $L = \{z | \forall x \in U.z \sqsubseteq x\}$. Clearly, $S \subseteq L$, since *U* are the upper bounds on *S*.

Then *a* is the greatest element in *L*, and thus $\forall y \in S.y \sqsubseteq a$ and so *a* is an upper bound on *S*.

Now take any upper bound $x \in U$. Since $a = \sqcap U$, we have $a \sqsubseteq x$ and so *a* is the least upper bound.