- Boolean Satisfiability: From Theoretical
Hardness to Practical Success
Sharad Malik

Princeton University

SAT in a Nutshell

Given a Boolean formula, find a variable assignment such that the
formula evaluates to 1, or prove that no such assignment exists.

F=(a+b)a+b’+c)

For n variables, there are 2" possible truth assignments to be checked.

L1 |
First established NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third
Annual ACM Symp. on the Theory of Computing,1971, 151-158

Where are we today?

Intractability of the problem no longer daunting

Can regularly handle practical instances with millions of
variables and constraints
SAT has matured from theoretical interest to practical
impact
Electronic Design Automation (EDA)
Widely used in many aspects of chip design

Increasing use in software verification

Commercial use at Microsoft, NEC,...

/ © SAT Live! A
€ C fi O www.satlive.org
% Princeton Univer.. 3& The Gigascale S.. '® Sharad Malik ™ Gmail: Email fro... Blackboard Learn ® Home - Sharad ...

Up-to-date links for the SATisfiability Problem

9 B &
= O O

Deadline Countdown

Heads up on SAT
research

JSAT: the Journal on
isfia bili lean

Modeling and

Computation

The SAT conferences:
next meeting June
1S-June 22, 2011,
Ann Arbor, Michigan,
USA.

The SAT solver
competitions

SAT gory details

SAT related books

HANDBOOK

abiey

BOOLLAN MODELS AND
HETHODS IN MATHEMATICS,
COMPUTER SCIENCE, AND
ENGINEERING

To propose a link enter your email address:

and

Welcome to SAT Live!

If you are a newcomer to the SATisfiability problem, you might want to take a look at wikipedia’s e on the boolean satisfiability problem first. You might also find those survey
insight of the current interest on SAT solvers for software and hardware verification, Armin Biere’: /i is a good start. Eugene Goldberg has also a nice and

Armin Biere's course on formal systems
of introducing modern SAT solvers in his three part course on SAT. Finally, Joao Marques-Silva wrote a nice article on practical applications of boolean satisfiability.

Looking for a SAT solver to play with? the following open source SAT solvers might be a good start: Minisat (C++), Picosat (C), SAT4) (Java). If you are looking for a stochastic local search fram
a look at UBCSAT.

You can take a look at all the current links, see the links classified by keywords or add your own reference (you must be subscribed to SAT Live! or propose it as anonymous).

If you don't have some links to propose for now but would like email notification of new additions to the repository, you can subscribe to the SAT Live! notification list or register to the site RS
Muise, using Dapper).

Finally, a page with som le inter: ATisfaction problem is also available.

Last 10 new entries

725 elements available

,'

[

Date: 09-Jun-2011
Title: Offer for a PhD position or a Post-doc position
Hits: 18
Contributed by:
Keywords: Job

han L[

Innovative approaches to guarantee correctness while designing embedded systems

Location
Group of Computer Architecture headed by Prof. Dr. Rolf Drechsler
University of Bremen, Bremen, Germany

Application
The deadline for applications is July 10th 2011. Applications including CV, certificates, and recommendation letters should be sent by email to Rolf Drechsler (drechsle@uni-|
refer to reference number A 93/11.

Dependent on the qualification of the applicant the salary grade for the position as a researcher (Wissenschaftliche/r MitarbeiterIn) will be TVL 13 or TVL 14, i.e. net incoms
1800 EUR or 2000 EUR, respectively. The project will start on August 1st 2011.

Abstract

The internationally renowned Group of Computer Architecture at the University of Bremen develops design automation tools for circuits and systems. Focus of the offered ¢
development of innovative approaches to guarantee correctness while designing embedded systems. The position is part of a research project funded by the German Rest
for 5 years within a Reinhart Koselleck-Project.

The research group tightly cooperates with industrial partners within transfer projects, funded e.g. by the German Ministry for Education and Research (BMBF). Within the ¢

/@SAT 2011 competitior x §= 1 W o —
€ 2> C fi O www.satcompetition.org/2011/
% Princeton Univer... The Gigascale S.. '® Sharad Malik ™M Gmail: Email fro.. 3 Blackboard Learn (® Home - Sharad ...

SAT Competition 2011

A competitive event of the SAT 2011 Conference
June 19th - June 22nd 2011, Ann Arbor, MI, USA

Last modification: SLastChangedDate: 2011-04-25 21:14:21 +0200 (Mon, 25 Apr 2011) S.

uick links
°

Registration
What's new this year? Register and submit vour solver or benchmark
Competition tracks

Submissions What's new this year?

Important dates

Judges There are several new features in the SAT competition this year:
Organizers
New Hardware
Sponsors The competition will run on a new cluster at CRIL, composed of nodes with two Bi-Xeon Quad core processors and 32 GB of RAM. The operating system is CentOS 5.4, x86,
competition is run in two stages. During the first stage, solvers will be allocated 7GB of memory. Each instance of a sequential solver will be allocated 2 cores, each instance of a
The SAT competition is organized | cores. This means that at one time, a node will be running either 4 runs of a sequential solver (2 per processor), or 2 runs of a parallel solver (1 per processor). Two different solv
thanks to our generous sponsors: node. For the second stage - based on the results of which the best solvers will be awarded - only one sequential solver will be launched on each processor (2 solvers per node)

launched on a node (1 solver per node), with a memory limit of 15GB of RAM.
s ./_3 Sequential/Parallel Neutrality
(e /] l. (lntel This vear, there is no special track dedicated to sequential or parallel solvers. Sequential and parallel solvers are grouped into one single competition, but with two different rankin
wall clock time and will promote solvers which use all available resources to give an answer as quickly as possible. The second ranking is based on CPU time and will promote s¢
efficiently as possible. This latter ranking is the one that was used in the previous competitions. In the wall clock based ranking, timeout will be imposed on the wall clock time. In
will be imposed on CPU time. It is expected that parallel solvers will perform better in the first ranking while sequential solvers will perform better in the second ranking.
New Award Categories
The competition will award both the fastest SAT solvers in terms of wall-clock time and in terms of CPU time. The most innovative ("non CDCL") SAT solver will be awarded a
Choose Your Category
Unlike the previous competitions, in which all solvers where run on all benchmarks, in order to save computational resources this time submitters are asked to select in which cate,
random) their solver will compete. The most efficient solvers (selected by the jury) will still compete in every category during the second stage.
Minimally Unsatisfiable Subset (MUS) Special Track
Due to the success of MUS techniques on various applications (especially as core engines in MAXSAT solvers), a special track for MUS systems will be organized for the first t
Data Analysis Track
Since there are many different ways to analyze the results of the competition, the Data Analysis Track will offer to anyone the possibility to run its own analysis of the competition
the competition web site and as a poster during the SAT conference. This track is an opportunity to experiment different ranking schemes, as well as analyze the strengths anc
benchmarks. Contributors will have to submit a program that will be run by the organizers on anonymized results.

Competition tracks

Here is a quick view of the competition. See detailed rules for complete details.

Main track

Where are we today? (contd.)

Significant SAT community

Satlive Portal and SAT competitions
SAT Conference

Emboldened researchers to take on even harder
problems

Satisfiability Modulo Theories (SMT)

Max-SAT

Quantified Boolean Formulas (QBF)

SAT Solvers: A Condensed History

Deductive

Davis-Putnam 1960 [DP]

lterative existential quantification by “resolution”
Backtrack Search

Davis, Logemann and Loveland 1962 [DLL]

Exhaustive search for satisfying assignment
Conflict Driven Clause Learning [CDCL]

GRASP: Integrate a constraint learning procedure, 1996
Locality Based Search

Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

Added focus on efficient implementation
“Pre-processing”

Peephole optimization, e.g. miniSAT, 2005

Problem Representation
—

-1 Conjunctive Normal Form

Representation of choice for modern SAT solvers

(q+b+c)(0|A’+b’-|;c)(d’+b+c’)(/g+b’+c’)

S

Literals Clauses

Variables

Circuit to CNF Conversion
N

1 Tseitin Transformation

d=(a+b) e=(c-d)
(@+b+d) (c+d +e)
(o + d) (d e,) Consistency conditions
(b’ + d) (c +e) - .
for circuit variables
a
b d \ e
-

C

1 Can ‘e’ ever become true?

Is (e)(a + b + d’)(a’+d)(b’+d)(c’+d+e)(d+e’)(ct+e’) satisfiable?

Resolution
-

-1 Resolution of a pair of distance-one clauses

@@ @@

gD

Resolvent implied by the original clauses

Davis Putnam Algorithm

M .Davis, H. Putnam, “A computing procedure for quantification
theory", J. of ACM, Vol. 7, pp. 201-214, 1960

lterative existential quantification of variables

f (a'l@l'c e) (o + (a’ + ¢) (a’ + <) f
N /)

db, f (a+@+e) (@ e +) @ @+ @+c¢) b, f

AN ~d

O IH{b,a}, f

b}, f (a+e+f v
SAT () Hb,a,}, f
UNSAT

Potential memory explosion problem!

SAT Solvers: A Condensed History
L

0 Deductive
Davis-Putnam 1960 [DP]
lterative existential quantification by “resolution”
o1 Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]
Exhaustive search for satisfying assignment
71 Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996
1 Locality Based Search

Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

Added focus on efficient implementation
1 “Pre-processing”

Peephole optimization, e.g. miniSAT, 2005

Basic DLL Search

(a’+ b + c)
(a+c+d)
(a+c+d’)
(a+c’+d)
(a+c’+d’)
(b’ + ¢’ +d)
(a’+ b+)
(a’+ b’ + ¢)

M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394-397, 1962

Basic DLL Search

(a’+ b + c)
(a +c+d)
(a+c+d’)
(a + ¢’ +d)
(at+c +d)
(b’ + ¢’ +d)
(a’+ b+ <)
(a’+ b’ + ¢)

Basic DLL Search

. /‘
(a +c+d) < Decision

(a+c+d’)
(a+c’ +d)
(a+c +d)

Basic DLL Search

(a +c+d)
(a+c+d’)
(a +c' +d)
(a+c +d)

0/ « Decision

Basic DLL Search

(a +c+d)

—
—

0/ « Decision

Basic DLL Search

< Unit

Unit Clause Rule

(a+c+d)
Implication Graph

Basic DLL Search

< Unit

(a+c+d)
Implication Graph
(a+c+d)

Basic DLL Search

(a+c+d)
Implication Graph Conflict!
(a+c+d)

Basic DLL Search

— (a+c+d)
— (atct+d)
— (a+c +d)
— (a+c +d)
< Backtrack

Basic DLL Search

0 1 < Forced Decision

Basic DLL Search

1 < Forced Decision

Implication Graph Conflict!

Basic DLL Search

< Backtrack

Basic DLL Search

(a+c+d’)
(a +c' +d)
(a+c +d)

< Backtrack

Basic DLL Search

(a+c+d)
(a+c+d)
(a+¢ +d)
(a+c +d)
(b’ + ¢ +d)

1 < Forced Decision

Basic DLL Search

(a+c+d)
(a+c+d)

Ll

0 i
<= Decision

Implication Graph Conflict!

Basic DLL Search

(a+c+d)
(a+c+d)
(a+c +d)
(a+c +d)

Ll

< Backtrack

Basic DLL Search

L

1 <= Forced Decision

Implication Graph Conflict!

Basic DLL Search

< Backtrack

— (a’+ b +c¢)
(a+c+d)
(a+c+d’)
(a+c’+d)
(a+c’+d’)
(b’ + ¢’ +d)
(o’ +b + ')
(a’+ b’ + ¢)

vl

Basic DLL Search

(a’+ b + c)
<= Forced Decision

LD

(b’ + ¢’ +d)
(a’+ b + ')
(a’+ b’ + ¢)

Basic DLL Search

1 < Decision

(a’ + b’ +¢)
Implication Graph

Basic DLL Search

(' + b +c) (b’ + ¢’ + d)
Implication Graph

Basic DLL Search

(' + b +c) (b’ + ¢’ + d)
Implication Graph

SAT Solvers: A Condensed History
I

0 Deductive
O Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
0 Backtrack Search
O Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
1 Conflict Driven Clause Learning [CDCL]
1 GRASP: Integrate a constraint learning procedure, 1996
1 Locality Based Search

o1 Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

o Added focus on efficient implementation
1 “Pre-processing”

o1 Peephole optimization, e.g. miniSAT, 2005

Conflict Driven Learning and

Non-chronological Backtracking
]

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4 _
7/
x1 + x3’ + x8’ 7/

x1 + x8 + x12 >
x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

.xl=0

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4 _
7/
x1 + x3’ + x8’ 7/

x1 + x8 + x12 >
x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

. x4=1

G

Conflict Driven Learning and
Non-chronological Backtracking

]
X1+ x4 | x1=0, xa=1 |
x1 + x3’ + x8&’ ,/
x1 + x8 + x12 R4

x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

. x4=1

él =0 (O x3=1

Conflict Driven Learning and
Non-chronological Backtracking

]
X1+ x4 | x1=0, xa=1 |
x1 + x3’ + x8’ ,/
x1 + x8 + x12 R4

x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

. x4=1

x8=0

Conflict Driven Learning and
Non-chronological Backtracking

]
X1+ x4 | x1=0, xa=1 |
x1 + x3’ + x8’ ,/
x1 + x8 + x12 R4

x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

. x4=1

Conflict Driven Learning and
Non-chronological Backtracking

]
X1+ x4 | x1=0, xa=1 |
x1 + x3’ + x8&’ ,/
x1 + x8 + x12 R4

x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’ 4

. x4=1

Conflict Driven Learning and
Non-chronological Backtracking

]
X1+ x4 | x1=0, x4=1 |
x1 + x3’ + x8’ ,/
x1 + x8 + x12 R4

x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’ 4

Conflict Driven Learning and

Non-chronological Backtracking
]

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

. x4=1

x3=l. x7=1

Conflict Driven Learning and

Non-chronological Backtracking
I

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

. x4=1

x11=1
x12=1

. x2=0

Conflict Driven Learning and

Non-chronological Backtracking
I

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’
x7 + x10 + x12’

. x4=1

/.xll=l

. x2=0

Conflict Driven Learning and

Non-chronological Backtracking
I

x1 + x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’
x7 + x10 + x12’

. x4=1

Conflict Driven Learning and

Non-chronological Backtracking
I

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11

x7’ + x3’ + x9

X7’ + X8 + X9’ > X3’+X7,+X8
x7 + x8 + x10’

x7 + x10 + x12’

. x4=1

x11=1
x12=1

. x2=0

Conflict Driven Learning and

Non-chronological Backtracking
I

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11

x7’ + x3’ + x9

X7’ + X8 + X9’ > X3’+X7,+X8
x7 + x8 + x10’

x7 + x10 + x12’

. x4=1

Conflict Driven Learning and
Non-chronological Backtracking

]
x1 + x3’ + x8’ /’
x1 + x8 + x12 Re
x7’ + x3’ + x9
x7’ + x8 + x9’ S

x7 + x8 + x10’
x7 + x10 + x12’
x3' + x7’ + x8 «—new clause

. x4=1

What's the big deal?

Significantly prune the search space —
‘ learned clause is useful forever!

Useful in generating future conflict
clauses.

Restart

o Abandon the
current search tree
and reconstruct a
new one

71 The clauses learned
prior to the restart
are still there after
the restart and can
help pruning the
search space

1 Adds to robustness
in the solver

y /xz\
O\
/ \ / \ .

i i

Conflict clause: x1’+x3+x5’

SAT Solvers: A Condensed History

0 Deductive
O Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
0 Backtrack Search
O Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
0 Conflict Driven Clause Learning [CDCL]
O GRASP: Integrate a constraint learning procedure, 1996
1 Locality Based Search

o Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

o Added focus on efficient implementation
1 “Pre-processing”

o1 Peephole optimization, e.g. miniSAT, 2005

Success with Chaff

First major instance: Tough (Industrial Processor Verification)

Bounded Model Checking, 14 cycle behavior

Statistics

1 million variables

10 million literals initially
200 million literals including added clauses

30 million literals finally

4 million clauses (initially)
200K clauses added

1.5 million decisions

3 hour run time

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.

Chaff Contribution 1: Lazy Data Structures
2 Literal Watching for Unit-Propagation

Avoid expensive book-keeping for unit-propagation
N-literal clause can be unit or conflicting only after N-1 of the literals have
been assigned to F

(vl + v2 + v3): implied cases: (0 + O + v3)or (0O + v2 + 0) or (vl + 0 + Q)
Can completely ignore the first N-2 assignments to this clause
Pick two literals in each clause to “watch” and thus can ignore any
assignments to the other literals in the clause.

Example: (vl + v2 + v3 + v4 + v5)

(vI=X+ v2=X + v3=2 {i.e. Xor O or 1} + v4=2 + v5=2)
Maintain the invariant: If a clause can become newly implied via any

sequence of assignments, then this sequence will include an assignment of
one of the watched literals to F

2 Literal Watching

When a variable is assigned

v <‘ e R R RA R T true, only need to visit clauses
1

where its watched literal is
v,| v.| v, false (only one polarity)

Pointers from each literal to all

- clauses it is watched in
Vs <:: Vil Val Vo[V| Vie] Vis In a n clause formula with v

variables and m literals

Vol Vil Vil -Vs| Vv, Total number of pointers is 2n

On average, visit n/v clauses
per assignment

*No updates to watched
literals on backtrack™

For every clause, two
literals are watched

Decision Heuristics — Conventional

Wisdom

“Assign most tightly constrained variable” : e.g. DLIS (Dynamic
Largest Individual Sum)

Simple and intuitive: At each decision simply choose the assignment that
satisfies the most unsatisfied clauses.

Expensive book-keeping operations required

Must touch *every™ clause that contains a literal that has been set to true.
Often restricted to initial (not learned) clauses.

Need to reverse the process for un-assignment.

Look ahead algorithms even more compute intensive

C. Li, Anbulagan, “Look-ahead versus look-back for satisfiability problems”
Proc. of CP, 1997.

Take a more “global” view of the problem

Chaff Contribution 2:

- Activity Based Decision Heuristics

7 VSIDS: Variable State Independent Decaying Sum
Rank variables by literal count in the initial clause database
Only increment counts as new (learnt) clauses are added

Periodically, divide all counts by a constant

7 Quasi-static:
Static because it doesn’t depend on variable state
Not static because it gradually changes as new clauses are added
m Decay causes bias toward *recent® conflicts.

® Has a beneficial interaction with 2-literal watching

Activity Based Heuristics

and Locality Based Search
-—

1 By focusing on a sub-space, the covered spaces tend to coalesce
oI More opportunities for resolution since most of the variables are common.

o Variable activity based heuristics lead to locality based search

SAT Solvers: A Condensed History

0 Deductive
O Davis-Putnam 1960 [DP]
O lterative existential quantification by “resolution”
0 Backtrack Search
O Davis, Logemann and Loveland 1962 [DLL]
O Exhaustive search for satisfying assignment
0 Conflict Driven Clause Learning [CDCL]
O GRASP: Integrate a constraint learning procedure, 1996
O Locality Based Search

O Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and
others, 2001 onwards

O Added focus on efficient implementation

1 “Pre-processing”

o1 Peephole optimization, e.g. miniSAT, 2005

Pre-Processing of CNF Formulas
o

N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

71 Use structural information to simplify
Subsumption
Self-subsumption

Substitution

Pre-Processing: Subsumption
o

01 Clause C, subsumes clause C, if C, implies C,

-1 Subsumed clauses can be discarded

Y)

(

y) -

Pre-Processing: Self-Subsumption
-

11 Subsumption after resolution step

Pre-Processing: Substitution

Tseitin transformation introduces definition of variable

Y o1 (1 = (y = 2))

Z =
(Z11+T7+2) (T1+2+y) (Y+2+21) (y+2+21)

Occurrence of x, can be eliminated by substitution

Corresponds to resolution with defining clauses

(1 + u) (y (T1+ZzZ+vy)

\/w \/

u+Y+ 2) (u+Z+y)

Concluding Remarks

SAT: Significant shift from theoretical interest to practical impact.
Quantum leaps between generations of SAT solvers

Successful application of diverse CS techniques

Logic (Deduction and Solving), Search, Caching, Randomization, Data
structures, efficient algorithms

Engineering developments through experimental computer science
Presence of drivers results in maximum progress.

Electronic design automation — primary driver and main beneficiary

Software verification- the next frontier

Opens attack on even harder problems
SMT, Max-SAT, QBF...

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical
hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-82.

References

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W. H. Freeman and Company, San

Francisco, 1979

[T68] G. Tseitin, On the complexity of derivation in propositional calculus. In Studies
in Constructive Mathematics and Mathematical Logic, Part 2 (1968)

[DP 60] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7:201-215, 1960

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394-397, 1962

[SS99] J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.

[BSQ7] R. J. Bayardo Jr. and R. C. Schrag “Using CSP look-back techniques to solve
real world SAT instances.” Proc. AAAI, pp. 203-208, 1997

[BSOO] Luis Baptista and Jodo Marques-Silva, “Using Randomization and Learning

to Solve Hard Real-World Instances of Satisfiability,” In Principles and Practice of
Constraint Programming — CP 2000, 2000.

References

[HO7] J. Huang, “The effect of restarts on the efficiency of clause learning,”
Proceedings of the Twentieth International Joint Conference on Automated
Reasoning, 2007

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff:
Engineering and efficient sat solver. In Proc., 38th Design Automation Conference
(DAC2001), June 2001.

[ZS96] H. Zhang, M. Stickel, “An efficient algorithm for unit-propagation” In
Proceedings of the Fourth International Symposium on Artificial Intelligence and
Mathematics,1996

[ESO3] N. Een and N. Sorensson. An extensible SAT solver. In SAT-2003

[BO2] F. Bacchus “Exploring the Computational Tradeoff of more Reasoning and Less
Searching”, Proc. 5th Int. Symp. Theory and Applications of Satisfiability Testing, pp-
7-16, 2002.

[GNO2] E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver. In Proc.,
DATE-2002, pages 142—-149, 2002.

References

[RO4] L. Ryan, Efficient algorithms for clause-learning SAT solvers, M. Sc. Thesis,
Simon Fraser University, 2002.

[EBO5] N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and
Clause Elimination, In Proceedings of SAT 2005

[ZMO3] L. Zhang and S. Malik, Validating SAT solvers using an independent
resolution-based checker: practical implementations and other applications, In
Proceedings of Design Automation and Test in Europe, 2003.

[LSBO7] M. Lewis, T. Schubert, B. Becker, Multithreaded SAT Solving, In Proceedings
of the 2007 Conference on Asia South Pacific Design Automation

[H]SO8] Youssef Hamadi, Said Jabbour, and Lakhdar Sais, ManySat: solver
description, Microsoft Research-TR-2008-83

[B86] R. E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE
Transactions on Computers , vol.C-35, no.8, pp.677-691, Aug. 1986

[ZMO9Q] Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from
theoretical hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-
82.

