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SAT in a Nutshell

Given a Boolean formula, find a variable assignment such that the 
formula evaluates to 1, or prove that no such assignment exists.

For n variables, there are 2n possible truth assignments to be checked.

First established NP-Complete problem.
S. A. Cook, The complexity of theorem proving procedures, Proceedings, Third 
Annual ACM Symp. on the Theory of Computing,1971, 151-158
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Where are we today?

Intractability of the problem no longer daunting
Can regularly handle practical instances with millions of 
variables and constraints

SAT has matured from theoretical interest to practical 
impact

Electronic Design Automation (EDA)
Widely used in many aspects of chip design

Increasing use in software verification
Commercial use at Microsoft, NEC,…







Where are we today? (contd.)

Significant SAT community
SatLive Portal and SAT competitions
SAT Conference

Emboldened researchers to take on even harder 
problems

Satisfiability Modulo Theories (SMT) 
Max-SAT
Quantified Boolean Formulas (QBF)



SAT Solvers: A Condensed History

Deductive 
Davis-Putnam 1960 [DP]

Iterative existential quantification by “resolution”

Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]

Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

Added focus on efficient implementation

“Pre-processing”
Peephole optimization, e.g. miniSAT, 2005



Problem Representation

Conjunctive Normal Form
Representation of choice for modern SAT solvers

(a+b+c)(a’+b’+c)(a’+b+c’)(a+b’+c’)

Variables ClausesLiterals



Circuit to CNF Conversion

Tseitin Transformation

Can ‘e’ ever become true?

a
b

d e

c

(a + b + d’)
(a’ + d)
(b’ + d)

d ≡ (a + b)
(c’ + d’ + e)
(d + e’)
(c + e’)

e ≡ (c ⋅ d)

Is (e)(a + b + d’)(a’+d)(b’+d)(c’+d+e)(d+e’)(c+e’) satisfiable?

Consistency conditions 
for circuit variables



a + b + g + h’

Resolution

Resolution of a pair of distance-one clauses

(a + b + c’ + f) (g + h’ + c + f)

Resolvent implied by the original clauses

+f



(a + b) (a + b’) (a’ + c) (a’ + c’)

Davis Putnam Algorithm

M .Davis, H. Putnam, “A computing procedure for quantification 
theory", J. of ACM, Vol. 7, pp. 201-214, 1960
Iterative existential quantification of variables

(a + b + c) (b + c’ + f’) (b’ + e)

(a + c + e) (c’ + e + f)

(a + e + f)

(a’ + c) (a’ + c’)

(c) (c’)

( )SAT
UNSAT

(a)

Potential memory explosion problem!

∃b, f

f

∃{b,c}, f

∃b, f

f

∃{b,a}, f

∃{b,a,c}, f



SAT Solvers: A Condensed History

Deductive 
Davis-Putnam 1960 [DP]

Iterative existential quantification by “resolution”

Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]

Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

Added focus on efficient implementation

“Pre-processing”
Peephole optimization, e.g. miniSAT, 2005



Basic DLL Search

(a + c + d)
(a + c + d’)
(a + c’ + d)
(a + c’ + d’)

(a’ + b + c)

(b’ + c’ + d)
(a’ + b + c’)
(a’ + b’ + c)

M. Davis, G. Logemann, and D. Loveland. A machine program for 
theorem-proving. Communications of the ACM, 5:394–397, 1962
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SAT Solvers: A Condensed History

Deductive 
Davis-Putnam 1960 [DP]

Iterative existential quantification by “resolution”

Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]

Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

Added focus on efficient implementation

“Pre-processing”
Peephole optimization, e.g. miniSAT, 2005



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

J. P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for 
Propositional Satisfiability”, IEEE Trans. Computers, C-48, 5:506-521, 1999.



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’ 
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0

x1=0



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x4=1

x1=0



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1

x4=1

x3=1x1=0



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1 x1=0, x4=1

x3 x3=1, x8=0

x4=1

x3=1

x8=0

x1=0



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
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x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
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Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
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x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
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Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
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Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
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Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
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x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
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Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

x3=1∧x7=1∧x8=0 → conflict

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1
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x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

Add conflict clause: x3’+x7’+x8

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1 x3=1∧x7=1∧x8=0 → conflict



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3’+x7’+x8

Add conflict clause: x3’+x7’+x8

x3=1∧x7=1∧x8=0 → conflict



Backtrack to the decision level of x3=1

Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’

x1

x3

x2

x7

x1=0, x4=1

x3=1, x8=0, x12=1

x2=0, x11=1

x7=1, x9=1x4=1
x9=1

x9=0

x12=1

x3=1 x7=1

x8=0

x1=0

x2=0

x11=1

x3’+x7’+x8



Conflict Driven Learning and
Non-chronological Backtracking

x1 + x4
x1 + x3’ + x8’
x1 + x8 + x12
x2 + x11
x7’ + x3’ + x9
x7’ + x8 + x9’
x7 + x8 + x10’
x7 + x10 + x12’
x3’ + x7’ + x8

x1

x3

x1=0, x4=1

x3=1, x8=0, x12=1,x7=0

Backtrack to the decision level of x3=1
Assign x7 = 0

x4=1

x12=1

x3=1

x8=0

x1=0

←new clause

x7=0



What’s the big deal?

Conflict clause: x1’+x3+x5’

Significantly prune the search space –
learned clause is useful forever!

Useful in generating future conflict
clauses.

x1

x2

x3x3

x4 x4

x5x5x5 x5



Restart

Abandon the 
current search tree 
and reconstruct a 
new one
The clauses learned 
prior to the restart 
are still there after 
the restart and can 
help pruning the 
search space
Adds to robustness 
in the solver

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1’+x3+x5’

x2

x1

x3

x5



SAT Solvers: A Condensed History

Deductive 
Davis-Putnam 1960 [DP]

Iterative existential quantification by “resolution”

Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]

Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

Added focus on efficient implementation

“Pre-processing”
Peephole optimization, e.g. miniSAT, 2005



Success with Chaff

First major instance: Tough (Industrial Processor Verification)
Bounded Model Checking, 14 cycle behavior

Statistics
1 million variables

10 million literals initially
200 million literals including added clauses
30 million literals finally

4 million clauses (initially)
200K clauses added

1.5 million decisions

3 hour run time

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik. Chaff: Engineering an 
efficient SAT solver. In Proc., 38th Design Automation Conference (DAC2001), June 2001.



Chaff Contribution 1: Lazy Data Structures
2 Literal Watching for Unit-Propagation

Avoid expensive book-keeping for unit-propagation

N-literal clause can be unit or conflicting only after N-1 of the literals have 
been assigned to F

(v1 + v2 + v3): implied cases: (0 + 0 + v3) or (0 + v2 + 0) or (v1 + 0 + 0)

Can completely ignore the first N-2 assignments to this clause

Pick two literals in each clause to “watch” and thus can ignore any 
assignments to the other literals in the clause. 

Example: (v1 + v2 + v3 + v4 + v5)

( v1=X + v2=X + v3=? {i.e. X or 0 or 1} + v4=? + v5=? )

Maintain the invariant: If a clause can become newly implied via any 
sequence of assignments, then this sequence will include an assignment of 
one of the watched literals to F



2 Literal Watching

-V1 V3 V5 V6 -V7

V2 V4 V6

-V1 V4 -V7 V11 V12 V15

-V1 V3 V4 -V5 V6

-V3 V2 -V5 -V6

-V2 -V3 V11 V12 V13 V15

V1

V2

+

-

+

-

For every clause, two 
literals are watched

When a variable is assigned 
true, only need to visit clauses 
where its watched literal is 
false (only one polarity)

Pointers from each literal to all 
clauses it is watched in

In a n clause formula with v
variables and m literals

Total number of pointers is 2n
On average, visit n/v clauses 
per assignment 

*No updates to watched 
literals on backtrack*



Decision Heuristics – Conventional 
Wisdom

“Assign most tightly constrained variable” : e.g. DLIS (Dynamic 
Largest Individual Sum)

Simple and intuitive: At each decision simply choose the assignment that 
satisfies the most unsatisfied clauses.
Expensive book-keeping operations required

Must touch *every* clause that contains a literal that has been set to true. 
Often restricted to initial (not learned) clauses.
Need to reverse the process for un-assignment.

Look ahead algorithms even more compute intensive
C. Li, Anbulagan, “Look-ahead versus look-back for satisfiability problems” 
Proc. of CP, 1997. 

Take a more “global” view of the problem



Chaff Contribution 2:
Activity Based Decision Heuristics

VSIDS: Variable State Independent Decaying Sum
Rank variables by literal count in the initial clause database

Only increment counts as new (learnt) clauses are added

Periodically, divide all counts by a constant

Quasi-static:
Static because it doesn’t depend on variable state

Not static because it gradually changes as new clauses are added
Decay causes bias toward *recent* conflicts.
Has a beneficial interaction with 2-literal watching



Activity Based Heuristics
and Locality Based Search

By focusing on a sub-space, the covered spaces tend to coalesce

More opportunities for resolution since most of the variables are common.

Variable activity based heuristics lead to locality based search



SAT Solvers: A Condensed History

Deductive 
Davis-Putnam 1960 [DP]

Iterative existential quantification by “resolution”

Backtrack Search
Davis, Logemann and Loveland 1962 [DLL]

Exhaustive search for satisfying assignment

Conflict Driven Clause Learning [CDCL]
GRASP: Integrate a constraint learning procedure, 1996

Locality Based Search
Emphasis on exhausting local sub-spaces, e.g. Chaff, Berkmin, miniSAT and 
others, 2001 onwards

Added focus on efficient implementation

“Pre-processing”
Peephole optimization, e.g. miniSAT, 2005



Pre-Processing of CNF Formulas

N. Eén and A. Biere. Effective Preprocessing in SAT through Variable and 
Clause Elimination, In Proceedings of SAT 2005

Use structural information to simplify
Subsumption
Self-subsumption
Substitution



Pre-Processing: Subsumption

Clause C1 subsumes clause C2 if C1 implies C2

Subsumed clauses can be discarded



Pre-Processing: Self-Subsumption

Subsumption after resolution step



Pre-Processing: Substitution

Tseitin transformation introduces definition of variable

Occurrence of x1 can be eliminated by substitution
Corresponds to resolution with defining clauses



Concluding Remarks

SAT: Significant shift from theoretical interest to practical impact.

Quantum leaps between generations of SAT solvers

Successful application of diverse CS techniques
Logic (Deduction and Solving), Search, Caching, Randomization, Data 
structures, efficient algorithms

Engineering developments through experimental computer science

Presence of drivers results in maximum progress.
Electronic design automation – primary driver and main beneficiary

Software verification- the next frontier

Opens attack on even harder problems
SMT, Max-SAT, QBF…

Sharad Malik and Lintao Zhang. 2009. Boolean satisfiability from theoretical 
hardness to practical success. Commun. ACM 52, 8 (August 2009), 76-82.
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