
Synthesis, Analysis, and Verification
(SAV)

Lecture 01

Lectures:
 Viktor Kuncak
Exercises and Labs:
 Eva Darulová
 Etienne Kneuss

http://lara.epfl.ch/w/sav

http://lara.epfl.ch/w/sav

SAV in One Slide

We study how to build software
 analysis, verification, and synthesis
tools that automatically
answer questions about software systems.
We cover theory and tool building through
lectures, exercises, and labs.
The grading is based on:

• fixed programming project, done in stages: 30%
• midterm (in the second half of the semester): 40%
• personalized project, with writing code (or new

proofs), presentation and report: 30%

Suggestion

• Attend all 3 weekly slots

• Always bring a laptop

• Ask questions

• Speed control gestures

– Fast forward

– Slow down

Analysis and Verification

auxiliary information
(hints, proof steps)

Questions of Interest

Example questions in analysis and verification
(with sample links to tools or papers):

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

• Will it turn off automated cruise control?

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002

Activities and Expertise Needed
Modeling: establish precise mathematical meaning for:
 software, environment, and questions of interest

– discrete mathematics, mathematical logic, algebra

Formalization: formalize this meaning using appropriate
representation of programming languages and
specification languages

– program analysis, compilers, theory of formal languages,
formal methods

Designing algorithms: derive algorithms that manipulate such
formal objects - key technical step

– algorithms, dataflow analysis, abstract interpretation, decision
procedures, constraint solving (e.g. SAT), theorem proving

Experimental evaluation: implement these algorithms and
apply them to software systems

– developing and using tools and infrastructures,
learning lessons to improve and repeat previous steps

Comparison to other Sciences

Specific to SAV is the nature of software as the subject of study, which has
several consequences:
• software is an engineering artifact: to an extent we can choose our reality

through programming language design and software methodology
• software has complex discrete, non-linear structure: millions of lines of

code, gigabytes of bits of state, one condition in if statement can radically
change future execution path (non-continuous behavior)

• high standards of correctness: interest in details and exceptional behavior
(bugs), not just in general trends of software behavior

• high standards along with large the size of software make manual analysis
infeasible in most cases, and requires automation

• automation requires not just mathematical modeling, where we use
everyday mathematical techniques, but also formal modeling, which
requires us to specify the representation of systems and properties, making
techniques from mathematical logic and model theory relevant

• automation means implementing algorithms for processing representation
of software (e.g. source code) and representation of properties (e.g.
formulas expressing desired properties), the study of these algorithms leads
to questions of decidability, computational complexity, and heuristics that
work in practice.

 Air Transport

 Air Transport

Essential Infrastructure: Northeast Blackout

 Air Transport

French Guyana, June 4, 1996
t = 0 sec

t = 40 sec
$800 million software failure

Space Missions

(Jun 18, 2008 – Scientific data lost from flash memory)

Space Missions

 Car Industry

 Car Industry

Life-Critical Medical Devices

Radio Therapy

Nancy Leveson
Safeware: System Safety and Computers

Addison-Wesley, 1995

Life-Critical Medical Devices

Zune 30 leapyear problem

• December 31, 2008
• “After doing some poking around in the source code for the Zune’s clock driver

(available free from the Freescale website), I found the root cause of the now-
infamous Zune 30 leapyear issue that struck everyone on New Year’s Eve. The
Zune’s real-time clock stores the time in terms of days and seconds since January
1st, 1980. When the Zune’s clock is accessed, the driver turns the number of days
into years/months/days and the number of seconds into hours/minutes/seconds.
Likewise, when the clock is set, the driver does the opposite.

• The Zune frontend first accesses the clock toward the end of the boot sequence.
Doing this triggers the code that reads the clock and converts it to a date and
time...”

• “...The function keeps subtracting either 365 or 366 until it gets down to less than a
year’s worth of days, which it then turns into the month and day of month. Thing
is, in the case of the last day of a leap year, it keeps going until it hits 366. Thanks
to the if (days > 366), it stops subtracting anything if the loop happens to be on a
leap year. But 366 is too large to break out of the main loop, meaning that the
Zune keeps looping forever and doesn’t do anything else.”

http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-
problem-isolated.html

http://pastie.org/349916
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html

More Information

http://mtc.epfl.ch/~tah/Lectures/EPFL-
Inaugural-Dec06.pdf

http://www.cse.lehigh.edu/~gtan/bug/software
bug.html

http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html

Success Stories

ASTREE Analyzer

“In Nov. 2003, ASTRÉE was able to prove
completely automatically the absence of any
RTE in the primary flight control software of the
Airbus A340 fly-by-wire system, a program of
132,000 lines of C analyzed in 1h20 on a 2.8 GHz
32-bit PC using 300 Mb of memory (and 50mn
on a 64-bit AMD Athlon™ 64 using 580 Mb of
memory).”

• http://www.astree.ens.fr/

http://www.astree.ens.fr/
http://www.astree.ens.fr/

AbsInt

• 7 April 2005. AbsInt contributes to
guaranteeing the safety of the A380, the
world's largest passenger aircraft. The
Analyzer is able to verify the proper response
time of the control software of all components
by computing the worst-case execution time
(WCET) of all tasks in the flight control
software. This analysis is performed on the
ground as a critical part of the safety
certification of the aircraft.

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm

Interactive Theorem Provers

• A Mechanically Checked Proof of IEEE
Compliance of a Register-Transfer-Level
Specification of the AMD K7 Floating Point
Multiplication, Division and Square Root
Instructions, doine using ACL2 Prover

• Formal certification of a compiler back-end,
or: programming a compiler with a proof
assistant. by Xavier Leroy

http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042

Coverity Prevent

• SAN FRANCISCO - January 8, 2008 - Coverity®,
Inc., the leader in improving software quality and
security, today announced that as a result of its
contract with US Department of Homeland
Security (DHS), potential security and quality
defects in 11 popular open source software
projects were identified and fixed. The 11
projects are Amanda, NTP, OpenPAM, OpenVPN,
Overdose, Perl, PHP, Postfix, Python, Samba,
and TCL.

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/

Microsoft’s Static Driver Verifier
Static Driver Verifier (SDV) is a thorough, compile-time,
static verification tool designed for kernel-mode drivers.

SDV is included in the Windows Driver Kit (WDK)
SDV systematically analyzes the source code of Windows
drivers that are written in the C language.

SDV finds serious errors that are unlikely to be
encountered even in thorough testing.

SDV uses a set of interface rules and a model of the
operating system to determine whether the driver
interacts properly with the Windows operating system.

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

How to prove programs correct

Proving Program Correctness
def f(x : Int, y : Int) : Int
{
 if (y == 0)
 0
 } else {
 if (y % 2 == 0) {
 val z = f(x, y / 2);
 2*z
 } else {
 x + f(x, y - 1)
 }
 }
}

• What does ‘f’ compute?
• How can we prove it?

Proving Program Correctness
def f(x : Int, y : Int) : Int
{ require(y >= 0)
 if (y == 0)
 0
 } else {
 if (y % 2 == 0) {
 val z = f(x, y / 2);
 2*z
 } else {
 x + f(x, y - 1)
 }
 }
} ensuring (result => result == x * y)

An imperative version

def fi(x : Int, y : Int) : Int
{
 val r : Int = 0
 val i : Int = 0
 while (i < y) {
 i = i + 1
 r = r + x
 }
 r
}

• What does ‘fi’ compute?
• How can we prove it?

An imperative version

def fi(x : Int, y : Int) : Int
{ require (y >= 0)
 val r : Int = 0
 val k : Int = 0
 while invariant (r = x * k && k <= x)
 (k < y) {
 k = k + 1
 r = r + x
 }
 r
} ensuring (res => res == x * y)

Preconditions, Postconditions,
Invariants

void p()
/*: requires Pre
 ensures Post */
{
 s1;
 while /*: invariant I */ (e) {
 s2;
 }
 s3;
}

Loop Invariant
I is a loop invariant if the following three conditions hold:

• I holds initially: in all states satisfying Pre, when
execution reaches loop entry, I holds

• I is preserved: if we assume I and loop condition (e),
we can prove that I will hold again after executing s2

• I is strong enough: if we assume I and the negation of
loop condition e, we can prove that Post holds after s3

Explanation: because I holds initially, and it is preserved,
by induction from holds initially and preserved follows
that I will hold in every loop iteration. The strong enough
condition ensures that when loop terminates, the rest of
the program will satisfy the desired postcondition.

Membership in Binary Search Tree

sealed abstract class BST {
 def contains(key: Int): Boolean = (this : BST) match {
 case Node(left: BST,value: Int, _) if key < value => left.contains(key)
 case Node(_,value: Int, right: BST) if key > value => right.contains(key)
 case Node(_,value: Int, _) if key == value => true
 case e : Empty => false
 }
}
case class Empty extends BST
case class Node(val left: BST, val value: Int, val right: BST) extends BST

Leon verifier:
http://lara.epfl.ch/leon/

http://lara.epfl.ch/leon/
http://lara.epfl.ch/leon/

How can we automate verification?

Important algorithmic questions:
– verification condition generation: compute formulas

expressing program correctness
• Hoare logic, weakest precondition, strongest postcondition

– theorem proving: prove verification conditions
• proof search, counterexample search
• decision procedures

– loop invariant inference
• predicate abstraction
• abstract interpretation and data-flow analysis
• pointer analysis, typestate

– reasoning about numerical computation
– pre-condition and post-condition inference
– ranking error reports and warnings
– finding error causes from counterexample traces

Bubbling up an Element in Bubble Sort

int apartmentRents[];
int grades[];
...
void bubbleUp(int[] a, int from)
{
 int i = from;
 while (i < a.length) {

 }
}
Proving increasingly stronger properties:

– array indices are within bounds
– also that the element in a[from] is smaller than those stored after ‘from’
– also the property sufficient to prove correctness of bubble sort

Recommended Reading

• Recent Research Highlights from the
Communications of the ACM

– A Few Billion Lines of Code Later: Using Static
Analysis to Find Bugs in the Real World

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

A Great Video

http://slideshot.epfl.ch/play/suri_moore

Talk by Professor J Strother Moore

http://slideshot.epfl.ch/play/suri_moore
http://slideshot.epfl.ch/play/suri_moore

Synthesis

auxiliary information
(structure of expected
program)

Programming Activity

Consider three related activities:

• Development within an IDE
(Eclipse, Visual Studio, emacs, vim)

• Compilation and static checking
(optimizing compiler for the language,
static analyzer, contract checker)

• Execution on a (virtual) machine

More compute power available for each of these

 use it to improve programmer productivity

requirements

def f(x : Int) = {
 y = 2 * x + 1
}

iload_0
iconst_1
iadd

42

Synthesis at All Levels

Opportunities for implicit programming in

• Development within an IDE

– isynth tool

• Compilation

– Comfusy and RegSy tools

• Execution

– Scala^Z3 and UDITA tools

requirements

def f(x : Int) = {
 choose y st ...
}

iload_0
iconst_1
call Z3

42

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && h ≥ 0
 && m ≥ 0 && m < 60
 && s ≥ 0 && s < 60))

An example

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 val t1 = totalSeconds div 3600
 val t2 = totalSeconds + ((-3600) * t1)
 val t3 = min(t2 div 60, 59)
 val t4 = totalSeconds + ((-3600) * t1) + (-60 * t3)
 (t1, t3, t4)

3787 seconds 1 hour, 3 mins. and 7 secs.

Compile-time warnings
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && h ≥ 0 && h < 24
 && m ≥ 0 && m < 60
 && s ≥ 0 && s < 60
))

Warning: Synthesis predicate is not

satisfiable for variable assignment:

 totalSeconds = 86400

Compile-time warnings
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && h ≥ 0
 && m ≥ 0 && m ≤ 60
 && s ≥ 0 && s < 60
))

Warning: Synthesis predicate has multiple

solutions for variable assignment:

 totalSeconds = 60

Solution 1: h = 0, m = 0, s = 60

Solution 2: h = 0, m = 1, s = 0

Synthesis for sets

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
 choose((a: Set[T], b: Set[T]) ⇒ (
 a union b == s && a intersect b == empty
 && a.size – b.size ≤ 1
 && b.size – a.size ≤ 1
))

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) =
 val k = ((s.size + 1)/2).floor
 val t1 = k
 val t2 = s.size – k
 val s1 = take(t1, s)
 val s2 = take(t2, s minus s1)
 (s1, s2) a

b

s

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 choose((h: Int, m: Int, s: Int) ⇒ (
 h * 3600 + m * 60 + s == totalSeconds
 && h ≥ 0
 && m ≥ 0 && m < 60
 && s ≥ 0 && s < 60))

An example

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) =
 val t1 = totalSeconds div 3600
 val t2 = totalSeconds + ((-3600) * t1)
 val t3 = min(t2 div 60, 59)
 val t4 = totalSeconds + ((-3600) * t1) + (-60 * t3)
 (t1, t3, t4)

3787 seconds 1 hour, 3 mins. and 7 secs.

val z = ceil(5*a/12)
val x = -7*z + 3*a
val y = 5*z + -2*a

choose((x, y) ⇒ 5 * x + 7 * y == a && x ≤ y)

z = ceil(5*31/12) = 13
x = -7*13 + 3*31 = 2
y = 5*13 – 2*31 = 3

x = 3a
y = -2a

Use extended Euclid’s algorithm to find particular
solution to 5x + 7y = a:
 (5,7 are mutually prime, else we get divisibility pre.)
Express general solution of equations
for x, y using a new variable z:

x = -7z + 3a
y = 5z - 2a

Rewrite inequations x ≤ y in terms of z: 5a ≤ 12z
z ≥ ceil(5a/12)

Obtain synthesized program:

For a = 31:

choose((x, y) ⇒ 5 * x + 7 * y == a && x ≤ y && x ≥ 0)

Express general solution of equations
for x, y using a new variable z:

x = -7z + 3a
y = 5z - 2a

Rewrite inequations x ≤ y in terms of z: z ≥ ceil(5a/12)

assert(ceil(5*a/12) ≤ floor(3*a/7))
val z = ceil(5*a/12)
val x = -7*z + 3*a
val y = 5*z + -2*a

Obtain synthesized program:

z ≤ floor(3a/7) Rewrite x ≥ 0:

ceil(5a/12) ≤ floor(3a/7) Precondition on a:

(exact precondition)

With more inequalities
we may generate a for loop

Other Forms of Synthesis

Synthesis within IDEs

Compiling declarative constructs

Automata-Theoretic Synthesis
– reactive synthesis

– regular synthesis over unbounded domains

Synthesis of Synchronization Constructs

Quantitative Synthesis

Synthesis from examples
– Sumit Gulwani: Automating String Processing in

Spreadsheets using Input-Output Examples
(video available in the ACM Digital Library)

Lecture 2

Plan

• Review

• Presburger arithmetic

• Sets and relations

Presburger Arithmetic

Motivation

Verification condition showing loop inv. preserved

res + 2*i = 2*x Æ i1=i -1 Æ res1=res+2

res1 + 2*i1 = 2*x

res = 0

i = x

while invariant res + 2*i == 2*x

 (i > 0) {

 i = i – 1

 res = res + 2

}

assert(res == 2*x)

Proving integer linear arithmetic

formulas

Verification condition showing loop inv. preserved

 (res + 2 i = 2 x Æ i1=i -1 Æ res1=res+2)

 res1 + 2 i1 = 2 x

Need to show it is true for all variables

Show: negation is never true (unsatisfiable)

res + 2 i = 2 x Æ i1=i -1 Æ res1=res+2 Æ
res1 + 2 i1 2 x

In this case, it is simple. Substitute variables:

 (res+2) + 2(i - 1) res + 2 i

 0 0 group coefficients to obtain “false”

A More Difficult Example

9 x,y,k,p.

 (x < y + 2 Æ y < x + 1 Æ x = 3k Æ
 (y = 6p+1 Ç y = 6p-1))

Is this statement true?

General question:

is a formula of Presburger arithmetic satisfiable?

F ::= A | F1 Æ F2 | F1 Ç F2 | :F | 9k.F | k.F

A ::= T1 = T2 | T1 < T2

T ::= k | C | T1 + T2 | T1 – T2 | C * T | T % C

Presburger Arithmetic

F ::= A | F1 Æ F2 | F1 Ç F2 | :F | 9k.F | k.F

A ::= T1 = T2 | T1 < T2

T ::= k | C | T1 + T2 | T1 – T2 | C * T | T % C

t%C - the reminder in division by C

Formula 9 x. x < y has

• one bound variable: x

• one free variable: y

If we have free variables we cannot ask if formula is true,

but only if it is satisfiable (true for some values of free

variables), valid (always true), unsatisfiable (always false)

Mojżesz Presburger (1904–1943) was student of Alfred Tarski

and is known for, among other things, having invented

Presburger arithmetic.

Method used: quantifier elimination

Presburger arithmetic is decidable
There is an algorithm that, given arbitrary formula in the syntax

of Presburger arithmetic, detects whether this formulas is

satisfiable.

Thus also decidable are:

 unsatisfiability, validity, equivalence, entailment.

http://en.wikipedia.org/wiki/Alfred_Tarski
http://en.wikipedia.org/wiki/Alfred_Tarski
http://en.wikipedia.org/wiki/Alfred_Tarski
http://en.wikipedia.org/wiki/Presburger_arithmetic
http://en.wikipedia.org/wiki/Presburger_arithmetic
http://en.wikipedia.org/wiki/Presburger_arithmetic

Quantifier Elimination

Take a formula of the form
9 y. F(x,y)

replace it with an equivalent formula

 G(x)

without introducing new variables.

Idea: eliminate quantified variables. E.g.

 9k. (x + k = 2 Æ k < 10)

 9k. (k = 2 - x Æ k < 10) (one-point rule)

 2 – x < 10

Arithmetic with only multiplication
 x = y * z * p * z /\ (x * y = u * z \/ u*u = x)

Decidable. Use prime factor representation

 x = 2p1 3p2 5p3 7p4 11p5 …

 y = 2q1 3q2 5q3 7q4 11q5 …

xy = 2(p1+q1) 3(p2+q2) 5(p3+q3) 7(p4+q4) 11(p5+q5) …

Feferman-Vaught theorem: if we can decide logic of

elements, we can decide logic of sequences of

elements with point-wise relations on them.
Solomon Feferman (born 13 December 1928) is an American

philosopher and mathematician with major works in mathematical logic.

He was born in New York City, New York, and received his Ph.D. in

1957 from the University of California, Berkeley under Alfred Tarski. He

is a Stanford University professor.

http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Philosopher
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Mathematical_logic
http://en.wikipedia.org/wiki/New_York_City,_New_York
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/Alfred_Tarski
http://en.wikipedia.org/wiki/Stanford_University
http://en.wikipedia.org/wiki/Professor

Alfred Tarski (January 14, 1901, Warsaw, Russian-ruled

Poland – October 26, 1983, Berkeley, California) was a

Polish logician and mathematician. Educated in the

Warsaw School of Mathematics and philosophy, he

emigrated to the USA in 1939, and taught and carried out

research in mathematics at the University of California,

Berkeley, from 1942 until his death.

… He is regarded as perhaps one of the four greatest

logicians of all time, matched only by Aristotle, Kurt Gödel,

and Gottlob Frege.

http://en.wikipedia.org/wiki/Warsaw
http://en.wikipedia.org/wiki/Russia
http://en.wikipedia.org/wiki/Poland
http://en.wikipedia.org/wiki/Berkeley,_California
http://en.wikipedia.org/wiki/Berkeley,_California
http://en.wikipedia.org/wiki/Berkeley,_California
http://en.wikipedia.org/wiki/Poles
http://en.wikipedia.org/wiki/Logic
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Warsaw_School_of_Mathematics
http://en.wikipedia.org/wiki/Warsaw_School_of_Mathematics
http://en.wikipedia.org/wiki/Warsaw_School_of_Mathematics
http://en.wikipedia.org/wiki/Warsaw_School_of_Mathematics
http://en.wikipedia.org/wiki/Warsaw_School_of_Mathematics
http://en.wikipedia.org/wiki/Warsaw_School_of_Mathematics
http://en.wikipedia.org/wiki/Warsaw_School_of_Mathematics
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/Aristotle
http://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Gottlob_Frege
http://en.wikipedia.org/wiki/Gottlob_Frege
http://en.wikipedia.org/wiki/Gottlob_Frege

Formulas with both plus and times

over integers

• Posed as a big open problem at the

beginning of 20th century to find decision

procedure (Hilbert’s 10th Problem)

Formulas over plus and times

over real numbers

• Decidable!

– Also over complex numbers

• Shown by Alfred Tarski before WW II

• First implementation by Collins

– we have a Scala implementation available

Summary

• Programs can be converted to formulas

• To prove program correct, we prove

formula valid (true in all models)

• For some classes

(e.g. Presburger arithmetic) we

understand how to prove them

– other classes – future research

– such research can lead to tools that make

software reliable

