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SAV in One Slide 

We study how to build software  
 analysis, verification, and synthesis  
tools that automatically  
answer questions about software systems. 
We cover theory and tool building through  
lectures, exercises, and labs. 
The grading is based on:  

• fixed programming project, done in stages: 30%
• midterm (in the second half of the semester): 40% 
• personalized project, with writing code (or new 

proofs), presentation and report: 30%



Suggestion 

• Attend all 3 weekly slots 

• Always bring a laptop 

• Ask questions 

 

• Speed control gestures 

– Fast forward 

 

– Slow down 



Analysis and Verification 

auxiliary information 
(hints, proof steps) 



Questions of Interest 

Example questions in analysis and verification 
(with sample links to tools or papers):  

• Will the program crash? 

• Does it compute the correct result? 

• Does it leak private information? 

• How long does it take to run? 

• How much power does it consume? 

• Will it turn off automated cruise control?  

http://www.altran-praxis.com/spark.aspx
http://www.key-project.org/
http://www.cs.cornell.edu/jif/
http://www.absint.com/ait/
http://portal.acm.org/citation.cfm?id=963948.963960
http://dx.doi.org/10.1016/j.conengprac.2004.04.002


Activities and Expertise Needed 
Modeling: establish precise mathematical meaning for: 
 software, environment, and questions of interest 

– discrete mathematics, mathematical logic, algebra 

Formalization: formalize this meaning using appropriate 
representation of programming languages and  
specification languages 

– program analysis, compilers, theory of formal languages,  
formal methods 

Designing algorithms: derive algorithms that manipulate such 
formal objects - key technical step 

– algorithms, dataflow analysis, abstract interpretation, decision 
procedures, constraint solving (e.g. SAT), theorem proving 

Experimental evaluation: implement these algorithms and 
apply them to software systems 

– developing and using tools and infrastructures,  
learning lessons to improve and repeat previous steps 



Comparison to other Sciences 

Specific to SAV is the nature of software as the subject of study, which has 
several consequences:  
• software is an engineering artifact: to an extent we can choose our reality 

through programming language design and software methodology 
• software has complex discrete, non-linear structure: millions of lines of 

code, gigabytes of bits of state, one condition in if statement can radically 
change future execution path (non-continuous behavior) 

• high standards of correctness: interest in details and exceptional behavior 
(bugs), not just in general trends of software behavior 

• high standards along with large the size of software make manual analysis 
infeasible in most cases, and requires automation 

• automation requires not just mathematical modeling, where we use 
everyday mathematical techniques, but also formal modeling, which 
requires us to specify the representation of systems and properties, making 
techniques from mathematical logic and model theory relevant 

• automation means implementing algorithms for processing representation 
of software (e.g. source code) and representation of properties (e.g. 
formulas expressing desired properties), the study of these algorithms leads 
to questions of decidability, computational complexity, and heuristics that 
work in practice. 



 Air Transport 



 Air Transport 



Essential Infrastructure: Northeast Blackout 



 Air Transport 



French Guyana, June 4, 1996 
t = 0 sec 

t = 40 sec 
$800 million software failure 

Space Missions 



(Jun 18, 2008 – Scientific data lost from flash memory) 

Space Missions 



 Car Industry 



 Car Industry 



Life-Critical Medical Devices 

Radio Therapy 

Nancy Leveson 
Safeware: System Safety and Computers 

Addison-Wesley, 1995 



Life-Critical Medical Devices 



Zune 30 leapyear problem 

• December 31, 2008 
• “After doing some poking around in the source code for the Zune’s clock driver 

(available free from the Freescale website), I found the root cause of the now-
infamous Zune 30 leapyear issue that struck everyone on New Year’s Eve. The 
Zune’s real-time clock stores the time in terms of days and seconds since January 
1st, 1980. When the Zune’s clock is accessed, the driver turns the number of days 
into years/months/days and the number of seconds into hours/minutes/seconds. 
Likewise, when the clock is set, the driver does the opposite. 

• The Zune frontend first accesses the clock toward the end of the boot sequence. 
Doing this triggers the code that reads the clock and converts it to a date and 
time...” 

• “...The function keeps subtracting either 365 or 366 until it gets down to less than a 
year’s worth of days, which it then turns into the month and day of month. Thing 
is, in the case of the last day of a leap year, it keeps going until it hits 366. Thanks 
to the if (days > 366), it stops subtracting anything if the loop happens to be on a 
leap year. But 366 is too large to break out of the main loop, meaning that the 
Zune keeps looping forever and doesn’t do anything else.” 

http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-
problem-isolated.html  

http://pastie.org/349916
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
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http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html
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http://www.zuneboards.com/forums/zune-news/38143-cause-zune-30-leapyear-problem-isolated.html


More Information 

http://mtc.epfl.ch/~tah/Lectures/EPFL-
Inaugural-Dec06.pdf  

 

http://www.cse.lehigh.edu/~gtan/bug/software
bug.html  

 

 

http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
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http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
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http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.html


Success Stories 



ASTREE Analyzer 

“In Nov. 2003, ASTRÉE was able to prove 
completely automatically the absence of any 
RTE in the primary flight control software of the 
Airbus A340 fly-by-wire system, a program of 
132,000 lines of C analyzed in 1h20 on a 2.8 GHz 
32-bit PC using 300 Mb of memory (and 50mn 
on a 64-bit AMD Athlon™ 64 using 580 Mb of 
memory).”  

• http://www.astree.ens.fr/ 

http://www.astree.ens.fr/
http://www.astree.ens.fr/


AbsInt 

• 7 April 2005. AbsInt contributes to 
guaranteeing the safety of the A380, the 
world's largest passenger aircraft. The 
Analyzer is able to verify the proper response 
time of the control software of all components 
by computing the worst-case execution time 
(WCET) of all tasks in the flight control 
software. This analysis is performed on the 
ground as a critical part of the safety 
certification of the aircraft. 

 

http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm
http://www.absint.com/releases/050427.htm


Interactive Theorem Provers 

• A Mechanically Checked Proof of IEEE 
Compliance of a Register-Transfer-Level 
Specification of the AMD K7 Floating Point 
Multiplication, Division and Square Root 
Instructions, doine using ACL2 Prover 

• Formal certification of a compiler back-end, 
or: programming a compiler with a proof 
assistant. by Xavier Leroy 

 

http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.lms.ac.uk/jcm/1/lms1998-001/sub/lms98001.pdf
http://www.cs.utexas.edu/users/moore/publications/acl2-papers.html
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111042


Coverity Prevent 

• SAN FRANCISCO - January 8, 2008 - Coverity®, 
Inc., the leader in improving software quality and 
security, today announced that as a result of its 
contract with US Department of Homeland 
Security (DHS), potential security and quality 
defects in 11 popular open source software 
projects were identified and fixed. The 11 
projects are Amanda, NTP, OpenPAM, OpenVPN, 
Overdose, Perl, PHP, Postfix, Python, Samba, 
and TCL. 

 

http://www.coverity.com/
http://www.coverity.com/
http://www.coverity.com/


Microsoft’s Static Driver Verifier 
Static Driver Verifier (SDV) is a thorough, compile-time, 
static verification tool designed for kernel-mode drivers.  
 
SDV is included in the Windows Driver Kit (WDK) 
SDV systematically analyzes the source code of Windows 
drivers that are written in the C language.  
 
SDV finds serious errors that are unlikely to be 
encountered even in thorough testing.  
 
SDV uses a set of interface rules and a model of the 
operating system to determine whether the driver 
interacts properly with the Windows operating system.  

http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx


How to prove programs correct 



Proving Program Correctness 
def f(x : Int, y : Int) : Int 
{ 
    if (y == 0) 
       0 
    } else { 
      if (y % 2 == 0) { 
          val z = f(x, y / 2); 
          2*z 
      } else { 
          x + f(x, y - 1) 
      } 
    } 
} 

• What does ‘f’ compute? 
• How can we prove it? 



Proving Program Correctness 
def f(x : Int, y : Int) : Int 
{   require(y >= 0) 
    if (y == 0) 
       0 
    } else { 
      if (y % 2 == 0) { 
          val z = f(x, y / 2); 
          2*z 
      } else { 
          x + f(x, y - 1) 
      } 
    } 
} ensuring (result => result == x * y) 





An imperative version 

def fi(x : Int, y : Int) : Int 
{  
    val r : Int = 0 
    val i : Int = 0 
    while (i < y) { 
        i = i + 1 
        r = r + x 
    } 
    r 
} 

• What does ‘fi’ compute? 
• How can we prove it? 



An imperative version 

def fi(x : Int, y : Int) : Int 
{  require (y >= 0) 
    val r : Int = 0 
    val k : Int = 0 
    while invariant (r = x * k && k <= x) 
              (k < y) { 
        k = k + 1 
        r = r + x 
    } 
    r 
} ensuring (res =>  res == x * y) 



Preconditions, Postconditions, 
Invariants 

void p() 
/*: requires Pre 
      ensures Post */ 
{ 
  s1; 
  while /*: invariant I */   (e) {  
   s2; 
  } 
  s3; 
} 



Loop Invariant 
I is a loop invariant if the following three conditions hold:  

• I holds initially: in all states satisfying Pre, when 
execution reaches loop entry, I holds 

• I is preserved: if we assume I and loop condition (e), 
we can prove that I will hold again after executing s2 

• I is strong enough: if we assume I and the negation of 
loop condition e, we can prove that Post holds after s3 

Explanation: because I holds initially, and it is preserved, 
by induction from holds initially and preserved follows 
that I will hold in every loop iteration. The strong enough 
condition ensures that when loop terminates, the rest of 
the program will satisfy the desired postcondition.  

 



Membership in Binary Search Tree 

sealed abstract class BST { 
  def contains(key: Int): Boolean = (this : BST) match {  
    case Node(left: BST,value: Int, _) if key < value => left.contains(key) 
    case Node(_,value: Int, right: BST) if key > value => right.contains(key) 
    case Node(_,value: Int, _) if key == value => true 
    case e : Empty => false 
  } 
} 
case class Empty extends BST 
case class Node(val left: BST, val value: Int, val right: BST) extends BST 
 

Leon verifier: 
http://lara.epfl.ch/leon/  

http://lara.epfl.ch/leon/
http://lara.epfl.ch/leon/


How can we automate verification? 

Important algorithmic questions: 
– verification condition generation: compute formulas 

expressing program correctness 
• Hoare logic, weakest precondition, strongest postcondition 

– theorem proving: prove verification conditions 
• proof search, counterexample search 
• decision procedures 

– loop invariant inference 
• predicate abstraction 
• abstract interpretation and data-flow analysis 
• pointer analysis, typestate 

– reasoning about numerical computation 
– pre-condition and post-condition inference 
– ranking error reports and warnings 
– finding error causes from counterexample traces 



Bubbling up an Element in Bubble Sort 

int apartmentRents[]; 
int grades[]; 
... 
void bubbleUp(int[] a, int from) 
{  
    int i = from; 
    while (i < a.length) { 
  
      
 
    } 
} 
Proving increasingly stronger properties: 

– array indices are within bounds 
– also that the element in a[from] is smaller than those stored after ‘from’ 
– also the property sufficient to prove correctness of bubble sort 



Recommended Reading 

• Recent Research Highlights from the 
Communications of the ACM 

– A Few Billion Lines of Code Later: Using Static 
Analysis to Find Bugs in the Real World 

http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
http://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext


A Great Video 

http://slideshot.epfl.ch/play/suri_moore  

Talk by Professor J Strother Moore 

http://slideshot.epfl.ch/play/suri_moore
http://slideshot.epfl.ch/play/suri_moore


Synthesis 

auxiliary information 
(structure of expected  
program) 



Programming Activity 

Consider three related activities: 

• Development within an IDE  
(Eclipse, Visual Studio, emacs, vim) 

• Compilation and static checking 
(optimizing compiler for the language,  
static analyzer, contract checker) 

• Execution on a (virtual) machine 

More compute power available for each of these 

 use it to improve programmer productivity 

requirements 

def f(x : Int) = { 
  y = 2 * x + 1 
} 

iload_0 
iconst_1 
iadd 

42 



Synthesis at All Levels 

Opportunities for implicit programming in 

• Development within an IDE 

– isynth tool 

• Compilation 

– Comfusy and RegSy tools 

• Execution 

– Scala^Z3 and UDITA tools 

requirements 

def f(x : Int) = { 
  choose y st ... 
} 

iload_0 
iconst_1 
call Z3 

42 



def secondsToTime(totalSeconds: Int) : (Int, Int, Int) = 
    choose((h: Int, m: Int, s: Int) ⇒ ( 
               h * 3600 + m * 60 + s == totalSeconds 
        && h ≥ 0 
        && m ≥ 0 && m < 60 
        && s ≥ 0 && s < 60    )) 

An example 

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) = 
    val t1 = totalSeconds div 3600 
    val t2 = totalSeconds + ((-3600) * t1) 
    val t3 = min(t2 div 60, 59) 
    val t4 = totalSeconds + ((-3600) * t1) + (-60 * t3) 
    (t1, t3, t4) 

3787 seconds 1 hour, 3 mins. and 7 secs. 



Compile-time warnings 
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) = 
    choose((h: Int, m: Int, s: Int) ⇒ ( 
               h * 3600 + m * 60 + s == totalSeconds 
        && h ≥ 0 && h < 24 
        && m ≥ 0 && m < 60 
        && s ≥ 0 && s < 60 
    )) 

Warning: Synthesis predicate is not 

satisfiable for variable assignment: 

  totalSeconds = 86400 



Compile-time warnings 
def secondsToTime(totalSeconds: Int) : (Int, Int, Int) = 
    choose((h: Int, m: Int, s: Int) ⇒ ( 
               h * 3600 + m * 60 + s == totalSeconds 
        && h ≥ 0 
        && m ≥ 0 && m ≤ 60 
        && s ≥ 0 && s < 60 
    )) 

Warning: Synthesis predicate has multiple 

solutions for variable assignment: 

  totalSeconds = 60 

Solution 1: h = 0, m = 0, s = 60 

Solution 2: h = 0, m = 1, s = 0 



Synthesis for sets 

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) = 
    choose((a: Set[T], b: Set[T]) ⇒ ( 
               a union b == s && a intersect b == empty 
        && a.size – b.size ≤ 1 
        && b.size – a.size ≤ 1 
    )) 

def splitBalanced[T](s: Set[T]) : (Set[T], Set[T]) = 
    val k = ((s.size + 1)/2).floor 
    val t1 = k 
    val t2 = s.size – k 
    val s1 = take(t1, s) 
    val s2 = take(t2, s minus s1) 
    (s1, s2) a 

b 

s 



def secondsToTime(totalSeconds: Int) : (Int, Int, Int) = 
    choose((h: Int, m: Int, s: Int) ⇒ ( 
               h * 3600 + m * 60 + s == totalSeconds 
        && h ≥ 0 
        && m ≥ 0 && m < 60 
        && s ≥ 0 && s < 60    )) 

An example 

def secondsToTime(totalSeconds: Int) : (Int, Int, Int) = 
    val t1 = totalSeconds div 3600 
    val t2 = totalSeconds + ((-3600) * t1) 
    val t3 = min(t2 div 60, 59) 
    val t4 = totalSeconds + ((-3600) * t1) + (-60 * t3) 
    (t1, t3, t4) 

3787 seconds 1 hour, 3 mins. and 7 secs. 



val z = ceil(5*a/12) 
val x = -7*z + 3*a 
val y = 5*z + -2*a 

choose((x, y) ⇒ 5 * x + 7 * y == a && x ≤ y) 

z = ceil(5*31/12) = 13 
x = -7*13 + 3*31 = 2 
y = 5*13 – 2*31 = 3 

x = 3a 
y = -2a 

Use extended Euclid’s algorithm to find particular 
solution to  5x + 7y = a: 
   (5,7 are mutually prime, else we get divisibility pre.) 
Express general solution of equations  
for x, y using a new variable z: 

x = -7z + 3a 
y = 5z - 2a 

Rewrite inequations x ≤ y in terms of z: 5a ≤ 12z  
z ≥ ceil(5a/12) 

Obtain synthesized program: 

For a = 31: 



choose((x, y) ⇒ 5 * x + 7 * y == a && x ≤ y && x ≥ 0) 

Express general solution of equations  
for x, y using a new variable z: 

x = -7z + 3a 
y = 5z - 2a 

Rewrite inequations x ≤ y in terms of z: z ≥ ceil(5a/12) 

assert(ceil(5*a/12) ≤ floor(3*a/7)) 
val z = ceil(5*a/12) 
val x = -7*z + 3*a 
val y = 5*z + -2*a 

Obtain synthesized program: 

z ≤ floor(3a/7) Rewrite x ≥ 0: 

ceil(5a/12) ≤ floor(3a/7) Precondition on a: 

(exact precondition) 

With more inequalities 
we may generate a for loop 



Other Forms of Synthesis 

Synthesis within IDEs 

Compiling declarative constructs 

Automata-Theoretic Synthesis 
– reactive synthesis 

– regular synthesis over unbounded domains 

Synthesis of Synchronization Constructs 

Quantitative Synthesis 

Synthesis from examples 
– Sumit Gulwani: Automating String Processing in 

Spreadsheets using Input-Output Examples 
(video available in the ACM Digital Library) 



Lecture 2 



Plan 

• Review 

• Presburger arithmetic 

• Sets and relations 



Presburger Arithmetic 



Motivation 

Verification condition showing loop inv. preserved 

res + 2*i = 2*x  Æ  i1=i -1  Æ  res1=res+2   

res1 + 2*i1 = 2*x 

res = 0 

i = x 

while invariant res + 2*i == 2*x 

 (i > 0) {  

  i = i – 1 

  res = res + 2 

}  

assert(res == 2*x) 



Proving integer linear arithmetic 

formulas 

Verification condition showing loop inv. preserved 

             (res + 2 i = 2 x  Æ  i1=i -1  Æ  res1=res+2)   

                   res1 + 2 i1 = 2 x 

Need to show it is true for all variables 

Show: negation is never true (unsatisfiable) 

res + 2 i = 2 x  Æ  i1=i -1  Æ  res1=res+2 Æ  
res1 + 2 i1  2 x 

In this case, it is simple. Substitute variables: 

  (res+2) + 2(i - 1)  res + 2 i 

  0  0   group coefficients to obtain “false” 

 



A More Difficult Example 

9 x,y,k,p. 

  (x < y + 2 Æ y < x + 1 Æ x = 3k Æ  
   (y = 6p+1 Ç y = 6p-1)) 

Is this statement true? 

General question: 

is a formula of Presburger arithmetic satisfiable? 

F ::= A |  F1 Æ F2  |  F1 Ç F2  | :F | 9k.F | k.F 

A ::= T1 = T2  |  T1 < T2  

T ::= k  |  C  |  T1 + T2  |  T1 – T2  | C * T | T % C 



Presburger Arithmetic 

F ::= A |  F1 Æ F2  |  F1 Ç F2  | :F | 9k.F | k.F 

A ::= T1 = T2  |  T1 < T2  

T ::= k  |  C  |  T1 + T2  |  T1 – T2  | C * T | T % C 

t%C - the reminder in division by C 

Formula    9 x. x < y   has  

• one bound variable: x 

• one free variable: y 

If we have free variables we cannot ask if formula is true, 

but only if it is satisfiable (true for some values of free 

variables), valid (always true), unsatisfiable (always false) 



Mojżesz Presburger (1904–1943) was student of Alfred Tarski 

and is known for, among other things, having invented 

Presburger arithmetic. 

 

Method used: quantifier elimination 

Presburger arithmetic is decidable 
There is an algorithm that, given arbitrary formula in the syntax 

of Presburger arithmetic, detects whether this formulas is 

satisfiable. 

 

Thus also decidable are:  

 unsatisfiability, validity, equivalence, entailment. 

http://en.wikipedia.org/wiki/Alfred_Tarski
http://en.wikipedia.org/wiki/Alfred_Tarski
http://en.wikipedia.org/wiki/Alfred_Tarski
http://en.wikipedia.org/wiki/Presburger_arithmetic
http://en.wikipedia.org/wiki/Presburger_arithmetic
http://en.wikipedia.org/wiki/Presburger_arithmetic


Quantifier Elimination 

Take a formula of the form   
9 y. F(x,y) 

replace it with an equivalent formula  

   G(x) 

without introducing new variables. 

Idea: eliminate quantified variables. E.g.  

 9k. (x + k = 2 Æ k < 10) 

 9k. (k = 2 - x Æ k < 10) (one-point rule) 

                   2 – x < 10 

               



Arithmetic with only multiplication 
             x = y * z * p * z  /\   (x * y = u * z   \/  u*u = x) 

Decidable. Use prime factor representation 

  x = 2p1 3p2 5p3 7p4 11p5 …  

  y = 2q1 3q2 5q3 7q4 11q5 …  

xy = 2(p1+q1) 3(p2+q2) 5(p3+q3) 7(p4+q4) 11(p5+q5) … 

Feferman-Vaught theorem: if we can decide logic of 

elements, we can decide logic of sequences of 

elements with point-wise relations on them. 
Solomon Feferman (born 13 December 1928) is an American 

philosopher and mathematician with major works in mathematical logic. 

He was born in New York City, New York, and received his Ph.D. in 

1957 from the University of California, Berkeley under Alfred Tarski. He 

is a Stanford University professor. 

http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Philosopher
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Mathematical_logic
http://en.wikipedia.org/wiki/New_York_City,_New_York
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/Alfred_Tarski
http://en.wikipedia.org/wiki/Stanford_University
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Alfred Tarski (January 14, 1901, Warsaw, Russian-ruled 

Poland – October 26, 1983, Berkeley, California) was a 

Polish logician and mathematician. Educated in the 

Warsaw School of Mathematics and philosophy, he 

emigrated to the USA in 1939, and taught and carried out 

research in mathematics at the University of California, 

Berkeley, from 1942 until his death. 

… He is regarded as perhaps one of the four greatest 

logicians of all time, matched only by Aristotle, Kurt Gödel, 

and Gottlob Frege. 
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Formulas with both plus and times 

over integers 

• Posed as a big open problem at the 

beginning of 20th century to find decision 

procedure (Hilbert’s 10th Problem) 



Formulas over plus and times 

over real numbers 

• Decidable! 

– Also over complex numbers 

• Shown by Alfred Tarski before WW II 

• First implementation by Collins 

– we have a Scala implementation available 



Summary 

• Programs can be converted to formulas 

• To prove program correct, we prove 

formula valid (true in all models) 

• For some classes  

(e.g. Presburger arithmetic) we 

understand how to prove them 

– other classes – future research 

– such research can lead to tools that make 

software reliable 




