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Proof Systems

I Proof rules are computatable relations on finite sequences formulas.

I Given some number of assumptions, a proof rule produces new
conclusions.

I A proof tree describes the application of proof rules

I Γ ` F means that there is a proof tree with leaves Γ that derives F

I Proof steps should be computable: must be able to decide whether a
rule applies and can produce a given conclusion.

I A system of logical rules is sound iff every conclusion that it only
derives is a consequence.

I A proof system is complete when it can prove all properties that are
true.



Proof System for Propositional Logic

I Fix a countable set of propositional variables V e.g. p0, p1, ....
All formulas have variables from V

I Propositional interpretation is a map I : V → B, B = {true, false}
I We write I |= F if formula F is true in model m

I Let Γ be a set of formulas

I I |= Γ means ∀F ∈ Γ. I |= F

I Γ is consistent (satisfiable) if there exists I for which I |= Γ, else it is
contradictory

I Γ |= F means ∀I . (I |= Γ)→ (I |= F )

I Proof system “`” is sound iff Γ ` F implies Γ |= F

I Proof system “`” is complete iff Γ |= F implies Γ ` F



Propositional Resolution

A ∨ L ¬L ∨ B

A ∨ B

Soundness proof:

I Let I be an interpretation in which both I (A ∨ L) = true and
I (¬L ∨ B) = true

I if I (L) = true then from I (¬L ∨ B) = true we conclude I (B) = true,
so I (A ∨ B) = true

I if I (L) = false then from I (A ∨ L) = true we conclude I (A) = true, so
I (A ∨ B) = true

I In any case I (A ∨ B) = true.



Propositional Resolution on Clauses

Rule on formulas:
A ∨ L ¬L ∨ B

A ∨ B

When we represent disjunctions as sets of literals becomes:

A ∪ {L} {¬L} ∪ B

A ∪ B

To prove that a formula is valid, we prove that its negation is contradictory
by deriving an empty clause (which represents false).



Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}
{q}

{r}

∅

Thus, the original set of assumptions is contradictory.



Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}

{q}

{r}

∅

Thus, the original set of assumptions is contradictory.



Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}
{q}

{r}

∅

Thus, the original set of assumptions is contradictory.



Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}
{q}

{r}

∅

Thus, the original set of assumptions is contradictory.



Example Proof of Contradiction by Resolution

{¬p,¬q, r} {¬q, p} {q, r} {¬r}

{¬q, r}
{q}

{r}

∅
Thus, the original set of assumptions is contradictory.



Consistency by Absence of Contradiction

Conversely, if the set is contradictory, then existentially quantifying over all
variables yields false, so applying resolution exhaustively also yields false.
Resolution is complete.
Therefore, if resolution does not yield false, the set is consistent.
{¬p,¬q, r} {¬q, p} {q, r}

(resolve all on p)

{¬q, r}

(resolve all on q)

{p, r}{r}

Further resolution attempts would only yield clauses that are subsumed
(their subsets, which are stronger, are already derived). No empty clause is
generated, so the original set is consistent (a model: p 7→ true, q 7→ true)



Compactness



Infinite set of Formulas

Suppose that we have a countably infinite set of formulas, with countably
many propositional variables

Apply resolution exhaustively to larger and larger prefixes of this infinite set
{¬p1,¬p2, p3} {¬p2, p1} {p2, p3} {p1,¬p4} ...

{¬p2, p3}

{p1, p3}{p3}

{¬p2, p3,¬p4}

{p3,¬p4}

...

Suppose we are not finding a contradiction in such way. Is the entire
infinite set consistent?
Equivalently: if a countable set is contradictory, is there always a finite
subset that is contradictory? (Note: there are ∞ many variables.)
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Compactness

Theorem (Compactness for Propositional Logic.)

Let S be a set of propositional formulas. Then S is satisfiable iff every finite
subset of S is satisfiable.

Equivalently: S is contradictory iff some finite subset of S is contradictory

Remark: Compactness is a non-trivial property. In logic with infinite disjunctions it
does not hold. In such infinitary logic we could take S = {D, p1, p2, p3, . . .} where

D =
∞∨
i=1

¬pi , that is, D is equivalent to ∃i ≥ 0.¬pi . In this example, every finite

subset of S is satisfiable, but S itself is not.



Proof of Compactness

One direction is trivial: if S is satisfiable then there exists I such that
I |= S . Then for every finite subset T ⊆ S we have I |= T , so T is
satisfiable. So, the point is to show the converse.
Intuition: A finitely satisfiable set has “all finite pieces” satisfiable (using
potentially different interpretations). The question is whether we can
somehow assemble interpretations for all finite pieces T into one large
interpretation for the entire infinite set S . We will define such interpretation
by extending it, variable by variable, while preserving finite satisfiability for
interepretations that begin with values for propositional variables chosen so
far.
Let S be finitely satisfiable. Let V = {p1, p2, . . .} be the sequence of all
propositional variables for formulas in S (this set is countable by our
assumption on syntax of formulas, but can be infinite).
Given a sequence of boolean values u1, u2, . . . , un ∈ B of length n ≥ 0, by
an (u1, u2, . . . , un)-interpretation we mean an interpretation I : V → B such
that I (p1) = u1, . . . , I (pn) = un.



Proof: Constructing Interpretation

We will define interpretation I ∗(pk) = vk where the sequence of values
v1, v2, . . . is given as follows:

vk+1 =


false, if for every finite T ⊆ S , there exists a

(v1, . . . , vk , false)− interpretation I such that I |= T
true, otherwise

We next show by induction the following.

FIRST PART.
Claim: For every non-negative integer k , every finite subset T ⊆ S has a
(v1, . . . , vk)-interpretation I such that I |= T .
Base case: For k = 0 the statement reduces to claim that every finite
subset of S is satisfiable, which is an assumption of the theorem.



Inductiveness and the Model

Inductive step: Assume the claim for k : every finite subset T ⊆ S has a
(v1, . . . , vk)-interpretation I such that I |= T , we show that the statement
holds for k + 1.
If vk+1 = false, the inductive statement holds by definition of vk+1. Let
vk+1 = true.
Then by definition of vk+1, there exists a finite set A ⊆ S that has no
(v1, . . . , vk , false) interpretation. We wish to show that every finite set
B ⊆ T has a (v1, . . . , vk , true)-interpretation such that I |= B. Take any
such set B. Consider the set A ∪ B. This is a finite set, so by inductive
hypothesis, it has a (v1, . . . , vk)-interpretation I . Because I |= A, which has
no (v1, . . . , vk , false)-interpretation, we have I (pk+1) = true. Therefore, I is
a (v1, . . . , vk , true)-interpretation for A ∪ B, and therefore for B. This
completes the inductive proof.



From Sequence of Interpretations to One

We have shown that for every non-negative integer k, every finite subset
T ⊆ S has a (v1, . . . , vk)-interpretation I such that I |= T . We have
defined I ∗(pk) = vk .

SECOND PART.
We finally show that I ∗ |= S . Let F ∈ S . Let FV (F ) = {pi1 , . . . , pik} and
M = max(i1, . . . , ik). Then FV (F ) ⊆ {p1, . . . , pM}. The set {F} is finite,
so, by the Claim, it has a v1, . . . , vM -interpretation I such that I |= F .
Because I ∗ is also a v1, . . . , vM -interpretation, and it agrees with I on all
variables in F , we have I ∗ |= F .

We have therefore shown that I ∗ makes all formulas in S true, as desired.



Why did this work

How does this proof break if we allow infinite disjunctions? Consider the

above example S = {D, p1, p2, p3, . . .} where D =
∞∨
i=1
¬pi . The inductively

proved claim still holds, and the sequence defined must be
true, true, true, . . .. Here is why the claim holds for every k . Let k be
arbitrary and T ⊆ S be finite. Define

m = max(k,max{i | pi ∈ T})

Then consider interpretation that assigns to true all pj for j ≤ m and sets
the rest to false. Such interpretation makes D true, so if it is in the set T ,
then interpretation makes it true. Moreover, all other formulas in T are
propositional variables set to true, so the interpretation makes T true.
Thus, we see that the inductively proved statement holds even in this case.
What the infinite formula D breaks is the second part, which, from the
existence of interpretations that agree on an arbitrarily long finite prefix
derives an interpretation for infinitely many variables. Indeed, this part
explicitly refers to a finite number of variables in the formula.



Resolution for First-Order Logic



Automating First-Order Logic
First-order logic allows arbitrary relations and functions (they are defined
only through their axioms)

Useful for modeling all of math (e.g. through set theory axioms), and thus
in principle applies to all program verification problems as well.

To prove whether a property holds:

I describe the property using a formula F

I describe the functions and relations in F using a sequence of axioms S

Check if the sequence (¬F ; S) is contradictory. If yes, then F follows from S

Completeness: if F follows from S , then there is a procedure that will in
finite time find this (in general we do not know how long it will take).

I semantic notion S |= F (in all interpretation of axioms S formulas F is
true) can, in first-order logic, too, be replaced with syntactic notion
S ` F (F can be derived from S)

We give a complete syntactic inference procedure for first-order logic



First-Order Logic

Set of first-order variables x1, x2, . . .

Set of function symbols f ∈ L of arity ar(fi ). Constants are of arity zero.
Used to build terms. If ar(f ) = n and t1, . . . , tn are terms, then
f (t1, . . . , tn) is a term

Set of relation symbols R ∈ L of arity ar(Ri )
Used to build artomic formulas. If ar(R) = n and t1, . . . , tn are terms, then
R(t1, . . . , tn) is an atomic formula.

From atomic formulas we build quantifier-free formulas using ∧,∨,¬

From quantifier-free formulas we build quantified formulas by quantifying
over first-order variables using ∀xi , ∃xi


