Lecturecise 17 Predicate Abstraction. Predicate Discovery

2013

Predicate Abstraction

Abstract interpretation domain is determined by a set of formulas (predicates) \mathcal{P} on program variables. Example: $\mathcal{P} = \{P_0, P_1, P_2, P_3\}$ where

P_0	\equiv	false
P_1	\equiv	0 < <i>x</i>
P_2	\equiv	0 < <i>y</i>
P_3	\equiv	x < y

Analysis tries to construct invariants from these predicates using

- conjunctions, e.g. $P_1 \wedge P_3$
- ▶ more generally, conjunctions and disjunctions, e.g. $P_3 \land (P_1 \lor P_2)$

Predicate Abstraction

Abstract interpretation domain is determined by a set of formulas (predicates) \mathcal{P} on program variables. Example: $\mathcal{P} = \{P_0, P_1, P_2, P_3\}$ where

P_0	\equiv	false
P_1	\equiv	0 < <i>x</i>
P_2	\equiv	0 < <i>y</i>
P_3	\equiv	x < y

Analysis tries to construct invariants from these predicates using

- conjunctions, e.g. $P_1 \wedge P_3$
- ▶ more generally, conjunctions and disjunctions, e.g. $P_3 \land (P_1 \lor P_2)$

For now: we consider only conjunctions.

We assume $P_0 \equiv$ false, other predicates in \mathcal{P} are arbitrary

expressed in a logic for which we have a theorem prover

Example of Analysis Result

$$\mathcal{P} = \{ false, 0 < x, 0 <= x, 0 < y, x < y, x = 0, y = 1, x < 1000, 1000 \le x \}$$

$$x = 0;$$

$$y = 1;$$

$$// 0 < y, x < y, x = 0, y = 1, x < 1000$$

$$// 0 < y, 0 \le x, x < y$$
while (x < 1000) {
// 0 < y, 0 \le x, x < y, x < 1000
x = x + 1;
// 0 < y, 0 \le x, 0 < x
y = 2*x;
// 0 < y, 0 \le x, 0 < x, x < y
y = y + 1;
// 0 < y, 0 \le x, 0 < x, x < y
print(y);
}
// 0 < y 0 < x x < y 1000 < x

 $\mathcal{P} = \{ P_0, P_1, \dots, P_n \}$ - predicates

formulas whose free variables denote program variables

$$A = 2^{\mathcal{P}}$$
, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_0 = \{0 < x, x < y\}$.

 $s \models F$ means: formula F is true for variables given by the program state s

$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$ Example: $\gamma(a_0) =$

 $\mathcal{P} = \{ P_0, P_1, \dots, P_n \}$ - predicates

formulas whose free variables denote program variables

$$A = 2^{\mathcal{P}}$$
, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_0 = \{0 < x, x < y\}$.

 $s \models F$ means: formula F is true for variables given by the program state s

$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$

Shorthand: $\bigwedge a \text{ means } \bigwedge_{P \in a} P$ Example: $\gamma(a_0) = \{ s \mid s \models 0 < x \land x < y \}.$

 $\mathcal{P} = \{ P_0, P_1, \dots, P_n \}$ - predicates

formulas whose free variables denote program variables

$$A = 2^{\mathcal{P}}$$
, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_0 = \{0 < x, x < y\}$.

 $s \models F$ means: formula F is true for variables given by the program state s

$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$ Example: $\gamma(a_0) = \{s \mid s \models 0 < x \land x < y\}$. We often assume states are pairs (x, y). Then $\gamma(a_0) =$

 $\mathcal{P} = \{ P_0, P_1, \dots, P_n \}$ - predicates

formulas whose free variables denote program variables

$$A = 2^{\mathcal{P}}$$
, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_0 = \{0 < x, x < y\}$.

 $s \models F$ means: formula F is true for variables given by the program state s

$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$ Example: $\gamma(a_0) = \{s \mid s \models 0 < x \land x < y\}$. We often assume states are pairs (x, y). Then $\gamma(a_0) = \{(x, y) \mid 0 < x \land x < y\}$.

 $\mathcal{P} = \{ P_0, P_1, \dots, P_n \}$ - predicates

formulas whose free variables denote program variables

$$A = 2^{\mathcal{P}}$$
, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_0 = \{0 < x, x < y\}$.

 $s \models F$ means: formula F is true for variables given by the program state s

$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$ Example: $\gamma(a_0) = \{s \mid s \models 0 < x \land x < y\}$. We often assume states are pairs (x, y). Then $\gamma(a_0) = \{(x, y) \mid 0 < x \land x < y\}$. If $a_1 \subseteq a_2$ then $\bigwedge a_2$ implies $\bigwedge a_1$, so $\gamma(a_2) \subseteq \gamma(a_1)$.

 $\mathcal{P} = \{ P_0, P_1, \ldots, P_n \}$ - predicates

formulas whose free variables denote program variables

$$A = 2^{\mathcal{P}}$$
, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_0 = \{0 < x, x < y\}$.

 $s \models F$ means: formula F is true for variables given by the program state s

$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$ Example: $\gamma(a_0) = \{s \mid s \models 0 < x \land x < y\}$. We often assume states are pairs (x, y). Then $\gamma(a_0) = \{(x, y) \mid 0 < x \land x < y\}$. If $a_1 \subseteq a_2$ then $\bigwedge a_2$ implies $\bigwedge a_1$, so $\gamma(a_2) \subseteq \gamma(a_1)$. Define:

$$a_1 \sqsubseteq a_2 \iff a_2 \subseteq a_1$$

Lemma: $a_1 \sqsubseteq a_2 \rightarrow \gamma(a_1) \subseteq \gamma(a_2)$

 $\mathcal{P} = \{ P_0, P_1, \dots, P_n \}$ - predicates

formulas whose free variables denote program variables

$$A = 2^{\mathcal{P}}$$
, so for $a \in A$ we have $a \subseteq \mathcal{P}$
Example: $a_0 = \{0 < x, x < y\}$.

 $s \models F$ means: formula F is true for variables given by the program state s

$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$

Shorthand: $\bigwedge a$ means $\bigwedge_{P \in a} P$ Example: $\gamma(a_0) = \{s \mid s \models 0 < x \land x < y\}$. We often assume states are pairs (x, y). Then $\gamma(a_0) = \{(x, y) \mid 0 < x \land x < y\}$. If $a_1 \subseteq a_2$ then $\bigwedge a_2$ implies $\bigwedge a_1$, so $\gamma(a_2) \subseteq \gamma(a_1)$. Define:

$$a_1 \sqsubseteq a_2 \iff a_2 \subseteq a_1$$

Lemma: $a_1 \sqsubseteq a_2 \rightarrow \gamma(a_1) \subseteq \gamma(a_2)$ Does the converse hold?

 $\{\textit{false}, 0 < x, x < y\} \sqsubseteq \{0 < x, 0 < y\} \sqsubseteq \{0 < x\} \sqsubseteq \emptyset$

Draw the Hasse diagram for the lattice (A, \sqsubseteq) i.e. $(2^{\mathcal{P}}, \supseteq)$ for $\mathcal{P} = \{P_0, P_1, P_2\}$ a three-element set.

 $\{\textit{false}, 0 < x, x < y\} \sqsubseteq \{0 < x, 0 < y\} \sqsubseteq \{0 < x\} \sqsubseteq \emptyset$

Draw the Hasse diagram for the lattice (A, \sqsubseteq) i.e. $(2^{\mathcal{P}}, \supseteq)$ for $\mathcal{P} = \{P_0, P_1, P_2\}$ a three-element set.

What is the top and what is the bottom element of this lattice?

 $\{\textit{false}, 0 < x, x < y\} \sqsubseteq \{0 < x, 0 < y\} \sqsubseteq \{0 < x\} \sqsubseteq \emptyset$

Draw the Hasse diagram for the lattice (A, \sqsubseteq) i.e. $(2^{\mathcal{P}}, \supseteq)$ for $\mathcal{P} = \{P_0, P_1, P_2\}$ a three-element set.

What is the top and what is the bottom element of this lattice? What is the height of the lattice?

 $\{\mathit{false}, 0 < x, x < y\} \sqsubseteq \{0 < x, 0 < y\} \sqsubseteq \{0 < x\} \sqsubseteq \emptyset$

Draw the Hasse diagram for the lattice (A, \sqsubseteq) i.e. $(2^{\mathcal{P}}, \supseteq)$ for $\mathcal{P} = \{P_0, P_1, P_2\}$ a three-element set.

What is the top and what is the bottom element of this lattice? What is the height of the lattice? What is the height of such lattice when $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$?

 $\{\mathit{false}, 0 < x, x < y\} \sqsubseteq \{0 < x, 0 < y\} \sqsubseteq \{0 < x\} \sqsubseteq \emptyset$

Draw the Hasse diagram for the lattice (A, \sqsubseteq) i.e. $(2^{\mathcal{P}}, \supseteq)$ for $\mathcal{P} = \{P_0, P_1, P_2\}$ a three-element set.

What is the top and what is the bottom element of this lattice? What is the height of the lattice? What is the height of such lattice when $\mathcal{P} = \{P_0, P_1, \dots, P_n\}$? Do \sqcup and \sqcap exist?

For
$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$
 we define

$$\alpha(c) = \{ P \in \mathcal{P} \mid \forall s \in c. \ s \models P \}$$

 $\alpha(\{(-1,1)\}) =$

For
$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$
 we define
 $\alpha(c) = \{ P \in \mathcal{P} \mid \forall s \in c. \ s \models P \}$

$$\alpha(\{(-1,1)\}) = \{y > 0\}$$

For
$$\gamma(a) = \{s \mid s \models \bigwedge_{P \in a} P\}$$
 we define
 $\alpha(c) = \{P \in \mathcal{P} \mid \forall s \in c. \ s \models P\}$

$$\begin{array}{rcl} \alpha(\{(-1,1)\}) &=& \{y>0\}\\ \alpha(\{(1,1),(2,2),(3,6)\}) &=& \end{array}$$

For
$$\gamma(a) = \{s \mid s \models \bigwedge_{P \in a} P\}$$
 we define
 $\alpha(c) = \{P \in \mathcal{P} \mid \forall s \in c. \ s \models P\}$

$$\begin{array}{lll} \alpha(\{(-1,1)\}) &=& \{y>0\}\\ \alpha(\{(1,1),(2,2),(3,6)\}) &=& \{x>0,y>0\} \end{array}$$

For
$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$
 we define
 $\alpha(c) = \{ P \in \mathcal{P} \mid \forall s \in c. \ s \models P \}$

$$\begin{array}{rcl} \alpha(\{(-1,1)\}) &=& \{y > 0\} \\ \alpha(\{(1,1),(2,2),(3,6)\}) &=& \{x > 0, y > 0\} \\ \alpha(\{(1,0),(0,1)\}) &=& \end{array}$$

For
$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$
 we define
 $\alpha(c) = \{ P \in \mathcal{P} \mid \forall s \in c. \ s \models P \}$

$$\begin{array}{rcl} \alpha(\{(-1,1)\}) &=& \{y > 0\} \\ \alpha(\{(1,1),(2,2),(3,6)\}) &=& \{x > 0, y > 0\} \\ \alpha(\{(1,0),(0,1)\}) &=& \emptyset \end{array}$$

For
$$\gamma(a) = \{s \mid s \models \bigwedge_{P \in a} P\}$$
 we define
 $\alpha(c) = \{P \in \mathcal{P} \mid \forall s \in c. \ s \models P\}$

$$\begin{array}{rcl} \alpha(\{(-1,1)\}) &=& \{y > 0\} \\ \alpha(\{(1,1),(2,2),(3,6)\}) &=& \{x > 0, y > 0\} \\ \alpha(\{(1,0),(0,1)\}) &=& \emptyset \\ \gamma(\emptyset) &=& \end{array}$$

For
$$\gamma(a) = \{ s \mid s \models \bigwedge_{P \in a} P \}$$
 we define
 $\alpha(c) = \{ P \in \mathcal{P} \mid \forall s \in c. \ s \models P \}$

$$\begin{array}{rcl} \alpha(\{(-1,1)\}) &=& \{y > 0\} \\ \alpha(\{(1,1),(2,2),(3,6)\}) &=& \{x > 0, y > 0\} \\ \alpha(\{(1,0),(0,1)\}) &=& \emptyset \\ \gamma(\emptyset) &=& S \text{ (set of all states, empty conjunction)} \end{array}$$

Is (α, γ) a Galois connection between (A, \sqsubseteq) and (C, \subseteq) ?

Galois Connection for Predicate Abstraction

We show (α, γ) is a Galois Connection. We need to show that

$$\mathsf{c} \subseteq \gamma(\mathsf{a}) \iff lpha(\mathsf{c}) \supseteq \mathsf{a}$$

Galois Connection for Predicate Abstraction

We show (α, γ) is a Galois Connection. We need to show that

$$c \subseteq \gamma(a) \iff \alpha(c) \supseteq a$$

But both conditions easily reduce to

$$\forall P \in a. \ \forall s \in c. \ s \models P$$

Galois Connection for Predicate Abstraction

We show (α, γ) is a Galois Connection. We need to show that

$$c \subseteq \gamma(a) \iff \alpha(c) \supseteq a$$

But both conditions easily reduce to

$$\forall P \in a. \ \forall s \in c. \ s \models P$$

Shorthand: in logic, if M is a set of assignments to variables (structures) and A is a set of formulas (e.g. axioms), then $M \models A$ means

$$\forall m \in M. \forall F \in \mathcal{A}. m \models F$$

So, both conditions of Galois connection reduce to $c \models a$

Is it the case that $\alpha(\gamma(a)) = a$?

Is it the case that $\alpha(\gamma(a)) = a$? We show this is not the case. This is because γ is not injective. Indeed, take $a_1 = \{ false \}$ and $a_2 = \{ false, x > 0 \}$. Then

$$\gamma(a_1) = \emptyset = \gamma(a_2)$$

Note $\alpha(\gamma(a_1)) = \alpha(\mathcal{P}) = \alpha(\gamma(a_2))$, but $a_1 \neq a_2$, but it is not the case that $a_1 = a_2$. In this particular case,

$$\alpha(\emptyset) = \mathcal{P}$$

and $a_1
eq \mathcal{P}$ so

 $\alpha(\gamma(a_1)) \neq a_1$

Is it the case that $\alpha(\gamma(a)) = a$? We show this is not the case. This is because γ is not injective. Indeed, take $a_1 = \{ false \}$ and $a_2 = \{ false, x > 0 \}$. Then

$$\gamma(a_1) = \emptyset = \gamma(a_2)$$

Note $\alpha(\gamma(a_1)) = \alpha(\mathcal{P}) = \alpha(\gamma(a_2))$, but $a_1 \neq a_2$, but it is not the case that $a_1 = a_2$. In this particular case,

$$\alpha(\emptyset) = \mathcal{P}$$

and $a_1 \neq \mathcal{P}$ so

$$\alpha(\gamma(a_1)) \neq a_1$$

However, the approach works and is sound, even without the condition $\alpha(\gamma(a)) = a$.

Is it the case that $\alpha(\gamma(a)) = a$? We show this is not the case. This is because γ is not injective. Indeed, take $a_1 = \{ false \}$ and $a_2 = \{ false, x > 0 \}$. Then

$$\gamma(a_1) = \emptyset = \gamma(a_2)$$

Note $\alpha(\gamma(a_1)) = \alpha(\mathcal{P}) = \alpha(\gamma(a_2))$, but $a_1 \neq a_2$, but it is not the case that $a_1 = a_2$. In this particular case,

$$\alpha(\emptyset) = \mathcal{P}$$

and $a_1
eq \mathcal{P}$ so

$$\alpha(\gamma(a_1)) \neq a_1$$

However, the approach works and is sound, even without the condition $\alpha(\gamma(a)) = a$. Can you find an example of non-injectivity in our 4 predicates that does not involve false?

Let $c_1 \subseteq c_2$. We wish to prove that $\alpha(c_1) \supseteq \alpha(c_2)$.

Let $c_1 \subseteq c_2$. We wish to prove that $\alpha(c_1) \supseteq \alpha(c_2)$. Let $P \in \alpha(c_2)$. Then for all $(x, y) \in c_2$ we have P(x, y).

Let $c_1 \subseteq c_2$. We wish to prove that $\alpha(c_1) \supseteq \alpha(c_2)$. Let $P \in \alpha(c_2)$. Then for all $(x, y) \in c_2$ we have P(x, y). Then also for all $(x, y) \in c_1$ we have P(x, y), because $c_1 \subseteq c_2$.

Let $c_1 \subseteq c_2$. We wish to prove that $\alpha(c_1) \supseteq \alpha(c_2)$. Let $P \in \alpha(c_2)$. Then for all $(x, y) \in c_2$ we have P(x, y). Then also for all $(x, y) \in c_1$ we have P(x, y), because $c_1 \subseteq c_2$. Therefore $P \in \alpha(c_1)$. We showed $c_2 \subseteq c_1$, so $c_1 \sqsubseteq c_2$.

 $\mathcal{P} = \{ \textit{false}, 0 < x, 0 < y, x < y \}$ Consider computing $\textit{sp}^{\#}(\{0 < x\}, y := x + 1)$. We can test for each predicate $P' \in \mathcal{P}$ whether

$$x > 0 \land (y' = x + 1 \land x' = x) \implies P'(x', y')$$

We obtain that the condition holds for 0 < x, 0 < y, and for x < y, but not for *false*. Thus,

$$sp^{\#}({0 < x}, y := x + 1) = {0 < x, 0 < y, x < y}$$

$$sp^{\#}(\{0 < x\}, y := x - 1) =$$

 $\mathcal{P} = \{ \textit{false}, 0 < x, 0 < y, x < y \}$ Consider computing $\textit{sp}^{\#}(\{0 < x\}, y := x + 1)$. We can test for each predicate $P' \in \mathcal{P}$ whether

$$x > 0 \land (y' = x + 1 \land x' = x) \implies P'(x', y')$$

We obtain that the condition holds for 0 < x, 0 < y, and for x < y, but not for *false*. Thus,

$$sp^{\#}({0 < x}, y := x + 1) = {0 < x, 0 < y, x < y}$$

$$sp^{\#}(\{0 < x\}, y := x - 1) = \{0 < x\}$$

 $\mathcal{P} = \{ \textit{false}, 0 < x, 0 < y, x < y \}$ Consider computing $\textit{sp}^{\#}(\{0 < x\}, y := x + 1)$. We can test for each predicate $P' \in \mathcal{P}$ whether

$$x > 0 \land (y' = x + 1 \land x' = x) \implies P'(x', y')$$

We obtain that the condition holds for 0 < x, 0 < y, and for x < y, but not for *false*. Thus,

$$sp^{\#}({0 < x}, y := x + 1) = {0 < x, 0 < y, x < y}$$

$$sp^{\#}(\{0 < x\}, y := x - 1) = \{0 < x\}$$

 $sp^{\#}(\{0 < x, x < y\}, x := x - 1) =$

 $\mathcal{P} = \{ \textit{false}, 0 < x, 0 < y, x < y \}$ Consider computing $\textit{sp}^{\#}(\{0 < x\}, y := x + 1)$. We can test for each predicate $P' \in \mathcal{P}$ whether

$$x > 0 \land (y' = x + 1 \land x' = x) \implies P'(x', y')$$

We obtain that the condition holds for 0 < x, 0 < y, and for x < y, but not for *false*. Thus,

$$sp^{\#}({0 < x}, y := x + 1) = {0 < x, 0 < y, x < y}$$

$$sp^{\#}(\{0 < x\}, y := x - 1) = \{0 < x\}$$

$$sp^{\#}(\{0 < x, x < y\}, x := x - 1) = \{0 < y, x < y\}$$

 $\mathcal{P} = \{ \textit{false}, 0 < x, 0 < y, x < y \}$ Consider computing $\textit{sp}^{\#}(\{0 < x\}, y := x + 1)$. We can test for each predicate $P' \in \mathcal{P}$ whether

$$x > 0 \land (y' = x + 1 \land x' = x) \implies P'(x', y')$$

We obtain that the condition holds for 0 < x, 0 < y, and for x < y, but not for *false*. Thus,

$$sp^{\#}(\{0 < x\}, y := x + 1) = \{0 < x, 0 < y, x < y\}$$

Compute

$$sp^{\#}(\{0 < x\}, y := x - 1) = \{0 < x\}$$

$$sp^{\#}(\{0 < x, x < y\}, x := x - 1) = \{0 < y, x < y\}$$

What is the relation between $\{0 < x, x < y\}$ and $\{0 < x, 0 < y, x < y\}$?

Deriving Rule for Computing sp

Fix some command given by relation r. Denote $a' = sp^{\#}(a, r)$. We are computing a'. For correctness we need

 $sp(\gamma(a), r) \subseteq \gamma(a')$

Thanks to Galois connection, this is equivalent to

 $\alpha(\textit{sp}(\gamma(\textit{a}),\textit{r})) \sqsubseteq \textit{a}'$

We wish to find the smallest lattice element a', which is the largest set (this gives the tightest approximation). So we let

$$a' = \alpha(sp(\gamma(a), r))$$

Given that $\gamma(a) = \{s \mid s \models \bigwedge a\}$, and $\alpha(c) = \{P \in \mathcal{P} \mid \forall s \in c. \ s \models P\}$, $a' = \{P' \in \mathcal{P} \mid \forall (x', y') \in sp(\gamma(a), r). \ P'(x', y')\}$

Continuing the Derivation of sp

$$a' = \{P' \in \mathcal{P} \mid \forall (x', y'). (x', y') \in sp(\gamma(a), r) \rightarrow P'(x', y')\}$$

Let R(x, y, x', y') denote the meaning of relation r

Continuing the Derivation of sp

$$\textbf{a}' = \{ \textbf{P}' \in \mathcal{P} \mid \forall (x', y'). (x', y') \in \textbf{sp}(\gamma(\textbf{a}), r) \rightarrow \textbf{P}'(x', y') \}$$

Let R(x, y, x', y') denote the meaning of relation rThen $(x', y') \in sp(\gamma(a), r)$ means

$$\exists x, y.(x, y) \in \gamma(a) \land R(x, y, x', y')$$

which, after expanding γ , gives

$$\exists x, y. (\bigwedge_{P \in a} P(x, y)) \land R(x, y, x', y')$$

We then plug this expression back into a' definition. Because the existentials are left of implication, the result is:

$$a' = \{P' \in \mathcal{P} \mid \forall x, y, x'y'. (\bigwedge_{P \in a} P(x, y)) \land R(x, y, x', y') \to P'(x', y')\}$$

Example of Analysis Result

$$\mathcal{P} = \{ false, 0 < x, 0 <= x, 0 < y, x < y, x = 0, y = 1, x < 1000, 1000 \le x \}$$

$$x = 0;$$

$$y = 1;$$

$$// 0 < y, x < y, x = 0, y = 1, x < 1000$$

$$// 0 < y, 0 \le x, x < y$$
while (x < 1000) {
// 0 < y, 0 \le x, x < y, x < 1000
x = x + 1;
// 0 < y, 0 \le x, 0 < x
y = 2*x;
// 0 < y, 0 \le x, 0 < x, x < y
y = y + 1;
// 0 < y, 0 \le x, 0 < x, x < y
print(y);
}
// 0 < y 0 < x x < y 1000 < x

At program entry: \top , which is:

At program entry: \top , which is: \emptyset of predicates At all other points: \bot , which is:

At program entry: \top , which is: \emptyset of predicates At all other points: \bot , which is: the set of all predicates \mathcal{P} Lattice elements grow in CFG \rightsquigarrow the set of predicates decrease

At program entry: \top , which is: \emptyset of predicates At all other points: \bot , which is: the set of all predicates \mathcal{P} Lattice elements grow in CFG \rightsquigarrow the set of predicates decrease We remove predicates that do not hold

Limitations of Conjunctions

if
$$(x > 0) \{ y = x \}$$

if $(x > 0) \{ if(y > 0) 1/x else error \}$

Disjunctive Analysis

Disjunction of conjunctions.

Sets of sets.

 α and γ

Approximations: apply per disjunct.

Powerdomain. Power and cost of powerdomains.

Reachability tree

Path Feasibility Checking

Adding Predicates to Remove Infeasible Paths

Adding weakest preconditions Adding strongest postconditions Increasing the power of generalization:

- do not add complex formulas, but their parts
- no need to add sp or wp, but anything that forms a sufficiently annotated Hoare proof that this path is infeasible