
Lecturecise 17
Predicate Abstraction. Predicate Discovery

2013

Predicate Abstraction

Abstract interpretation domain is determined by a set of formulas
(predicates) P on program variables.
Example: P = {P0,P1,P2,P3} where

P0 ≡ false
P1 ≡ 0 < x
P2 ≡ 0 < y
P3 ≡ x < y

Analysis tries to construct invariants from these predicates using

I conjunctions, e.g. P1 ∧ P3

I more generally, conjunctions and disjunctions, e.g. P3 ∧ (P1 ∨ P2)

For now: we consider only conjunctions.
We assume P0 ≡ false, other predicates in P are arbitrary

I expressed in a logic for which we have a theorem prover

Predicate Abstraction

Abstract interpretation domain is determined by a set of formulas
(predicates) P on program variables.
Example: P = {P0,P1,P2,P3} where

P0 ≡ false
P1 ≡ 0 < x
P2 ≡ 0 < y
P3 ≡ x < y

Analysis tries to construct invariants from these predicates using

I conjunctions, e.g. P1 ∧ P3

I more generally, conjunctions and disjunctions, e.g. P3 ∧ (P1 ∨ P2)

For now: we consider only conjunctions.
We assume P0 ≡ false, other predicates in P are arbitrary

I expressed in a logic for which we have a theorem prover

Example of Analysis Result

P = {false, 0 < x , 0 <= x , 0 < y , x < y , x = 0, y = 1, x < 1000, 1000 ≤ x}

x = 0;
y = 1;
// 0<y, x<y,x=0,y=1, x<1000
// 0<y, 0≤x, x<y
while (x < 1000) {
// 0<y, 0≤x, x<y, x<1000
x = x + 1;
// 0<y, 0≤x, 0<x
y = 2∗x;
// 0<y, 0≤x, 0<x, x<y
y = y + 1;
// 0<y, 0≤x, 0<x, x<y
print(y);
}
// 0<y, 0≤x, x<y, 1000 ≤ x

Lattice of Conjunctions of Predicates and Concretization

P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) =

{s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}.
If a1 ⊆ a2 then

∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold?

Lattice of Conjunctions of Predicates and Concretization

P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}.

We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}.
If a1 ⊆ a2 then

∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold?

Lattice of Conjunctions of Predicates and Concretization

P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) =

{(x , y) | 0 < x ∧ x < y}.
If a1 ⊆ a2 then

∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold?

Lattice of Conjunctions of Predicates and Concretization

P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}.

If a1 ⊆ a2 then
∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold?

Lattice of Conjunctions of Predicates and Concretization

P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}.
If a1 ⊆ a2 then

∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold?

Lattice of Conjunctions of Predicates and Concretization

P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}.
If a1 ⊆ a2 then

∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)

Does the converse hold?

Lattice of Conjunctions of Predicates and Concretization

P = {P0,P1, . . . ,Pn} - predicates

I formulas whose free variables denote program variables

A = 2P , so for a ∈ A we have a ⊆ P
Example: a0 = {0 < x , x < y}.
s |= F means: formula F is true for variables given by the program state s

γ(a) = {s | s |=
∧
P∈a

P}

Shorthand:
∧
a means

∧
P∈a P

Example: γ(a0) = {s | s |= 0 < x ∧ x < y}. We often assume states are
pairs (x , y). Then γ(a0) = {(x , y) | 0 < x ∧ x < y}.
If a1 ⊆ a2 then

∧
a2 implies

∧
a1, so γ(a2) ⊆ γ(a1).

Define:
a1 v a2 ⇐⇒ a2 ⊆ a1

Lemma: a1 v a2 → γ(a1) ⊆ γ(a2)
Does the converse hold?

Size of the Lattice

{false, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for the lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is the height of the lattice?
What is the height of such lattice when P = {P0,P1, . . . ,Pn}?
Do t and u exist?

Size of the Lattice

{false, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for the lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?

What is the height of the lattice?
What is the height of such lattice when P = {P0,P1, . . . ,Pn}?
Do t and u exist?

Size of the Lattice

{false, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for the lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is the height of the lattice?

What is the height of such lattice when P = {P0,P1, . . . ,Pn}?
Do t and u exist?

Size of the Lattice

{false, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for the lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is the height of the lattice?
What is the height of such lattice when P = {P0,P1, . . . ,Pn}?

Do t and u exist?

Size of the Lattice

{false, 0 < x , x < y} v {0 < x , 0 < y} v {0 < x} v ∅

Draw the Hasse diagram for the lattice (A,v) i.e. (2P ,⊇) for
P = {P0,P1,P2} a three-element set.

What is the top and what is the bottom element of this lattice?
What is the height of the lattice?
What is the height of such lattice when P = {P0,P1, . . . ,Pn}?
Do t and u exist?

Galois Connection

For γ(a) = {s | s |=
∧

P∈a P} we define

α(c) = {P ∈ P | ∀s ∈ c . s |= P}

α({(−1, 1)}) =

{y > 0}
α({(1, 1), (2, 2), (3, 6)}) = {x > 0, y > 0}

α({(1, 0), (0, 1)}) = ∅
γ(∅) = S (set of all states, empty conjunction)

Is (α, γ) a Galois connection between (A,v) and (C ,⊆)?

Galois Connection

For γ(a) = {s | s |=
∧

P∈a P} we define

α(c) = {P ∈ P | ∀s ∈ c . s |= P}

α({(−1, 1)}) = {y > 0}

α({(1, 1), (2, 2), (3, 6)}) = {x > 0, y > 0}
α({(1, 0), (0, 1)}) = ∅

γ(∅) = S (set of all states, empty conjunction)

Is (α, γ) a Galois connection between (A,v) and (C ,⊆)?

Galois Connection

For γ(a) = {s | s |=
∧

P∈a P} we define

α(c) = {P ∈ P | ∀s ∈ c . s |= P}

α({(−1, 1)}) = {y > 0}
α({(1, 1), (2, 2), (3, 6)}) =

{x > 0, y > 0}
α({(1, 0), (0, 1)}) = ∅

γ(∅) = S (set of all states, empty conjunction)

Is (α, γ) a Galois connection between (A,v) and (C ,⊆)?

Galois Connection

For γ(a) = {s | s |=
∧

P∈a P} we define

α(c) = {P ∈ P | ∀s ∈ c . s |= P}

α({(−1, 1)}) = {y > 0}
α({(1, 1), (2, 2), (3, 6)}) = {x > 0, y > 0}

α({(1, 0), (0, 1)}) = ∅
γ(∅) = S (set of all states, empty conjunction)

Is (α, γ) a Galois connection between (A,v) and (C ,⊆)?

Galois Connection

For γ(a) = {s | s |=
∧

P∈a P} we define

α(c) = {P ∈ P | ∀s ∈ c . s |= P}

α({(−1, 1)}) = {y > 0}
α({(1, 1), (2, 2), (3, 6)}) = {x > 0, y > 0}

α({(1, 0), (0, 1)}) =

∅
γ(∅) = S (set of all states, empty conjunction)

Is (α, γ) a Galois connection between (A,v) and (C ,⊆)?

Galois Connection

For γ(a) = {s | s |=
∧

P∈a P} we define

α(c) = {P ∈ P | ∀s ∈ c . s |= P}

α({(−1, 1)}) = {y > 0}
α({(1, 1), (2, 2), (3, 6)}) = {x > 0, y > 0}

α({(1, 0), (0, 1)}) = ∅

γ(∅) = S (set of all states, empty conjunction)

Is (α, γ) a Galois connection between (A,v) and (C ,⊆)?

Galois Connection

For γ(a) = {s | s |=
∧

P∈a P} we define

α(c) = {P ∈ P | ∀s ∈ c . s |= P}

α({(−1, 1)}) = {y > 0}
α({(1, 1), (2, 2), (3, 6)}) = {x > 0, y > 0}

α({(1, 0), (0, 1)}) = ∅
γ(∅) =

S (set of all states, empty conjunction)

Is (α, γ) a Galois connection between (A,v) and (C ,⊆)?

Galois Connection

For γ(a) = {s | s |=
∧

P∈a P} we define

α(c) = {P ∈ P | ∀s ∈ c . s |= P}

α({(−1, 1)}) = {y > 0}
α({(1, 1), (2, 2), (3, 6)}) = {x > 0, y > 0}

α({(1, 0), (0, 1)}) = ∅
γ(∅) = S (set of all states, empty conjunction)

Is (α, γ) a Galois connection between (A,v) and (C ,⊆)?

Galois Connection for Predicate Abstraction

We show (α, γ) is a Galois Connection. We need to show that

c ⊆ γ(a) ⇐⇒ α(c) ⊇ a

But both conditions easily reduce to

∀P ∈ a. ∀s ∈ c . s |= P

Shorthand: in logic, if M is a set of assignments to variables (structures)
and A is a set of formulas (e.g. axioms), then M |= A means

∀m ∈ M.∀F ∈ A. m |= F

So, both conditions of Galois connection reduce to c |= a

Galois Connection for Predicate Abstraction

We show (α, γ) is a Galois Connection. We need to show that

c ⊆ γ(a) ⇐⇒ α(c) ⊇ a

But both conditions easily reduce to

∀P ∈ a. ∀s ∈ c . s |= P

Shorthand: in logic, if M is a set of assignments to variables (structures)
and A is a set of formulas (e.g. axioms), then M |= A means

∀m ∈ M.∀F ∈ A. m |= F

So, both conditions of Galois connection reduce to c |= a

Galois Connection for Predicate Abstraction

We show (α, γ) is a Galois Connection. We need to show that

c ⊆ γ(a) ⇐⇒ α(c) ⊇ a

But both conditions easily reduce to

∀P ∈ a. ∀s ∈ c . s |= P

Shorthand: in logic, if M is a set of assignments to variables (structures)
and A is a set of formulas (e.g. axioms), then M |= A means

∀m ∈ M.∀F ∈ A. m |= F

So, both conditions of Galois connection reduce to c |= a

Not a Galois Insertion

Is it the case that α(γ(a)) = a?

We show this is not the case. This is because γ is not injective.
Indeed, take a1 = {false} and a2 = {false, x > 0}. Then

γ(a1) = ∅ = γ(a2)

Note α(γ(a1)) = α(P) = α(γ(a2)), but a1 6= a2, but it is not the case that
a1 = a2. In this particular case,

α(∅) = P

and a1 6= P so
α(γ(a1)) 6= a1

However, the approach works and is sound, even without the condition
α(γ(a)) = a.
Can you find an example of non-injectivity in our 4 predicates that does not
involve false?

Not a Galois Insertion

Is it the case that α(γ(a)) = a?
We show this is not the case. This is because γ is not injective.
Indeed, take a1 = {false} and a2 = {false, x > 0}. Then

γ(a1) = ∅ = γ(a2)

Note α(γ(a1)) = α(P) = α(γ(a2)), but a1 6= a2, but it is not the case that
a1 = a2. In this particular case,

α(∅) = P

and a1 6= P so
α(γ(a1)) 6= a1

However, the approach works and is sound, even without the condition
α(γ(a)) = a.
Can you find an example of non-injectivity in our 4 predicates that does not
involve false?

Not a Galois Insertion

Is it the case that α(γ(a)) = a?
We show this is not the case. This is because γ is not injective.
Indeed, take a1 = {false} and a2 = {false, x > 0}. Then

γ(a1) = ∅ = γ(a2)

Note α(γ(a1)) = α(P) = α(γ(a2)), but a1 6= a2, but it is not the case that
a1 = a2. In this particular case,

α(∅) = P

and a1 6= P so
α(γ(a1)) 6= a1

However, the approach works and is sound, even without the condition
α(γ(a)) = a.

Can you find an example of non-injectivity in our 4 predicates that does not
involve false?

Not a Galois Insertion

Is it the case that α(γ(a)) = a?
We show this is not the case. This is because γ is not injective.
Indeed, take a1 = {false} and a2 = {false, x > 0}. Then

γ(a1) = ∅ = γ(a2)

Note α(γ(a1)) = α(P) = α(γ(a2)), but a1 6= a2, but it is not the case that
a1 = a2. In this particular case,

α(∅) = P

and a1 6= P so
α(γ(a1)) 6= a1

However, the approach works and is sound, even without the condition
α(γ(a)) = a.
Can you find an example of non-injectivity in our 4 predicates that does not
involve false?

Monotonicity of α

Let c1 ⊆ c2.
We wish to prove that α(c1) ⊇ α(c2).

Let P ∈ α(c2). Then for all (x , y) ∈ c2 we have P(x , y).
Then also for all (x , y) ∈ c1 we have P(x , y), because c1 ⊆ c2.
Therefore P ∈ α(c1). We showed c2 ⊆ c1, so c1 v c2.

Monotonicity of α

Let c1 ⊆ c2.
We wish to prove that α(c1) ⊇ α(c2).
Let P ∈ α(c2). Then for all (x , y) ∈ c2 we have P(x , y).

Then also for all (x , y) ∈ c1 we have P(x , y), because c1 ⊆ c2.
Therefore P ∈ α(c1). We showed c2 ⊆ c1, so c1 v c2.

Monotonicity of α

Let c1 ⊆ c2.
We wish to prove that α(c1) ⊇ α(c2).
Let P ∈ α(c2). Then for all (x , y) ∈ c2 we have P(x , y).
Then also for all (x , y) ∈ c1 we have P(x , y), because c1 ⊆ c2.

Therefore P ∈ α(c1). We showed c2 ⊆ c1, so c1 v c2.

Monotonicity of α

Let c1 ⊆ c2.
We wish to prove that α(c1) ⊇ α(c2).
Let P ∈ α(c2). Then for all (x , y) ∈ c2 we have P(x , y).
Then also for all (x , y) ∈ c1 we have P(x , y), because c1 ⊆ c2.
Therefore P ∈ α(c1). We showed c2 ⊆ c1, so c1 v c2.

Computing Approximate Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Consider computing sp#({0 < x}, y := x + 1). We can test for each
predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) =

{0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?

Computing Approximate Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Consider computing sp#({0 < x}, y := x + 1). We can test for each
predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}

sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?

Computing Approximate Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Consider computing sp#({0 < x}, y := x + 1). We can test for each
predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) =

{0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?

Computing Approximate Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Consider computing sp#({0 < x}, y := x + 1). We can test for each
predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?

Computing Approximate Strongest Postcondition

P = {false, 0 < x , 0 < y , x < y}
Consider computing sp#({0 < x}, y := x + 1). We can test for each
predicate P ′ ∈ P whether

x > 0 ∧ (y ′ = x + 1 ∧ x ′ = x) =⇒ P ′(x ′, y ′)

We obtain that the condition holds for 0 < x , 0 < y , and for x < y , but
not for false. Thus,

sp#({0 < x}, y := x + 1) = {0 < x , 0 < y , x < y}

Compute

sp#({0 < x}, y := x − 1) = {0 < x}
sp#({0 < x , x < y}, x := x − 1) = {0 < y , x < y}

What is the relation between {0 < x , x < y} and {0 < x , 0 < y , x < y}?

Deriving Rule for Computing sp

Fix some command given by relation r .
Denote a′ = sp#(a, r). We are computing a′. For correctness we need

sp(γ(a), r) ⊆ γ(a′)

Thanks to Galois connection, this is equivalent to

α(sp(γ(a), r)) v a′

We wish to find the smallest lattice element a′, which is the largest set (this gives
the tightest approximation). So we let

a′ = α(sp(γ(a), r))

Given that γ(a) = {s | s |=
∧
a}, and α(c) = {P ∈ P | ∀s ∈ c . s |= P},

a′ = {P ′ ∈ P | ∀(x ′, y ′) ∈ sp(γ(a), r). P ′(x ′, y ′)}

Continuing the Derivation of sp

a′ = {P ′ ∈ P | ∀(x ′, y ′).(x ′, y ′) ∈ sp(γ(a), r)→ P ′(x ′, y ′)}

Let R(x , y , x ′, y ′) denote the meaning of relation r

Then (x ′, y ′) ∈ sp(γ(a), r) means

∃x , y .(x , y) ∈ γ(a) ∧ R(x , y , x ′, y ′)

which, after expanding γ, gives

∃x , y .(
∧
P∈a

P(x , y)) ∧ R(x , y , x ′, y ′)

We then plug this expression back into a′ definition. Because the
existentials are left of implication, the result is:

a′ = {P ′ ∈ P | ∀x , y , x ′y ′. (
∧
P∈a

P(x , y)) ∧ R(x , y , x ′, y ′)→ P ′(x ′, y ′)}

Continuing the Derivation of sp

a′ = {P ′ ∈ P | ∀(x ′, y ′).(x ′, y ′) ∈ sp(γ(a), r)→ P ′(x ′, y ′)}

Let R(x , y , x ′, y ′) denote the meaning of relation r
Then (x ′, y ′) ∈ sp(γ(a), r) means

∃x , y .(x , y) ∈ γ(a) ∧ R(x , y , x ′, y ′)

which, after expanding γ, gives

∃x , y .(
∧
P∈a

P(x , y)) ∧ R(x , y , x ′, y ′)

We then plug this expression back into a′ definition. Because the
existentials are left of implication, the result is:

a′ = {P ′ ∈ P | ∀x , y , x ′y ′. (
∧
P∈a

P(x , y)) ∧ R(x , y , x ′, y ′)→ P ′(x ′, y ′)}

Example of Analysis Result

P = {false, 0 < x , 0 <= x , 0 < y , x < y , x = 0, y = 1, x < 1000, 1000 ≤ x}

x = 0;
y = 1;
// 0<y, x<y,x=0,y=1, x<1000
// 0<y, 0≤x, x<y
while (x < 1000) {
// 0<y, 0≤x, x<y, x<1000
x = x + 1;
// 0<y, 0≤x, 0<x
y = 2∗x;
// 0<y, 0≤x, 0<x, x<y
y = y + 1;
// 0<y, 0≤x, 0<x, x<y
print(y);
}
// 0<y, 0≤x, x<y, 1000 ≤ x

Formulation in terms of Removing Predicates

At program entry: >, which is:

∅ of predicates
At all other points: ⊥, which is: the set of all predicates P
Lattice elements grow in CFG ; the set of predicates decrease
We remove predicates that do not hold

Formulation in terms of Removing Predicates

At program entry: >, which is: ∅ of predicates
At all other points: ⊥, which is:

the set of all predicates P
Lattice elements grow in CFG ; the set of predicates decrease
We remove predicates that do not hold

Formulation in terms of Removing Predicates

At program entry: >, which is: ∅ of predicates
At all other points: ⊥, which is: the set of all predicates P
Lattice elements grow in CFG ; the set of predicates decrease

We remove predicates that do not hold

Formulation in terms of Removing Predicates

At program entry: >, which is: ∅ of predicates
At all other points: ⊥, which is: the set of all predicates P
Lattice elements grow in CFG ; the set of predicates decrease
We remove predicates that do not hold

Limitations of Conjunctions

if (x > 0) {
y = x
}
if (x > 0) {
if(y > 0) 1/x
else error
}

Disjunctive Analysis

Disjunction of conjunctions.
Sets of sets.
α and γ
Approximations: apply per disjunct.
Powerdomain. Power and cost of powerdomains.

Reachability tree

Path Feasibility Checking

Adding Predicates to Remove Infeasible Paths

Adding weakest preconditions
Adding strongest postconditions
Increasing the power of generalization:

I do not add complex formulas, but their parts

I no need to add sp or wp, but anything that forms a sufficiently
annotated Hoare proof that this path is infeasible

