
Lecturecise 9
Hoare Logic

2013

Introduction

We have seen how to translate programs into relations. We will use these

relations in a proof system called Hoare logic. Hoare logic is a way of

inserting annotations into code to make proofs about (imperative) program

behavior simpler.

Example proof:

//{0 <= y}
i = y;
//{0 <= y & i = y}
r = 0;
//{0 <= y & i = y & r = 0}
while //{r = (y−i)∗x & 0 <= i}
(i > 0) (
//{r = (y−i)∗x & 0 < i}
r = r + x;
//{r = (y−i+1)∗x & 0 < i}
i = i − 1
//{r = (y−i)∗x & 0 <= i}

)
//{r = x ∗ y}

Hoare triples for Sets and Relations

When P,Q ⊆ S (sets of states) and r ⊆ S × S (relation on states,
command semantics) then the Hoare triple

{P} r {Q}

means
∀s, s ′ ∈ S .

(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
We call P precondition and Q postcondition.

The Hoare triple provides only a partial correctness guarantee, i.e. if P
holds initially, and r executes and terminates, then Q must hold. If r
does not terminate, then no guarantees on Q are provided.

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. {j = a} j :=j+1 {a = j + 1}

2. {i = j} i:=j+i {i > j}

3. {j = a + b} i:=b; j:=a {j = 2 ∗ a}

4. {i > j} j:=i+1; i:=j+1 {i > j}

5. {i != j} if i>j then m:=i−j else m:=j−i {m > 0}

6. {i = 3∗j} if i>j then m:=i−j else m:=j−i {m−2∗j=0}

7. {x = b} while x>a do x:=x−1 {b = a}

More postconditions

What is the relationship between these postconditions?

{x = 5} x := x + 2 {x > 0}

{x = 5} x := x + 2 {x = 7}

I weakest conditions (predicates) correspond to largest sets

I strongest conditions (predicates) correspond to smallest sets

that satisfy a given property.

(Graphically, a stronger condition x > 0 ∧ y > 0 denotes one quadrant
in plane, whereas a weaker condition x > 0 denotes the entire
half-plane.)

Strongest postcondition

Definition: For P ⊆ S , r ⊆ S × S ,

sp(P, r) = {s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}

This is simply the relation image of a set.

Lemma: Characterization of sp
sp(P, r) is the the smallest set Q such that {P}r{Q}, that is:

I {P}r{sp(P, r)}
I ∀Q ⊆ S . {P}r{Q} → sp(P, r) ⊆ Q

{P} r {Q} ⇔∀s, s ′ ∈ S . (s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q)

sp(P, r) ={s ′ | ∃s.s ∈ P ∧ (s, s ′) ∈ r}

Backward Propagation of Errors
If we have a relation r and a set of errors E , we can check if a program meets
its specification by checking:

sp(P, r) ∩ E = ∅

∀y .¬(y ∈ sp(P, r) ∧ y ∈ E)

∀y . ¬((∃x .P(x) ∧ (x , y) ∈ r) ∧ y ∈ E)

∀y . ¬∃x .(P(x) ∧ (x , y) ∈ r ∧ y ∈ E)

∀x , y . ¬(x ∈ P ∧ (x , y) ∈ r ∧ y ∈ E)

∀x , y . ¬(x ∈ P ∧ (y , x) ∈ r−1 ∧ y ∈ E)

∀x , y . ¬(y ∈ E ∧ (y , x) ∈ r−1 ∧ x ∈ P)

sp(E , r−1) ∩ P = ∅

P ⊆ sp(E , r−1)c

In other words, we obtain an upper bound on the set of states P from which

we do not reach error. We next introduce the notion of weakest precondition,

which allows us to express sp(E , r−1) from Q given as complement of error

states E .

Weakest precondition

Weakest precondition
Definition: for Q ⊆ S , r ⊆ S × S ,

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Note that this is in general not the same as sp(Q, r−1) when then
relation is non-deterministic or partial.

Lemma: Characterization of wp

wp(r ,Q) is the largest set P such that {P}r{Q}, that is:

I {wp(r ,Q)}r{Q}
I ∀P ⊆ S . {P}r{Q} → P ⊆ wp(r ,Q)

{P} r {Q} ⇔∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
wp(r ,Q) ={s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Exercise: Postcondition of inverse versus wp

Using definitions of Hoare triple, sp, wp in Hoare logic, prove the
following: If instead of good states we look at the completement set of
“error states”, then wp corresponds to doing sp backwards. In other
words, we have the following:

S \ wp(r ,Q) = sp(S \ Q, r−1)

More Laws on Preconditions and Postconditions

Disjunctivity of sp

sp(P1 ∪ P2, r) = sp(P1, r) ∪ sp(P2, r)

sp(P, r1 ∪ r2) = sp(P, r1) ∪ sp(P, r2)

Conjunctivity of wp

wp(r ,Q1 ∩ Q2) = wp(r ,Q1) ∩ wp(r ,Q2)

wp(r1 ∪ r2,Q) = wp(r1,Q) ∩ wp(r2,Q)

Pointwise wp

wp(r ,Q) = {s | s ∈ S ∧ sp({s}, r) ⊆ Q}

Pointwise sp

sp(P, r) =
⋃
s∈P

sp({s}, r)

Exercise: Three Forms of Hoare Triple

Show the following:
The following three conditions are equivalent:

I {P}r{Q}
I P ⊆ wp(r ,Q)

I sp(P, r) ⊆ Q

Hoare Logic for Loop-free Code

Expanding Paths
The condition

{P}
(⋃

i∈J
ri
)
{Q}

is equivalent to
∀i .i ∈ J → {P}ri{Q}

Transitivity
If {P}s1{Q} and {Q}s2{R} then also {P}s1 ◦ s2{R}.
We write this as the following inference rule:

{P}s1{Q}, {Q}s2{R}
{P}s1 ◦ s2{R}

Hoare Logic for Loops

The following inference rule holds:

{P}s{P}, n ≥ 0

{P}sn{P}

Proof is by transitivity.
By Expanding Paths condition, we then have:

{P}s{P}
{P}

⋃
n≥0 s

n{P}

In fact,
⋃

n≥0 s
n = s∗, so we have

{P}s{P}
{P}s∗{P}

This is the rule for non-deterministic loops.

Exercise

We call a relation r ⊆ S × S functional if
∀x , y , z ∈ S .(x , y) ∈ r ∧ (x , z) ∈ r → y = z . For each of the following statements
either give a counterexample or prove it. In the following, assume Q ⊂ S .

(i) for any r , wp(r , S \ Q) = S \ wp(r ,Q)

(ii) if r is functional, wp(r ,S \ Q) = S \ wp(r ,Q)

(iii) for any r , wp(r ,Q) = sp(Q, r−1)

(iv) if r is functional, wp(r ,Q) = sp(Q, r−1)

(v) for any r , wp(r ,Q1 ∪ Q2) = wp(r ,Q1) ∪ wp(r ,Q2)

(vi) if r is functional, wp(r ,Q1 ∪ Q2) = wp(r ,Q1) ∪ wp(r ,Q2)

(vii) for any r , wp(r1 ∪ r2,Q) = wp(r1,Q) ∪ wp(r2,Q)

(viii) Alice has the following conjecture: For all sets S and relations r ⊆ S × S it
holds:(

S 6= ∅ ∧ dom(r) = S ∧4S ∩ r = ∅
)
→

(
r ◦ r ∩ ((S × S) \ r) 6= ∅

)
She tried many sets and relations and did not find any counterexample. Is her
conjecture true?
If so, prove it, otherwise provide a counterexample for which S is smallest.

Forward VCG

Some notation

If P is a formula on state and c a command, let spF (P, c) be the
formula version of the strongest postcondition operator. spF (P, c) is
therefore the formula Q that describes the set of states that can result
from executing c in a state satisfying P.
Thus, we have

spF (P, c) = Q

implies
sp(({x̄ |P}, ρ(c)) = {x̄ |Q}

We will denote the set of states satisfying a predicate by underscore s,
i.e. for a predicate P, let Ps be the set of states that satisfies it:

Ps = {x̄ |P}

Forward VCG: Using Strongest Postcondition

We can use the spF operator to compute verification conditions:
for a triple {P}c{Q} we can generate the verification condition
spF (P, c)→ Q.

Assume Statement
Define:

spF (P, assume(F)) = P ∧ F

Then
sp(Ps , ρ(assume(F)))
= sp(Ps ,∆Fs)
= {x̄ ′ | ∃x̄ ∈ Ps . ((x̄ , x̄ ′) ∈ ∆Fs)}
= {x̄ ′ | ∃x̄ ∈ Ps . (x̄ = x̄ ′ ∧ x̄ ∈ Fs)}
= {x̄ ′ | x̄ ′ ∈ Ps , x̄

′ ∈ Fs}
= Ps ∩ Fs .

Rules for Computing Strongest Postcondition

Havoc Statement
Define:

spF (P, havoc(x)) = ∃x0.P[x := x0]

Exercise:
Precondition: {x ≥ 2 ∧ y ≤ 5 ∧ x ≤ y}.
Code: havoc(x)

∃x0. x0 ≥ 2 ∧ y ≤ 5 ∧ x0 ≤ y

i.e.
∃x0. 2 ≤ x0 ≤ y ∧ y ≤ 5

i.e.
2 ≤ y ∧ y ≤ 5

Note: If we simply removed conjuncts containing x ,
we would get just y ≤ 5.

Rules for Computing Strongest Postcondition

Assignment Statement
Define:

spF (P, x = e) = ∃x0.(P[x := x0] ∧ x = e[x := x0])

Indeed:
sp(Ps , ρ(x = e))
= {x̄ ′ | ∃x̄ . (x̄ ∈ Ps ∧ (x̄ , x̄ ′) ∈ ρ(x = e))}
= {x̄ ′ | ∃x̄ . (x̄ ∈ Ps ∧ x̄ ′ = x̄ [x → e(x̄)])}

Exercise

Precondition: {x ≥ 5 ∧ y ≥ 3}.
Code: x = x + y + 10

sp(x ≥ 5 ∧ y ≥ 3, x = x + y + 10) =

∃x0. x0 ≥ 5 ∧ y ≥ 3 ∧ x = x0 + y + 10

↔ y ≥ 3 ∧ x ≥ y + 15

Rules for Computing Strongest Postcondition

Sequential Composition
For relations we proved

sp(Ps , r1 ◦ r2) = sp(sp(Ps , r1), r2)

Therefore, define

spF (P, c1; c2) = spF (spF (P, c1), c2)

Nondeterministic Choice (Branches)
We had sp(Ps , r1 ∪ r2) = sp(Ps , r1) ∪ sp(Ps , r2). Therefore define:

spF (P, c1[]c2) = spF (P, c1) ∨ spF (P, c2)

Correctness

Show by induction on c1 that for all P:

sp(Ps , ρ(c1)) = {x̄ ′ | spF (P, c1)}

Size of Generated Formulas

The size of the formula can be exponential because each time we have
a nondeterministic choice, we double formula size:

spF (P, (c1[]c2); (c3[]c4)) =
spF (spF (P, c1[]c2), c3[]c4) =
spF (spF (P, c1) ∨ spF (P, c2), c3[]c4) =
spF (spF (P, c1) ∨ spF (P, c2), c3) ∨ spF (spF (P, c1) ∨ spF (P, c2), c4)

Reducing sp to Relation Composition

The following identity holds for relations:

sp(Ps , r) = ran(∆P ◦ r)

Based on this, we can compute sp(Ps , ρ(c1)) in two steps:

I compute formula F (assume(P); c1)

I existentially quantify over initial (non-primed) variables

Indeed, if F1 is a formula denoting relation r1, that is,

r1 = {(~x ,~x ′). F1(~x ,~x ′)}

then ∃~x .F1(~x ,~x ′) is formula denoting the range of r1:

ran(r1) = {~x ′. ∃~x .F1(~x ,~x ′)}

Moreover, the resulting approach does not have exponentially large
formulas.

