Lecturecise 9 Hoare Logic

2013

Introduction

We have seen how to translate programs into relations. We will use these relations in a proof system called Hoare logic. Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler.

Example proof:

$$
\begin{aligned}
& / /\{0<=y\} \\
& i=y ; \\
& / /\{0<=y \& i=y\} \\
& r=0 ; \\
& / /\{0<=y \& i=y \& r=0\} \\
& \text { while } / /\{r=(y-i) * x \& 0<=i\} \\
& (i>0)(\\
& / /\{r=(y-i) * x \& 0<i\} \\
& r=r+x ; \\
& / /\{r=(y-i+1) * x \& 0<i\} \\
& i=i-1 \\
& / /\{r=(y-i) * x \& 0<=i\} \\
&) \\
& / /\{r=x * y\}
\end{aligned}
$$

Hoare triples for Sets and Relations

When $P, Q \subseteq S$ (sets of states) and $r \subseteq S \times S$ (relation on states, command semantics) then the Hoare triple

$$
\{P\} r\{Q\}
$$

means

$$
\forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right)
$$

We call P precondition and Q postcondition.
The Hoare triple provides only a partial correctness guarantee, i.e. if P holds initially, and r executes and terminates, then Q must hold. If r does not terminate, then no guarantees on Q are provided.

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.

1. $\{j=a\} j:=j+1\{a=j+1\}$
2. $\{i=j\} i=j+i\{i>j\}$
3. $\{j=a+b\} i:=b ; j:=a\{j=2 * a\}$
4. $\{i>j\} j:=i+1 ; i:=j+1\{i>j\}$
5. $\{i!=j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i\{m>0\}$
6. $\{i=3 * j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i\{m-2 * j=0\}$
7. $\{x=b\}$ while $x>a$ do $x:=x-1\{b=a\}$

More postconditions

What is the relationship between these postconditions?

$$
\begin{array}{lll}
\{x=5\} & x:=x+2 & \{\mathbf{x}>\mathbf{0}\} \\
\{x=5\} & x:=x+2 & \{\mathbf{x}=\mathbf{7}\}
\end{array}
$$

- weakest conditions (predicates) correspond to largest sets
- strongest conditions (predicates) correspond to smallest sets
that satisfy a given property.
(Graphically, a stronger condition $x>0 \wedge y>0$ denotes one quadrant in plane, whereas a weaker condition $x>0$ denotes the entire half-plane.)

Strongest postcondition

Definition: For $P \subseteq S, r \subseteq S \times S$,

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

This is simply the relation image of a set.

Lemma: Characterization of sp

$s p(P, r)$ is the the smallest set Q such that $\{P\} r\{Q\}$, that is:

- $\{P\} r\{s p(P, r)\}$
- $\forall Q \subseteq S .\{P\} r\{Q\} \rightarrow s p(P, r) \subseteq Q$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
s p(P, r) & =\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
\end{aligned}
$$

Backward Propagation of Errors

If we have a relation r and a set of errors E, we can check if a program meets its specification by checking:

$$
\begin{gathered}
s p(P, r) \cap E=\emptyset \\
\forall y \cdot \neg(y \in \operatorname{sp}(P, r) \wedge y \in E) \\
\forall y . \neg((\exists x \cdot P(x) \wedge(x, y) \in r) \wedge y \in E) \\
\forall y . \neg \exists x .(P(x) \wedge(x, y) \in r \wedge y \in E) \\
\forall x, y \cdot \neg(x \in P \wedge(x, y) \in r \wedge y \in E) \\
\forall x, y \cdot \neg\left(x \in P \wedge(y, x) \in r^{-1} \wedge y \in E\right) \\
\forall x, y \cdot \neg\left(y \in E \wedge(y, x) \in r^{-1} \wedge x \in P\right) \\
\operatorname{sp}\left(E, r^{-1}\right) \cap P=\emptyset \\
P \subseteq \operatorname{sp}\left(E, r^{-1}\right)^{c}
\end{gathered}
$$

In other words, we obtain an upper bound on the set of states P from which we do not reach error. We next introduce the notion of weakest precondition, which allows us to express $\operatorname{sp}\left(E, r^{-1}\right)$ from Q given as complement of error states E.

Weakest precondition

Weakest precondition

Definition: for $Q \subseteq S, r \subseteq S \times S$,

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Note that this is in general not the same as $s p\left(Q, r^{-1}\right)$ when then relation is non-deterministic or partial.

Lemma: Characterization of wp

 $w p(r, Q)$ is the largest set P such that $\{P\} r\{Q\}$, that is:- $\{w p(r, Q)\} r\{Q\}$
- $\forall P \subseteq S .\{P\} r\{Q\} \rightarrow P \subseteq w p(r, Q)$

$$
\begin{aligned}
\{P\} r\{Q\} & \Leftrightarrow \forall s, s^{\prime} \in S .\left(s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right) \\
w p(r, Q) & =\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
\end{aligned}
$$

Exercise: Postcondition of inverse versus wp

Using definitions of Hoare triple, sp, wp in Hoare logic, prove the following: If instead of good states we look at the completement set of "error states", then wp corresponds to doing $s p$ backwards. In other words, we have the following:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

More Laws on Preconditions and Postconditions

Disjunctivity of sp

$$
\begin{aligned}
& s p\left(P_{1} \cup P_{2}, r\right)=s p\left(P_{1}, r\right) \cup s p\left(P_{2}, r\right) \\
& s p\left(P, r_{1} \cup r_{2}\right)=s p\left(P, r_{1}\right) \cup s p\left(P, r_{2}\right)
\end{aligned}
$$

Conjunctivity of wp

$$
\begin{aligned}
w p\left(r, Q_{1} \cap Q_{2}\right) & =w p\left(r, Q_{1}\right) \cap w p\left(r, Q_{2}\right) \\
w p\left(r_{1} \cup r_{2}, Q\right) & =w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right)
\end{aligned}
$$

Pointwise wp

$$
w p(r, Q)=\{s \mid s \in S \wedge s p(\{s\}, r) \subseteq Q\}
$$

Pointwise sp

$$
s p(P, r)=\bigcup_{s \in P} s p(\{s\}, r)
$$

Exercise: Three Forms of Hoare Triple

Show the following:
The following three conditions are equivalent:

- $\{P\} r\{Q\}$
- $P \subseteq w p(r, Q)$
- $s p(P, r) \subseteq Q$

Hoare Logic for Loop-free Code

Expanding Paths

The condition

$$
\{P\}\left(\bigcup_{i \in J} r_{i}\right)\{Q\}
$$

is equivalent to

$$
\forall i . i \in J \rightarrow\{P\} r_{i}\{Q\}
$$

Transitivity

If $\{P\} s_{1}\{Q\}$ and $\{Q\} s_{2}\{R\}$ then also $\{P\} s_{1} \circ s_{2}\{R\}$.
We write this as the following inference rule:

$$
\frac{\{P\} s_{1}\{Q\}, \quad\{Q\} s_{2}\{R\}}{\{P\} s_{1} \circ s_{2}\{R\}}
$$

Hoare Logic for Loops

The following inference rule holds:

$$
\frac{\{P\} s\{P\}, \quad n \geq 0}{\{P\} s^{n}\{P\}}
$$

Proof is by transitivity.
By Expanding Paths condition, we then have:

$$
\frac{\{P\} s\{P\}}{\{P\} \bigcup_{n \geq 0} s^{n}\{P\}}
$$

In fact, $\bigcup_{n \geq 0} s^{n}=s^{*}$, so we have

$$
\frac{\{P\} s\{P\}}{\{P\} s^{*}\{P\}}
$$

This is the rule for non-deterministic loops.

Exercise

We call a relation $r \subseteq S \times S$ functional if
$\forall x, y, z \in S .(x, y) \in r \wedge(x, z) \in r \rightarrow y=z$. For each of the following statements either give a counterexample or prove it. In the following, assume $Q \subset S$.
(i) for any $r, w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(ii) if r is functional, $w p(r, S \backslash Q)=S \backslash w p(r, Q)$
(iii) for any $r, w p(r, Q)=s p\left(Q, r^{-1}\right)$
(iv) if r is functional, $w p(r, Q)=s p\left(Q, r^{-1}\right)$
(v) for any $r, w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vi) if r is functional, $w p\left(r, Q_{1} \cup Q_{2}\right)=w p\left(r, Q_{1}\right) \cup w p\left(r, Q_{2}\right)$
(vii) for any $r, w p\left(r_{1} \cup r_{2}, Q\right)=w p\left(r_{1}, Q\right) \cup w p\left(r_{2}, Q\right)$
(viii) Alice has the following conjecture: For all sets S and relations $r \subseteq S \times S$ it holds:

$$
\left(S \neq \emptyset \wedge \operatorname{dom}(r)=S \wedge \triangle_{S} \cap r=\emptyset\right) \rightarrow(r \circ r \cap((S \times S) \backslash r) \neq \emptyset)
$$

She tried many sets and relations and did not find any counterexample. Is her conjecture true?
If so, prove it, otherwise provide a counterexample for which S is smallest.

Forward VCG

Some notation

If P is a formula on state and c a command, let $\operatorname{sp}_{F}(P, c)$ be the formula version of the strongest postcondition operator. $\operatorname{sp}_{F}(P, c)$ is therefore the formula Q that describes the set of states that can result from executing c in a state satisfying P.
Thus, we have

$$
s p_{F}(P, c)=Q
$$

implies

$$
s p((\{\bar{x} \mid P\}, \rho(c))=\{\bar{x} \mid Q\}
$$

We will denote the set of states satisfying a predicate by underscore s, i.e. for a predicate P, let P_{s} be the set of states that satisfies it:

$$
P_{s}=\{\bar{x} \mid P\}
$$

Forward VCG: Using Strongest Postcondition

We can use the $s p_{F}$ operator to compute verification conditions: for a triple $\{P\} c\{Q\}$ we can generate the verification condition $s p_{F}(P, c) \rightarrow Q$.

Assume Statement

Define:

$$
\operatorname{sp}_{F}(P, \operatorname{assume}(F))=P \wedge F
$$

Then

$$
\begin{aligned}
& \operatorname{sp}\left(P_{s}, \rho(\operatorname{assume}(F))\right) \\
& =\operatorname{sp}\left(P_{s}, \Delta_{F_{s}}\right) \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} \in P_{s} .\left(\left(\bar{x}, \bar{x}^{\prime}\right) \in \Delta_{F_{s}}\right)\right\} \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} \in P_{s .}\left(\bar{x}=\bar{x}^{\prime} \wedge \bar{x} \in F_{s}\right)\right\} \\
& =\left\{\bar{x}^{\prime} \mid \bar{x}^{\prime} \in P_{s}, \bar{x}^{\prime} \in F_{s}\right\} \\
& =P_{s} \cap F_{s} .
\end{aligned}
$$

Rules for Computing Strongest Postcondition

Havoc Statement

Define:

$$
\operatorname{sp}_{F}(P, \operatorname{havoc}(x))=\exists x_{0} \cdot P\left[x:=x_{0}\right]
$$

Exercise:

Precondition: $\{x \geq 2 \wedge y \leq 5 \wedge x \leq y\}$.
Code: havoc(x)

$$
\exists x_{0} \cdot x_{0} \geq 2 \wedge y \leq 5 \wedge x_{0} \leq y
$$

i.e.

$$
\exists x_{0} .2 \leq x_{0} \leq y \wedge y \leq 5
$$

i.e.

$$
2 \leq y \wedge y \leq 5
$$

Note: If we simply removed conjuncts containing x, we would get just $y \leq 5$.

Rules for Computing Strongest Postcondition

Assignment Statement

Define:

$$
s p_{F}(P, x=e)=\exists x_{0} \cdot\left(P\left[x:=x_{0}\right] \wedge x=e\left[x:=x_{0}\right]\right)
$$

Indeed:

$$
\begin{aligned}
& \operatorname{sp}\left(P_{s}, \rho(x=e)\right) \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} \cdot\left(\bar{x} \in P_{s} \wedge\left(\bar{x}, \bar{x}^{\prime}\right) \in \rho(x=e)\right)\right\} \\
& =\left\{\bar{x}^{\prime} \mid \exists \bar{x} .\left(\bar{x} \in P_{s} \wedge \bar{x}^{\prime}=\bar{x}[x \rightarrow e(\bar{x})]\right)\right\}
\end{aligned}
$$

Exercise

Precondition: $\{x \geq 5 \wedge y \geq 3\}$.
Code: $\mathrm{x}=\mathrm{x}+\mathrm{y}+10$

$$
\begin{aligned}
& s p(x \geq 5 \wedge y \geq 3, x=x+y+10)= \\
& \exists x_{0} \cdot x_{0} \geq 5 \wedge y \geq 3 \wedge x=x_{0}+y+10 \\
& \leftrightarrow y \geq 3 \wedge x \geq y+15
\end{aligned}
$$

Rules for Computing Strongest Postcondition

Sequential Composition

For relations we proved

$$
s p\left(P_{s}, r_{1} \circ r_{2}\right)=s p\left(s p\left(P_{s}, r_{1}\right), r_{2}\right)
$$

Therefore, define

$$
s p_{F}\left(P, c_{1} ; c_{2}\right)=s p_{F}\left(s p_{F}\left(P, c_{1}\right), c_{2}\right)
$$

Nondeterministic Choice (Branches)
We had $s p\left(P_{s}, r_{1} \cup r_{2}\right)=s p\left(P_{s}, r_{1}\right) \cup s p\left(P_{s}, r_{2}\right)$. Therefore define:

$$
\operatorname{sp}_{F}\left(P, c_{1}[] c_{2}\right)=\operatorname{sp}_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right)
$$

Correctness

Show by induction on c_{1} that for all P :

$$
s p\left(P_{s}, \rho\left(c_{1}\right)\right)=\left\{\bar{x}^{\prime} \mid \operatorname{sp}_{F}\left(P, c_{1}\right)\right\}
$$

Size of Generated Formulas

The size of the formula can be exponential because each time we have a nondeterministic choice, we double formula size:

$$
\begin{aligned}
& \operatorname{sp}_{F}\left(P,\left(c_{1}[] c_{2}\right) ;\left(c_{3}[] c_{4}\right)\right)= \\
& \operatorname{sp}_{F}\left(\operatorname{sp}_{F}\left(P, c_{1}[] c_{2}\right), c_{3}[] c_{4}\right)= \\
& \operatorname{sp}_{F}\left(\operatorname{sp}_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{3}[] c_{4}\right)= \\
& \operatorname{sp}_{F}\left(s p_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{3}\right) \vee \operatorname{sp}_{F}\left(\operatorname{sp}_{F}\left(P, c_{1}\right) \vee \operatorname{sp}_{F}\left(P, c_{2}\right), c_{4}\right)
\end{aligned}
$$

Reducing sp to Relation Composition

The following identity holds for relations:

$$
s p\left(P_{s}, r\right)=r a n\left(\Delta_{P} \circ r\right)
$$

Based on this, we can compute $\operatorname{sp}\left(P_{s}, \rho\left(c_{1}\right)\right)$ in two steps:

- compute formula $F\left(\operatorname{assume}(P) ; c_{1}\right)$
- existentially quantify over initial (non-primed) variables Indeed, if F_{1} is a formula denoting relation r_{1}, that is,

$$
r_{1}=\left\{\left(\vec{x}, \vec{x}^{\prime}\right) . F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)\right\}
$$

then $\exists \vec{x} \cdot F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)$ is formula denoting the range of r_{1} :

$$
\operatorname{ran}\left(r_{1}\right)=\left\{\vec{x}^{\prime} \cdot \exists \vec{x} \cdot F_{1}\left(\vec{x}, \vec{x}^{\prime}\right)\right\}
$$

Moreover, the resulting approach does not have exponentially large formulas.

