Lecturecise 9
Hoare Logic

2013

Introduction

We have seen how to translate programs into relations. We will use these
relations in a proof system called Hoare logic. Hoare logic is a way of
inserting annotations into code to make proofs about (imperative) program
behavior simpler.

/40 <=y}

i=vy;
/{0 <=y &i=y}
r=20;

//J{0<=y&i=y&r=0}
while //{r = (y—i)xx & 0 <= i}

: (i>0)(
Example proof: 70 = (y—i)x & 0 < i}
r=r -+ x;
J/{r=(y—i+1)xx & 0 < i}
i=i—1

J/{r = (y—i)xx & 0 <= i}

)
//{r =xx*y}

Hoare triples for Sets and Relations

When P, Q C S (sets of states) and r C S x S (relation on states,
command semantics) then the Hoare triple

{Pyr{c}

means
Vs,s’ €S.(se PA(s,s')er—s €Q)

We call P precondition and @ postcondition.

The Hoare triple provides only a partial correctness guarantee, i.e. if P

holds initially, and r executes and terminates, then @ must hold. If r
does not terminate, then no guarantees on Q are provided.

Exercise: Which Hoare triples are valid?

Assume all variables to be over integers.
L {j=a}lj=j+1{a=j+1}

2. {i = j} i=j+i {i > j}

3. {i=a+b}i=b ji=a{j =2xa}

4. {i > j} ji=i+1; i=j+1 {i > j}

5. {i !'=j} if i>j then m:=i—j else m:=j—i {m > 0}

6. {i = 3%} if i>j then m:=i—j else m:=j—i {m—2+j=0}

7. {x = b} while x>a do x:=x—1 {b = a}

More postconditions

What is the relationship between these postconditions?

{x=5} x:=x+2 {x>0}
{x=5} x=x+2 {x=7}
» weakest conditions (predicates) correspond to largest sets
» strongest conditions (predicates) correspond to smallest sets
that satisfy a given property.
(Graphically, a stronger condition x > 0 A y > 0 denotes one quadrant

in plane, whereas a weaker condition x > 0 denotes the entire
half-plane.)

Strongest postcondition
Definition: For PC S, r C S x S,

sp(P,r)=1{s'|3s.s€ PA(s,s') er}
This is simply the relation image of a set.

r

Lemma: Characterization of sp
sp(P,r) is the the smallest set Q such that {P}r{Q}, that is:
> {P}r{sp(P,r)}
» VQ C S. {P}r{Q} = sp(P,r) C @
r

{P} r{Q} &Vs,s €S.(se PA(s,s)er—s€Q)
sp(P,r)={s" | 3s.s € PA(s,s') e r}

Backward Propagation of Errors

If we have a relation r and a set of errors E, we can check if a program meets
its specification by checking:

sp(P,r)NE =10

Vy.=(y € sp(P,r) Ay € E)
Vy. =((3x.P(x) A (x,y) €r) ANy € E)
Vy. =3x.(P(x) A (x,y) e rAy € E)
Vx,y. 7(x € PA(x,y)€rAy€E)
Vx,y. 2(x € PA(y,x) €r"* Ay € E)
Vx,y. =(y € EA(y,x) € r" L Ax € P)
sp(E,r)YynP =19
P C sp(E,r)¢
In other words, we obtain an upper bound on the set of states P from which
we do not reach error. We next introduce the notion of weakest precondition,

which allows us to express sp(E, r~!) from @ given as complement of error
states E.

Weakest precondition

Weakest precondition
Definition: for Q C S, r C S x S,

wp(r,Q) = {s|Vs'.(s,s) er—s € Q}

Note that this is in general not the same as sp(Q, r 1) when then
relation is non-deterministic or partial.

r

Lemma: Characterization of wp

wp(r, Q) is the largest set P such that {P}r{Q}, that is:

> {wp(r,Q)}r{Q}
» VP CS. {P}r{Q} = P C wp(r,Q)

r

{P} r{Q}eVs,s €S (sePA(s,s)er—seQ)
wp(r, Q) ={s | Vs'.(s,s') e r = s’ € Q}

Exercise: Postcondition of inverse versus wp

Using definitions of Hoare triple, sp, wp in Hoare logic, prove the
following: If instead of good states we look at the completement set of
“error states”, then wp corresponds to doing sp backwards. In other
words, we have the following:

S\wp(r, Q) =sp(S\ Q,r™?)

More Laws on Preconditions and Postconditions

Disjunctivity of sp
sp(P1U Py, r) = sp(Py,r) Usp(Pa,r)
sp(P,r Ur) =sp(P,rn)Usp(P,r)
Conjunctivity of wp
wp(r, QN @) = wp(r, Q1) N wp(r, Q)
Wp(rl Un, Q) = Wp(rla Q) N Wp(r27 Q)
Pointwise wp
wo(r, Q) = {s| s € S Asp({s},r) € Q}

Pointwise sp

Sp(’D7 r) = U SP({S}v r)

seP

Exercise: Three Forms of Hoare Triple

Show the following:
The following three conditions are equivalent:

> {P1r{Q}
» P C wp(r,Q)
> sp(P,r) C @

Hoare Logic for Loop-free Code

Expanding Paths
The condition

{Pr (Un) {@3

ied
is equivalent to

Viied— {P}r{Q}

Transitivity
If {P}s1{Q} and {Q}s2{R} then also {P}s; o s2{R}.
We write this as the following inference rule:

{P}s1{Q}, {Q}s2{R}
{P}Sl o SQ{R}

Hoare Logic for Loops

The following inference rule holds:

{P}s{P}, n>0
{P}s"{P}

Proof is by transitivity.
By Expanding Paths condition, we then have:

{P}s{P}
{PU,s05™{P}

In fact, |J,>o 5" = s*, so we have

{P}s{P}
{P}s*{P}

This is the rule for non-deterministic loops.

Exercise

We call a relation r C S x S functional if
Vx,y,z € S.(x,y) € r A(x,z) € r = y = z. For each of the following statements
either give a counterexample or prove it. In the following, assume Q C S.

for any r, wp(r,S\ Q) = S\ wp(r, Q)
if r is functional, wp(r,S\ Q) = S\ wp(r, Q)
for any r, wp(r, Q) = sp(Q, r)
if r is functional, wp(r, Q) = sp(Q, r 1)
for any r, wp(r, Q1 U Q) = wp(r, Q1) U wp(r, Q)
if ris functional, wp(r, Q1 U @) = wp(r, 1) U wp(r, Q>)
for any r, wp(r U rn, Q) = wp(ri, Q) U wp(r, Q)
Alice has the following conjecture: For all sets S and relations r C S x S it
holds:
(S;é(DAdom(r)ZS/\Asﬁrz(Z)) — (rorﬂ((SXS)\r);ﬁ@)

She tried many sets and relations and did not find any counterexample. Is her
conjecture true?
If so, prove it, otherwise provide a counterexample for which S is smallest.

Forward VCG

Some notation

If P is a formula on state and ¢ a command, let spe(P, c) be the
formula version of the strongest postcondition operator. spg(P, ¢) is
therefore the formula @ that describes the set of states that can result
from executing c in a state satisfying P.

Thus, we have
SpF(P7 C) =Q

implies

sp(({X|P}, p(c)) = {X|@}

We will denote the set of states satisfying a predicate by underscore s,
i.e. for a predicate P, let Ps be the set of states that satisfies it:

Forward VCG: Using Strongest Postcondition

We can use the spr operator to compute verification conditions:
for a triple {P}c{Q} we can generate the verification condition
spe(P,c) — Q.

Assume Statement
Define:
spr(P,assume(F)) = P A F

Then
sp(Ps, p(assume(F)))
= Sp(PS7AFs)
={xX'|3x € Ps. (x,X') € Ar,)}
={X|3xePs.(x=XNx€F)}
={X'|x' € Ps, X' € Fs}
= PsNFs.

Rules for Computing Strongest Postcondition

Havoc Statement
Define:
spr(P, havoc(x)) = Ixo.P[x := xo]

Exercise:
Precondition: {x >2Ay <5Ax < y}.
Code: havoc(x)
dxp. x0 22Ny <5Axg <y

Elx0.2§x0§y/\y§5
2<yAy<5

Note: If we simply removed conjuncts containing x,
we would get just y < 5.

Rules for Computing Strongest Postcondition

Assignment Statement

Define:
spr(P,x = e) = 3xp.(P[x := x0] A x = e[x := xp])
Indeed:
sp(Ps, p(x = €))
={X'|3x. (x € Ps A (x,X) € p(x = ¢€))}
={X'|3x. (x € Ps ANX' = X[x — e(X)])}

Exercise

Precondition: {x >5Ay > 3}.
Code: x =x+y + 10

sp(x >5ANy >3, x=x+y+10) =
dxp. X0 >5Ay >3 N x=xp+y+10

<~ y>3Ax>y+15

Rules for Computing Strongest Postcondition

Sequential Composition
For relations we proved

sp(Ps, r1 o r2) = sp(sp(Ps, 1), 12)
Therefore, define

spe(P; c1; ©2) = spr(spe(P, 1), 2)

Nondeterministic Choice (Branches)
We had sp(Ps, 1 U r) = sp(Ps, r1) Usp(Ps, r2). Therefore define:

spr(P, cille2) = spr(P, c1) V spr(P, 2)

Correctness

Show by induction on ¢; that for all P:

sp(Ps, p(c1)) = {X"| spr(P,c1)}

Size of Generated Formulas

The size of the formula can be exponential because each time we have
a nondeterministic choice, we double formula size:

spr(P; (cille2); (cs[]ea)) =

spr(spr(P; cille2), csl]ca) =

spe(spe(P, c1) V spe(P, c2), c3[]ca) =

spr(spe(P, c1) V spe(P, c2), c3) V spe(spr(P; c1) V spr(P, c2), ca)

Reducing sp to Relation Composition
The following identity holds for relations:
sp(Ps,r) = ran(Apor)

Based on this, we can compute sp(Ps, p(c1)) in two steps:
» compute formula F(assume(P); c1)
» existentially quantify over initial (non-primed) variables

Indeed, if F1 is a formula denoting relation r1, that is,
n={(xX,x"). F(X,x")}
then 3X.F1(X,X’) is formula denoting the range of ry:
ran(r) = {X'. I%.F1(X,X")}

Moreover, the resulting approach does not have exponentially large
formulas.

