
Synthesis, Analysis, and Verification
SAV 2013

Acceleration

Filip Kone čný
filip.konecny@epfl.ch

SAV 2013 – Acceleration – p.1/45

Verification Conditions for
Programs with Loops

SAV 2013 – Acceleration – p.2/45

Recap: Verification Conditions (VC)

❖ Given:

• a program P with mutable variables x – transforms initial values to final values

• a specification ψ(x,x′) that describes how the program should transform initial
values to final values. x refer to initial values, x′ refer to final values.

❖ Check if P conforms to ψ

• compute relation RP (x,x′) – summary of P which precisely captures how P

transforms initial values to final values

• check if RP (x,x′) → ψ(x,x′) is valid

❖ The above can be done in certain cases

• Presburger statements, no loops

S ::= if (*) S else S | assume(F) | havoc(x) | S;S | ...

❖ RP was defined inductively on the structure of P

• for every statement S, relation RS captures the effects of executing S

❖ Can we do better?
SAV 2013 – Acceleration – p.3/45

VCs for Programs with Loops

❖ Let us extend the syntax by a loop construct:

while(*) body

• semantics: iterate the body any number of times (possibly zero times) and then
continue with the next statement

• the following snippets are equivalent

while(condition) {

body

}

while (*) {

assume(condition)

body

}

assume (! condition)

S ::= while (*) S | if (*) S else S | assume(F) | havoc(x) | S;S | ...

❖ Effect of a loop = effects of executing its body any number of times.

Rloop
def
= R

∗

body

captured by the reflexive and transitive closure of Rbody

❖ When can we compute R∗

body (when can we accelerate Rbody)?

SAV 2013 – Acceleration – p.4/45

VCs for Programs with Loops

❖ Which relations are accelerable?

• difference bounds, octagonal, and finite monoid affine relations

All of them are fragments of Presburger arithmetics. Given a relation R from one of these
classes, R∗ is a computable Presburger formula.

SAV 2013 – Acceleration – p.5/45

VCs for Programs with Loops

❖ Which relations are accelerable?

• difference bounds, octagonal, and finite monoid affine relations

All of them are fragments of Presburger arithmetics. Given a relation R from one of these
classes, R∗ is a computable Presburger formula.

❖ Example. Consider a program P and a specification ψ(x, x′) ≡ x′ ≥ 0

S1: x = 10

L: while (*)

S2: x = x+1

RS1
≡ x′ = 10

RS2
≡ x′ = x+ 1

SAV 2013 – Acceleration – p.5/45

VCs for Programs with Loops

❖ Which relations are accelerable?

• difference bounds, octagonal, and finite monoid affine relations

All of them are fragments of Presburger arithmetics. Given a relation R from one of these
classes, R∗ is a computable Presburger formula.

❖ Example. Consider a program P and a specification ψ(x, x′) ≡ x′ ≥ 0

S1: x = 10

L: while (*)

S2: x = x+1

RS1
≡ x′ = 10

RS2
≡ x′ = x+ 1

RL ≡ R∗

S2
≡ x′ ≥ x

SAV 2013 – Acceleration – p.5/45

VCs for Programs with Loops

❖ Which relations are accelerable?

• difference bounds, octagonal, and finite monoid affine relations

All of them are fragments of Presburger arithmetics. Given a relation R from one of these
classes, R∗ is a computable Presburger formula.

❖ Example. Consider a program P and a specification ψ(x, x′) ≡ x′ ≥ 0

S1: x = 10

L: while (*)

S2: x = x+1

RS1
≡ x′ = 10

RS2
≡ x′ = x+ 1

RL ≡ R∗

S2
≡ x′ ≥ x

RP ≡ RS1
◦RL ≡ x′ ≥ 10

SAV 2013 – Acceleration – p.5/45

VCs for Programs with Loops

❖ Which relations are accelerable?

• difference bounds, octagonal, and finite monoid affine relations

All of them are fragments of Presburger arithmetics. Given a relation R from one of these
classes, R∗ is a computable Presburger formula.

❖ Example. Consider a program P and a specification ψ(x, x′) ≡ x′ ≥ 0

S1: x = 10

L: while (*)

S2: x = x+1

RS1
≡ x′ = 10

RS2
≡ x′ = x+ 1

RL ≡ R∗

S2
≡ x′ ≥ x

RP ≡ RS1
◦RL ≡ x′ ≥ 10

RP ⇒ ψ is valid

SAV 2013 – Acceleration – p.5/45

Difference Bounds Relations

SAV 2013 – Acceleration – p.6/45

Difference Bounds Relations

❖ Conjunctions of atomic propositions x− y ≤ c, c ∈ Z

SAV 2013 – Acceleration – p.7/45

Difference Bounds Relations

❖ Conjunctions of atomic propositions x− y ≤ c, c ∈ Z

• Example 1:
(x′ = x+ 1) ≡ (x′ ≤ x+ 1) ∧ (x+ 1 ≤ x′) ≡ (x′ − x ≤ 1) ∧ (x− x′ ≤ −1)

SAV 2013 – Acceleration – p.7/45

Difference Bounds Relations

❖ Conjunctions of atomic propositions x− y ≤ c, c ∈ Z

• Example 1:
(x′ = x+ 1) ≡ (x′ ≤ x+ 1) ∧ (x+ 1 ≤ x′) ≡ (x′ − x ≤ 1) ∧ (x− x′ ≤ −1)

• Example 2:

R ≡
∧

x1−x
′

1 ≤ 3

x1−x
′

2 ≤ −5

x′2−x1 ≤ 2

x′1−x
′

2 ≤ −1

SAV 2013 – Acceleration – p.7/45

Difference Bounds Relations

❖ Conjunctions of atomic propositions x− y ≤ c, c ∈ Z

• Example 1:
(x′ = x+ 1) ≡ (x′ ≤ x+ 1) ∧ (x+ 1 ≤ x′) ≡ (x′ − x ≤ 1) ∧ (x− x′ ≤ −1)

• Example 2:

R ≡
∧

x1−x
′

1 ≤ 3

x1−x
′

2 ≤ −5

x′2−x1 ≤ 2

x′1−x
′

2 ≤ −1

x1 x′

1

x2 x′

2

3

−5
2 −1

• naturally encoded as graphs

x− y ≤ c iff x
c
−→ y

SAV 2013 – Acceleration – p.7/45

Difference Bounds Relations

❖ Conjunctions of atomic propositions x− y ≤ c, c ∈ Z

• Example 1:
(x′ = x+ 1) ≡ (x′ ≤ x+ 1) ∧ (x+ 1 ≤ x′) ≡ (x′ − x ≤ 1) ∧ (x− x′ ≤ −1)

• Example 2:

R ≡
∧

x1−x
′

1 ≤ 3

x1−x
′

2 ≤ −5

x′2−x1 ≤ 2

x′1−x
′

2 ≤ −1

x1 x′

1

x2 x′

2

3

−5
2 −1

M x1 x2 x
′

1 x
′

2

x1 ∞∞ 3 −5

x2 ∞∞∞ ∞

x′1 ∞∞∞−1

x′2 2 ∞∞ ∞

• naturally encoded as graphs and matrices

x− y ≤ c iff x
c
−→ y iff Mxy = c

SAV 2013 – Acceleration – p.7/45

Difference Bounds Relations

❖ Conjunctions of atomic propositions x− y ≤ c, c ∈ Z

• Example 1:
(x′ = x+ 1) ≡ (x′ ≤ x+ 1) ∧ (x+ 1 ≤ x′) ≡ (x′ − x ≤ 1) ∧ (x− x′ ≤ −1)

• Example 2:

R ≡
∧

x1−x
′

1 ≤ 3

x1−x
′

2 ≤ −5

x′2−x1 ≤ 2

x′1−x
′

2 ≤ −1

x1 x′

1

x2 x′

2

3

−5
2 −1

M x1 x2 x
′

1 x
′

2

x1 ∞∞ 3 −5

x2 ∞∞∞ ∞

x′1 ∞∞∞−1

x′2 2 ∞∞ ∞

x1 x2 x
′

1 x
′

2

x1 0 ∞ 3 −5

x2 ∞ 0 ∞ ∞

x′1 1 ∞ 0 −1

x′2 2 ∞ 5 0

• naturally encoded as graphs and matrices

x− y ≤ c iff x
c
−→ y iff Mxy = c

• canonic form: (shortest paths, Floyd-Warshall)

SAV 2013 – Acceleration – p.7/45

Difference Bounds Relations

❖ Conjunctions of atomic propositions x− y ≤ c, c ∈ Z

• Example 1:
(x′ = x+ 1) ≡ (x′ ≤ x+ 1) ∧ (x+ 1 ≤ x′) ≡ (x′ − x ≤ 1) ∧ (x− x′ ≤ −1)

• Example 2:

R ≡
∧

x1−x
′

1 ≤ 3

x1−x
′

2 ≤ −5

x′2−x1 ≤ 2

x′1−x
′

2 ≤ −1

x1 x′

1

x2 x′

2

3

−5
2 −1

M x1 x2 x
′

1 x
′

2

x1 ∞∞ 3 −5

x2 ∞∞∞ ∞

x′1 ∞∞∞−1

x′2 2 ∞∞ ∞

x1 x2 x
′

1 x
′

2

x1 0 ∞ 3 −5

x2 ∞ 0 ∞ ∞

x′1 1 ∞ 0 −1

x′2 2 ∞ 5 0

• naturally encoded as graphs and matrices

x− y ≤ c iff x
c
−→ y iff Mxy = c

• canonic form: (shortest paths, Floyd-Warshall)

• DB relation is satisfiable iff its graph encoding contains no negative cycle (can be
checked by Floyd-Warshall)

SAV 2013 – Acceleration – p.7/45

Operations

❖ Difference bounds relations are closed under

• intersection: R1(x,x
′) ∧R2(y,y

′)

• existential quantification: ∃x . R(x,x′) is a difference bounds relation

SAV 2013 – Acceleration – p.8/45

Operations

❖ Difference bounds relations are closed under

• intersection: R1(x,x
′) ∧R2(y,y

′)

• existential quantification: ∃x . R(x,x′) is a difference bounds relation

x1 x2 x
′

1 x
′

2

x1 0 ∞ 3 −5

x2 ∞ 0 ∞ ∞

x′1 1 ∞ 0 −1

x′2 2 ∞ 5 0

∃x1, x2 . R(x,x
′)

x′1 x
′

2

x′1 0 −1

x′2 5 0

SAV 2013 – Acceleration – p.8/45

Operations

❖ Difference bounds relations are closed under

• intersection: R1(x,x
′) ∧R2(y,y

′)

• existential quantification: ∃x . R(x,x′) is a difference bounds relation

x1 x2 x
′

1 x
′

2

x1 0 ∞ 3 −5

x2 ∞ 0 ∞ ∞

x′1 1 ∞ 0 −1

x′2 2 ∞ 5 0

∃x1, x2 . R(x,x
′)

x′1 x
′

2

x′1 0 −1

x′2 5 0

• relational composition

SAV 2013 – Acceleration – p.8/45

Operations

❖ Difference bounds relations are closed under

• intersection: R1(x,x
′) ∧R2(y,y

′)

• existential quantification: ∃x . R(x,x′) is a difference bounds relation

x1 x2 x
′

1 x
′

2

x1 0 ∞ 3 −5

x2 ∞ 0 ∞ ∞

x′1 1 ∞ 0 −1

x′2 2 ∞ 5 0

∃x1, x2 . R(x,x
′)

x′1 x
′

2

x′1 0 −1

x′2 5 0

• relational composition

R1(x,x
′) ◦R2(x,x

′) ≡ ∃y . R1(x,y) ∧ R2(y,x
′)

SAV 2013 – Acceleration – p.8/45

Encoding of x ≤ c and −x ≤ c

R ≡ x ≤ 100 ∧ x′ = x+ 1

is not a difference bounds relation, due to x ≤ 100.

SAV 2013 – Acceleration – p.9/45

Encoding of x ≤ c and −x ≤ c

R ≡ x ≤ 100 ∧ x′ = x+ 1

is not a difference bounds relation, due to x ≤ 100.

❖ Let xzero be a fresh variable:

Rzero ≡ x− xzero ≤ 100 ∧ x′ = x+ 1 ∧ x′zero = xzero

xzero is a parameter of Rzero since x′zero = xzero.

SAV 2013 – Acceleration – p.9/45

Encoding of x ≤ c and −x ≤ c

R ≡ x ≤ 100 ∧ x′ = x+ 1

is not a difference bounds relation, due to x ≤ 100.

❖ Let xzero be a fresh variable:

Rzero ≡ x− xzero ≤ 100 ∧ x′ = x+ 1 ∧ x′zero = xzero

xzero is a parameter of Rzero since x′zero = xzero.

❖ Any iteration of Rzero which starts with xzero = 0 corresponds to an iteration of R.

R ≡ Rzero[xzero := 0, x′zero := 0]

R∗ ≡ R∗

zero[xzero := 0, x′zero := 0]

SAV 2013 – Acceleration – p.9/45

Encoding of x ≤ c and −x ≤ c

R ≡ x ≤ 100 ∧ x′ = x+ 1

is not a difference bounds relation, due to x ≤ 100.

❖ Let xzero be a fresh variable:

Rzero ≡ x− xzero ≤ 100 ∧ x′ = x+ 1 ∧ x′zero = xzero

xzero is a parameter of Rzero since x′zero = xzero.

❖ Any iteration of Rzero which starts with xzero = 0 corresponds to an iteration of R.

R ≡ Rzero[xzero := 0, x′zero := 0]

R∗ ≡ R∗

zero[xzero := 0, x′zero := 0]

❖ Constructing Rzero from a conjunction of atoms of the form x− y ≤ c, x ≤ c, −x ≤ c

• let xzero be a fresh variable

• replace x ≤ c with x− xzero ≤ c

• replace −x ≤ c with xzero − x ≤ c

• add a constraint x′zero = xzero

We can without loss of generality consider relations like x ≤ 100 ∧ x′ = x+ 1 ∧ y′ = 100.
SAV 2013 – Acceleration – p.9/45

∗-consistent Relations

❖ A relation R(x,x′) is consistent (satisfiable) iff |= R(ν, ν′) for some valutaions ν, ν′ of
x,x′.

❖ A relation R is ∗-consistent iff Ri is consistent for all i ≥ 0.

• ∗-inconsistent iff not ∗-consistent

SAV 2013 – Acceleration – p.10/45

∗-consistent Relations

❖ A relation R(x,x′) is consistent (satisfiable) iff |= R(ν, ν′) for some valutaions ν, ν′ of
x,x′.

❖ A relation R is ∗-consistent iff Ri is consistent for all i ≥ 0.

• ∗-inconsistent iff not ∗-consistent

❖ Example 1: Relation 0 ≤ x ≤ 100 ∧ x′ = x+ 1 is ∗-inconsistent

R1 ≡ 0 ≤ x ≤ 100 ∧ x′ = x+ 1

R2 ≡ 0 ≤ x ≤ 99 ∧ x′ = x+ 2

R3 ≡ 0 ≤ x ≤ 98 ∧ x′ = x+ 3

. . .

R100 ≡ 0 ≤ x ≤ 1 ∧ x′ = x+ 100

R101 ≡ 0 ≤ x ≤ 0 ∧ x′ = x+ 101

R102 ≡ 0 ≤ x ≤ −1 ∧ x′ = x+ 102 ≡ false

• there is a lower bound on term x and an upper bound on x is decreasing

SAV 2013 – Acceleration – p.10/45

∗-consistent Relations

❖ Example 2: Relation x ≤ 100 ∧ x′ = x+ 1 is ∗-consistent

R1 ≡ x ≤ 100 ∧ x′ = x+ 1

R2 ≡ x ≤ 99 ∧ x′ = x+ 2

R3 ≡ x ≤ 98 ∧ x′ = x+ 3

. . .

R100 ≡ x ≤ 1 ∧ x′ = x+ 100

R101 ≡ x ≤ 0 ∧ x′ = x+ 101

R102 ≡ x ≤ −1 ∧ x′ = x+ 102

R103 ≡ x ≤ −2 ∧ x′ = x+ 103

. . .

• no lower bound on x

SAV 2013 – Acceleration – p.11/45

∗-consistent Relations

❖ Example 2: Relation x ≤ 100 ∧ x′ = x+ 1 is ∗-consistent

R1 ≡ x ≤ 100 ∧ x′ = x+ 1

R2 ≡ x ≤ 99 ∧ x′ = x+ 2

R3 ≡ x ≤ 98 ∧ x′ = x+ 3

. . .

R100 ≡ x ≤ 1 ∧ x′ = x+ 100

R101 ≡ x ≤ 0 ∧ x′ = x+ 101

R102 ≡ x ≤ −1 ∧ x′ = x+ 102

R103 ≡ x ≤ −2 ∧ x′ = x+ 103

. . .

• no lower bound on x

Remark: If Ri is inconsistent, so is Ri+1, Ri+2, . . .

SAV 2013 – Acceleration – p.11/45

∗-consistent Relations

❖ Example 2: Relation x ≤ 100 ∧ x′ = x+ 1 is ∗-consistent

R1 ≡ x ≤ 100 ∧ x′ = x+ 1

R2 ≡ x ≤ 99 ∧ x′ = x+ 2

R3 ≡ x ≤ 98 ∧ x′ = x+ 3

. . .

R100 ≡ x ≤ 1 ∧ x′ = x+ 100

R101 ≡ x ≤ 0 ∧ x′ = x+ 101

R102 ≡ x ≤ −1 ∧ x′ = x+ 102

R103 ≡ x ≤ −2 ∧ x′ = x+ 103

. . .

• no lower bound on x

Remark: If Ri is inconsistent, so is Ri+1, Ri+2, . . .

❖ Transitive closures for ∗-inconsistent relations (degenerate case).

• if Rk ⇔ false for some k > 0, then R∗ can be expressed as

k−1∨

i=0

R
i

SAV 2013 – Acceleration – p.11/45

Towards Transitive Closures

SAV 2013 – Acceleration – p.12/45

Transitive Closures

❖ Given a relation R, consider an infinite sequence of powers

R
0
, R

1
, R

2
, R

3
, R

4
, . . .

• R∗ is a disjuction of elements in this sequence

❖ Example. Consider relation R defined as x′ = y + 1 ∧ y′ = x

• iterating R from x = 0 ∧ y = 10

0 1 2 3 4 5 6

x 0 11 1 12 2 13 3

y 10 0 11 1 12 2 13

• infinite sequence of powers
R0 R1 R2 R3 R4 R5 R6

x′ = x x′ = y + 1 x′ = x+ 1 x′ = y + 2 x′ = x+ 2 x′ = y + 3 x′ = x+ 3 . . .

y′ = y y′ = x y′ = y + 1 y′ = x+ 1 y′ = y + 2 y′ = x+ 2 y′ = y + 3 . . .

SAV 2013 – Acceleration – p.13/45

Transitive Closures

R0 R1 R2 R3 R4 R5 R6

x′ = x x′ = y + 1 x′ = x+ 1 x′ = y + 2 x′ = x+ 2 x′ = y + 3 x′ = x+ 3 . . .

y′ = y y′ = x y′ = y + 1 y′ = x+ 1 y′ = y + 2 y′ = x+ 2 y′ = y + 3 . . .

Even powers can be described by a formula

∞∨

i=0

R
2i ⇔ ∃ℓ ≥ 0 . x′ = x+ ℓ ∧ y′ = y + ℓ

The formula x′ = x+ ℓ ∧ y′ = y + ℓ is a closed form of {R2i}∞i=0.

SAV 2013 – Acceleration – p.14/45

Transitive Closures

R0 R1 R2 R3 R4 R5 R6

x′ = x x′ = y + 1 x′ = x+ 1 x′ = y + 2 x′ = x+ 2 x′ = y + 3 x′ = x+ 3 . . .

y′ = y y′ = x y′ = y + 1 y′ = x+ 1 y′ = y + 2 y′ = x+ 2 y′ = y + 3 . . .

Even powers can be described by a formula

∞∨

i=0

R
2i ⇔ ∃ℓ ≥ 0 . x′ = x+ ℓ ∧ y′ = y + ℓ

The formula x′ = x+ ℓ ∧ y′ = y + ℓ is a closed form of {R2i}∞i=0.
Then, ∨

∞

i=0R
2i+1 ⇔

∨
∞

i=0(R
2i ◦R)

⇔
(∨

∞

i=0R
2i
)
◦R

⇔
(
∃ℓ ≥ 0 . x′ = x+ ℓ ∧ y′ = y + ℓ

)
◦R

SAV 2013 – Acceleration – p.14/45

Transitive Closures

R0 R1 R2 R3 R4 R5 R6

x′ = x x′ = y + 1 x′ = x+ 1 x′ = y + 2 x′ = x+ 2 x′ = y + 3 x′ = x+ 3 . . .

y′ = y y′ = x y′ = y + 1 y′ = x+ 1 y′ = y + 2 y′ = x+ 2 y′ = y + 3 . . .

Even powers can be described by a formula

∞∨

i=0

R
2i ⇔ ∃ℓ ≥ 0 . x′ = x+ ℓ ∧ y′ = y + ℓ

The formula x′ = x+ ℓ ∧ y′ = y + ℓ is a closed form of {R2i}∞i=0.
Then, ∨

∞

i=0R
2i+1 ⇔

∨
∞

i=0(R
2i ◦R)

⇔
(∨

∞

i=0R
2i
)
◦R

⇔
(
∃ℓ ≥ 0 . x′ = x+ ℓ ∧ y′ = y + ℓ

)
◦R

R∗ ⇔
∨

(
∃ℓ ≥ 0 . x′ = x+ ℓ ∧ y′ = y + ℓ

)
(
∃ℓ ≥ 0 . x′ = x+ ℓ ∧ y′ = y + ℓ

)
◦R

SAV 2013 – Acceleration – p.14/45

Transitive Closures

Assuming a certain notion of periodicity:

R0 R1 . . . Rb Rb+1 . . . Rb+c Rb+c+1 . . . Rb+2c Rb+2c+1 . . . Rb+ic

= = = =

R̂b,c(0) R̂b,c(1) R̂b,c(2) R̂b,c(i)

Periodicity manifests itself in existence of integers b ≥ 0, c > 0 and a formula R̂b,c(ℓ) –
closed form of {Rb+ci}∞i=0

R
b+ci ≡ R̂b,c(i) for each i ≥ 0

SAV 2013 – Acceleration – p.15/45

Transitive Closures

Assuming a certain notion of periodicity:

R0 R1 . . . Rb Rb+1 . . . Rb+c Rb+c+1 . . . Rb+2c Rb+2c+1 . . . Rb+ic

= = = =

R̂b,c(0) R̂b,c(1) R̂b,c(2) R̂b,c(i)

Periodicity manifests itself in existence of integers b ≥ 0, c > 0 and a formula R̂b,c(ℓ) –
closed form of {Rb+ci}∞i=0

R
b+ci ≡ R̂b,c(i) for each i ≥ 0

R̂b,c(0) ∨ R̂b,c(1) ∨ R̂b,c(2) ∨ . . . ≡ ∃ℓ ≥ 0 . R̂b,c(ℓ)

SAV 2013 – Acceleration – p.15/45

Transitive Closures

Assuming a certain notion of periodicity:

R0 R1 . . . Rb Rb+1 . . . Rb+c Rb+c+1 . . . Rb+2c Rb+2c+1 . . . Rb+ic

= = = =

R̂b,c(0) R̂b,c(1) R̂b,c(2) R̂b,c(i)

Periodicity manifests itself in existence of integers b ≥ 0, c > 0 and a formula R̂b,c(ℓ) –
closed form of {Rb+ci}∞i=0

R
b+ci ≡ R̂b,c(i) for each i ≥ 0

R̂b,c(0) ∨ R̂b,c(1) ∨ R̂b,c(2) ∨ . . . ≡ ∃ℓ ≥ 0 . R̂b,c(ℓ)

From R̂b,c(ℓ) to the transitive closure. We can write R∗ as:

R
∗ =

b−1∨

i=0

R
i ∨

(
∃ℓ ≥ 0 . R̂b,c(ℓ)

)
◦
c−1∨

i=0

R
i

SAV 2013 – Acceleration – p.15/45

Periodic Relations

SAV 2013 – Acceleration – p.16/45

Periodic Sequences

For some b ≥ 0, c ≥ 1, λ0, . . . , λc−1 ∈ Z∞

s0 . . . sb sb+1 . . . sb+c−1 sb+c sb+c+1 . . . sb+2c sb+2c+1 . . .

λ0 λ0

λ1 λ1

λ0

λ1

The smallest b, c and λ0, λ1, . . . , λc−1 for which the above holds are called the prefix,
period and rates of {sk}∞k=0, respectivelly.

SAV 2013 – Acceleration – p.17/45

Periodic Sequences

For some b ≥ 0, c ≥ 1, λ0, . . . , λc−1 ∈ Z∞

s0 . . . sb sb+1 . . . sb+c−1 sb+c sb+c+1 . . . sb+2c sb+2c+1 . . .

λ0 λ0

λ1 λ1

λ0

λ1

The smallest b, c and λ0, λ1, . . . , λc−1 for which the above holds are called the prefix,
period and rates of {sk}∞k=0, respectivelly.

Example. b = 2, c = 2, λ0 = 2, λ1 = −3.

0 0 0 100 2 97 4 94 6 91 . . .

2 2 2

−3 −3 −3

2

−3

SAV 2013 – Acceleration – p.17/45

Periodic Sequences

For some b ≥ 0, c ≥ 1, λ0, . . . , λc−1 ∈ Z∞

s0 . . . sb sb+1 . . . sb+c−1 sb+c sb+c+1 . . . sb+2c sb+2c+1 . . .

λ0 λ0

λ1 λ1

λ0

λ1

The smallest b, c and λ0, λ1, . . . , λc−1 for which the above holds are called the prefix,
period and rates of {sk}∞k=0, respectivelly.

Example. b = 2, c = 2, λ0 = 2, λ1 = −3.

0 0 0 100 2 97 4 94 6 91 . . .

2 2 2

−3 −3 −3

2

−3

Another way of defining periodicity: ∀n ≥ 0 . sb+nc = sb + n · λ0

SAV 2013 – Acceleration – p.17/45

Periodic Matrix Sequences

For some b ≥ 0, c ≥ 1, λ0, . . . , λc−1 ∈ Z
m×m
∞

M0
. . . Mb Mb+1

. . . Mb+c−1 Mb+c Mb+c+1
. . . Mb+2c Mb+2c+1

. . .

Λ0 Λ0

Λ1 Λ1

Λ0

Λ1

SAV 2013 – Acceleration – p.18/45

Periodic Matrix Sequences

For some b ≥ 0, c ≥ 1, λ0, . . . , λc−1 ∈ Z
m×m
∞

M0
. . . Mb Mb+1

. . . Mb+c−1 Mb+c Mb+c+1
. . . Mb+2c Mb+2c+1

. . .

Λ0 Λ0

Λ1 Λ1

Λ0

Λ1

0 ∞ 0 ∞
∞ 0 ∞ 0
0 ∞ 0 ∞
0 ∞ ∞ 0

0 0 −1 0
∞ 0 ∞ 0
1 1 0 1
∞ 0 ∞ 0

0 −1 −2 0
∞ 0 ∞ 0
2 1 0 1
∞ 0 ∞ 0

0 −2 −3 0
∞ 0 ∞ 0
3 1 0 1
∞ 0 ∞ 0

0 −3 −4 0
∞ 0 ∞ 0
4 1 0 1
∞ 0 ∞ 0

 . . .

b = c = 1, λ =

0 −1 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

SAV 2013 – Acceleration – p.18/45

Periodic Relations

A relation R(x,x′) is called periodic if and only if either:

SAV 2013 – Acceleration – p.19/45

Periodic Relations

A relation R(x,x′) is called periodic if and only if either:

• R is ∗-inconsistent

SAV 2013 – Acceleration – p.19/45

Periodic Relations

A relation R(x,x′) is called periodic if and only if either:

• R is ∗-inconsistent

R0 R1 R2 . . . Ri−1 false false false . . .

SAV 2013 – Acceleration – p.19/45

Periodic Relations

A relation R(x,x′) is called periodic if and only if either:

• R is ∗-inconsistent

R0 R1 R2 . . . Ri−1 false false false . . .

example: 1 ≤ x ≤ 100 ∧ x′ = x+ 1

SAV 2013 – Acceleration – p.19/45

Periodic Relations

A relation R(x,x′) is called periodic if and only if either:

• R is ∗-inconsistent

R0 R1 R2 . . . Ri−1 false false false . . .

example: 1 ≤ x ≤ 100 ∧ x′ = x+ 1

• R is ∗-consistent and, given mappings σ : R → Z
m×m
∞ and ρ : Zm×m

∞ → R:

R0 . . . Rb Rb+1 . . . Rb+c−1 Rb+c Rb+c+1 . . . Rb+2c Rb+2c+1 . . .

SAV 2013 – Acceleration – p.19/45

Periodic Relations

A relation R(x,x′) is called periodic if and only if either:

• R is ∗-inconsistent

R0 R1 R2 . . . Ri−1 false false false . . .

example: 1 ≤ x ≤ 100 ∧ x′ = x+ 1

• R is ∗-consistent and, given mappings σ : R → Z
m×m
∞ and ρ : Zm×m

∞ → R:

R0 . . . Rb Rb+1 . . . Rb+c−1 Rb+c Rb+c+1 . . . Rb+2c Rb+2c+1 . . .

M0
. . . Mb Mb+1

. . . Mb+c−1 Mb+c Mb+c+1
. . . Mb+2c Mb+2c+1

. . .

σ ρ

SAV 2013 – Acceleration – p.19/45

Periodic Relations

A relation R(x,x′) is called periodic if and only if either:

• R is ∗-inconsistent

R0 R1 R2 . . . Ri−1 false false false . . .

example: 1 ≤ x ≤ 100 ∧ x′ = x+ 1

• R is ∗-consistent and, given mappings σ : R → Z
m×m
∞ and ρ : Zm×m

∞ → R:

R0 . . . Rb Rb+1 . . . Rb+c−1 Rb+c Rb+c+1 . . . Rb+2c Rb+2c+1 . . .

M0
. . . Mb Mb+1

. . . Mb+c−1 Mb+c Mb+c+1
. . . Mb+2c Mb+2c+1

. . .

σ ρ Λ0 Λ0

Λ1 Λ1

Λ0

Λ1

SAV 2013 – Acceleration – p.19/45

Periodic Relations

A relation R(x,x′) is called periodic if and only if either:

• R is ∗-inconsistent

R0 R1 R2 . . . Ri−1 false false false . . .

example: 1 ≤ x ≤ 100 ∧ x′ = x+ 1

• R is ∗-consistent and, given mappings σ : R → Z
m×m
∞ and ρ : Zm×m

∞ → R:

R0 . . . Rb Rb+1 . . . Rb+c−1 Rb+c Rb+c+1 . . . Rb+2c Rb+2c+1 . . .

M0
. . . Mb Mb+1

. . . Mb+c−1 Mb+c Mb+c+1
. . . Mb+2c Mb+2c+1

. . .

σ ρ Λ0 Λ0

Λ1 Λ1

Λ0

Λ1

∀n ≥ 0 . Rb+nc ⇔ ρ(σ(Rb) + n · Λ0)

SAV 2013 – Acceleration – p.19/45

Transitive Closure of DB Relations

while (x<=y)

x = x+1
x ≤ y ∧ x′ = x+ 1 ∧ y′ = y

❖ Mapping σ is the matrix encoding of DB relations: σ(R) =MR

❖ Infinite sequence σ(R0), σ(R1), σ(R2), σ(R3), σ(R4), . . .

x y x′ y′

x 0 ∞ 0 ∞
y ∞ 0 ∞ 0

x′ 0 ∞ 0 ∞
y′ 0 ∞ ∞ 0

x y x′ y′

x 0 0 −1 0
y ∞ 0 ∞ 0

x′ 1 1 0 1
y′ ∞ 0 ∞ 0

x y x′ y′

x 0 −1 −2 0
y ∞ 0 ∞ 0

x′ 2 1 0 1
y′ ∞ 0 ∞ 0

x y x′ y′

x 0 −2 −3 0
y ∞ 0 ∞ 0

x′ 3 1 0 1
y′ ∞ 0 ∞ 0

x y x′ y′

x 0 −3 −4 0
y ∞ 0 ∞ 0

x′ 4 1 0 1
y′ ∞ 0 ∞ 0

 .

b = c = 1,Λ =

0 −1 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 σ(R1+ℓ) = R

b + ℓ · Λ =

0 0− ℓ −1− ℓ 0
∞ 0 ∞ 0

1 + ℓ 1 0 1
∞ 0 ∞ 0

R̂b,c(ℓ,x,x
′) ≡ x ≤ y − ℓ ∧ x′ = x+ 1 + ℓ ∧ y′ = y ∧ x′ − y ≤ 1 ∧ x′ − y

′ ≤ 1 ∧ y′ − x ≤ 0

R
∗ ≡ R

0 ∨ ∃ℓ ≥ 0 . R̂b,c(ℓ,x,x
′)

SAV 2013 – Acceleration – p.20/45

Acceleration Algorithm

SAV 2013 – Acceleration – p.21/45

Accelerating Periodic Relation

❖ Assuming a relation is periodic, compute its transitive closure.

• find prefix b, period c, and rate Λ

❖ Theorem 1. The following classes of relations are periodic

• difference bounds relations

• octagonal relations

• finite monoid affine relations

❖ Given a relation R from one of the above classes, no precise characterization of (or an
algorithm computing) b, c is known.

• search for candidates for b, c and check if they are the right ones

SAV 2013 – Acceleration – p.22/45

Main Idea

Guess a prefix b and a period c such that:

Rb

Mb

Rb+c

Mb+c

Rb+2c

Mb+2c

Λ Λ

σ

for some matrix Λ ∈ Z
m×m
∞

σ(Rc+b) = Λ + σ(Rb) and σ(R2c+b) = Λ + σ(Rc+b)

SAV 2013 – Acceleration – p.23/45

Main Idea

❖ Verify the guess. ∀n ≥ 0 . Rb+nc ⇔ ρ(σ(Rb) + n · Λ) (Q′

1)

❖ Validity of the above formula cannot be checked (Rb+nc is not known).

∀n ≥ 0 . ρ(σ(Rb) + n · Λ) ◦Rc ⇔ ρ(σ(Rb) + (n+ 1) · Λ) (Q1)

R0

M0

. . .

. . .

Rb

Mb

. . .

. . .

Rb+nc

Mb+nc

Rb+(n+1)c

Mb+(n+1)c

nΛ

(n+ 1)Λ

σ ρ ρ

◦Rc

SAV 2013 – Acceleration – p.24/45

Main Idea

∀n ≥ 0 . Rb+nc ⇔ ρ(σ(Rb) + n · Λ) (Q′

1)

is equivalent to

∀n ≥ 0 . ρ(σ(Rb) + n · Λ) ◦Rc ⇔ ρ(σ(Rb) + (n+ 1) · Λ) (Q1)

(Q′

1) ⇒ (Q1)

Rb+nc ◦Rc ⇔ Rb+(n+1)c

m m

ρ(σ(Rb) + n · Λ) ◦Rc ρ(σ(Rb) + (n+ 1)Λ)

SAV 2013 – Acceleration – p.25/45

Main Idea

∀n ≥ 0 . Rb+nc ⇔ ρ(σ(Rb) + n · Λ) (Q′

1)

is equivalent to

∀n ≥ 0 . ρ(σ(Rb) + n · Λ) ◦Rc ⇔ ρ(σ(Rb) + (n+ 1) · Λ) (Q1)

(Q′

1) ⇒ (Q1)

Rb+nc ◦Rc ⇔ Rb+(n+1)c

m m

ρ(σ(Rb) + n · Λ) ◦Rc ρ(σ(Rb) + (n+ 1)Λ)

(Q1) ⇒ (Q′

1) (by induction)

• base case – (Q′

1) for n = 0 becomes Rb ⇔ Rb

• induction step – assuming Rb+nc = ρ(σ(Rb) + n · Λ)

Rb+(n+1)c ⇔ Rb+nc ◦Rc

⇔ ρ(σ(Rb) + n · Λ) ◦Rc by ind. hypothesis

⇔ ρ(σ(Rb) + (n+ 1) · Λ) by (Q′

1)
SAV 2013 – Acceleration – p.25/45

Transitive Closure Algorithm

1. foreach b := 1, 2, . . . do
2. foreach c := 1, 2, . . . , b do
3. foreach k := 0, 1, 2 do
4. if Rkc+b ⇔ false then return R∗ ≡

∨kc+b−1
i=0 Ri

5. endfor
6. if exists Λ ∈ Z

m×m
∞ : σ(Rb+c) = σ(Rb) + Λ and σ(Rb+2c) = σ(Rb+c) + Λ then

7. if forall n ≥ 0 : ρ(σ(Rb) + n · Λ) ◦Rc ⇔ ρ(σ(Rb) + (n+ 1) · Λ) (Q1) then
8. return R∗ ≡

∨b−1
i=0 R

i ∨ ∃k ≥ 0 .
∨c−1
i=0 ρ(σ(R

b) + k · Λ) ◦Ri

9. endif
10. endif
11. endfor
12. endfor

Termination of the algorithm is guaranteed for periodic relations

The following universal query needs to be answered effectivelly:

∀n ≥ 0 . ρ(σ(Rb) + n · Λ) ◦Rc ⇔ ρ(σ(Rb) + (n+ 1) · Λ) (Q1)

SAV 2013 – Acceleration – p.26/45

Illustration of the Algorithm

R ≡ x
′ = y + 1 ∧ y′ = x

❖ R has no guard and thus is ∗-consistent. The test at line 4 therefore always fails.

σ(R1) σ(R2) σ(R3) σ(R4) σ(R5) σ(R6)

x y x′ y′

x 0 ∞ ∞ 0
y ∞ 0 −1 ∞
x′ ∞ 1 0 ∞
y′ 0 ∞ ∞ 0

x y x′ y′

x 0 ∞ −1 ∞
y ∞ 0 ∞ −1

x′ 1 ∞ 0 ∞
y′ ∞ 1 ∞ 0

x y x′ y′

x 0 ∞ ∞ −1
y ∞ 0 −2 ∞
x′ ∞ 2 0 ∞
y′ 1 ∞ ∞ 0

x y x′ y′

x 0 ∞ −2 ∞
y ∞ 0 ∞ −2

x′ 2 ∞ 0 ∞
y′ ∞ 2 ∞ 0

x y x′ y′

x 0 ∞ ∞ −2
y ∞ 0 −3 ∞
x′ ∞ 3 0 ∞
y′ 2 ∞ ∞ 0

x y x′ y′

x 0 ∞ −3 ∞
y ∞ 0 ∞ −3

x′ 3 ∞ 0 ∞
y′ ∞ 3 ∞ 0

 . . .

Let denote σ(Ri) as Mi, for each i ≥ 0

❖ (b, c) = (1, 1) There is no Λ such that M2 =M1 +Λ∧M3 =M2 +Λ. Test at line 6 fails.

❖ (b, c) = (2, 1) There is no Λ such that M3 =M2 +Λ∧M4 =M3 +Λ. Test at line 6 fails.

❖ (b, c) = (2, 2) Test at line 6 succeeds, M4 =M2 + Λ ∧M6 =M4 + Λ for

Λ =

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

SAV 2013 – Acceleration – p.27/45

Illustration of the Algorithm

R ≡
∧ x′ = y + 1

y′ = x
σ(Rb) =

x y x′ y′

x 0 ∞ −1 ∞
y ∞ 0 ∞ −1

x′ 1 ∞ 0 ∞
y′ ∞ 1 ∞ 0

 Λ =

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

• (line 7) The formula (Q1) is constructed as follows

∀n ≥ 0 . ρ(σ(Rb) + ℓ · Λ)︸ ︷︷ ︸
ψ1

◦Rc

︸ ︷︷ ︸
ψ2

⇔ ρ(σ(Rb) + (ℓ+ 1) · Λ)︸ ︷︷ ︸
φ3

(Q1)

ψ1 ≡ ρ(σ(R2) + ℓ · Λ) ≡ ρ(

0 ∞ −1− ℓ ∞
∞ 0 ∞ −1− ℓ

1 + ℓ ∞ 0 ∞
∞ 1 + ℓ ∞ 0

) ≡

∧ x′ = x+ 1 + ℓ

y′ = y + 1 + ℓ

ψ2 ≡ ψ1 ◦R
c ≡

(
∧ x′ = x+ 1 + ℓ

y′ = y + 1 + ℓ

)
◦

(
∧ x′ = x+ 1

y′ = y + 1

)
≡
∧ x′ = x+ 2 + ℓ

y′ = y + 2 + ℓ

ψ3 ≡ ρ(σ(R2) + ℓ · Λ) ≡ ρ(

0 ∞ −2− ℓ ∞
∞ 0 ∞ −2− ℓ

2 + ℓ ∞ 0 ∞
∞ 2 + ℓ ∞ 0

) ≡

∧ x′ = x+ 2 + ℓ

y′ = y + 2 + ℓ

(Q1) ≡ ∀n ≥ 0 . ψ1 ⇔ ψ3

• (Q1) is valid and the algorithm returns

R
0 ∨R1 ∨ (∃ℓ ≥ 0 . x′ = x+ 1 + ℓ ∧ y′ = y + 1 + ℓ) ◦ (R0 ∨R1)

SAV 2013 – Acceleration – p.28/45

∗-inconsistent Periodic Relations

R : x′ = x+ 1 ∧ 0 ≤ x ≤ 105

Ri is inconsistent for i > 105 and behaves periodically for i ≤ 105

Detect consistent interval (spares time) and check for its periodicity (spares disjuncts)

SAV 2013 – Acceleration – p.29/45

∗-inconsistent Periodic Relations

R : x′ = x+ 1 ∧ 0 ≤ x ≤ 105

Ri is inconsistent for i > 105 and behaves periodically for i ≤ 105

Detect consistent interval (spares time) and check for its periodicity (spares disjuncts)

R0

M0

. . .

. . .

Rb

Mb

Rb+c

Mb+c

. . .

. . .

Rb+(n0−1)c

Mb+(n0−1)c

Rb+n0c

Mb+n0c

False

⊥

False

⊥

. . .

. . .

Λ0 Λ0Λ0

σ ρ

SAV 2013 – Acceleration – p.29/45

∗-inconsistent Periodic Relations

R : x′ = x+ 1 ∧ 0 ≤ x ≤ 105

Ri is inconsistent for i > 105 and behaves periodically for i ≤ 105

Detect consistent interval (spares time) and check for its periodicity (spares disjuncts)

R0

M0

. . .

. . .

Rb

Mb

Rb+c

Mb+c

. . .

. . .

Rb+(n0−1)c

Mb+(n0−1)c

Rb+n0c

Mb+n0c

False

⊥

False

⊥

. . .

. . .

Λ0 Λ0Λ0

σ ρ

Termination can be accelerated by the existential query:

∃n ≥ 0 . ρ(σ(Rb) + n · Λ) ⇔ false (Q2)

SAV 2013 – Acceleration – p.29/45

Dealing with Quantifiers

For the classes of DB relations, octagonal relations and finite monoid affine
transformations, the quantified queries (Q1) and (Q2) can be expressed in Presburger
arithmetic.

SAV 2013 – Acceleration – p.30/45

Dealing with Quantifiers

For the classes of DB relations, octagonal relations and finite monoid affine
transformations, the quantified queries (Q1) and (Q2) can be expressed in Presburger
arithmetic.

For DB relations and octagonal relations, there are efficient equivalent conditions that can

be checked without e.g., using expensive quantifier elimination

SAV 2013 – Acceleration – p.30/45

Finite Monoid Affine
Relations

SAV 2013 – Acceleration – p.31/45

Definition

x = {x1, x2, . . . , xN}, x′ = {x′1, x
′

2, . . . , x
′

N}

❖ Finite monoid linear transformation is a linear arithmetic constraint of the form

x
′ = A · x

• A ∈ Z
N×N

• {Ai | i ≥ 0} is finite

❖ Finite monoid affine transformation is a linear arithmetic constraint of the form

x
′ = A · x+ b

• A ∈ Z
N×N , b ∈ Z

N

• {Ai | i ≥ 0} is finite

❖ Finite monoid affine relation is a formula of the form

φ(x) ∧ x
′ = A · x+ b

• x′ = A · x+ b is a fin. monoid aff. transformation

• ψ(x) is a Presburger guard SAV 2013 – Acceleration – p.32/45

Example

❖ A loop from Illinois cache coherence protocol modelled as an integer program

while (invalid >=1 && shared+exclusive >=1) {

shared = shared + exclusive + 1

exclusive = 0

invalid = invalid - 1

}

∧

i ≥ 1

s+ e ≥ 1

s′ = s+ e+ 1

e′ = 0

i′ = i− 1

❖ The loop as a fin. monoid aff. relation φ(x) ∧ x′ = A · x+ b

i ≥ 1

s+ e ≥ 1
∧

s′

e′

i′

 =

1 1 0

0 0 0

0 0 1

 ·

s

e

i

+

1

0

−1

A2 =

1 1 0

0 0 0

0 0 1

 ·

1 1 0

0 0 0

0 0 1

 =

1 1 0

0 0 0

0 0 1

 = A1

SAV 2013 – Acceleration – p.33/45

Fin. Monoid Lin. Transformations

T ≡ x
′ = A · x

❖ Computing transitive closure of T

• consider the sequence A0, A1, A2, . . .

• since {Ai | i ≥ 0} is finite, there exist n > 0 and b < n such that An = Ab

• consider minimal such n

{Ai | i ≥ 0} = {A0
, A

1
, . . . , A

n−1}

T
∗ ≡

b+c−1∨

i=0

x
′ = A

i · x

• let c = n− b, we can write the sequence A0, A1, A2, . . . as

A0, A1, . . . , Ab−1, Ab, Ab+1, . . . , Ab+c−1,

Ab, Ab+1, . . . , Ab+c−1,

. . .

• the sequence is periodic (prefix b, period c, rate λ = 0)

SAV 2013 – Acceleration – p.34/45

Fin. Monoid Aff. Transformations

❖ First step: Compute transitive closure for fin. monoid aff. transformations (ignore the
Presburger guard).

T ≡ x
′ = A · x+ b

❖ The homogeneous form of T is:

Th ≡

(
x′

x′one

)

︸ ︷︷ ︸
x
′

h

=

(
A b

0 . . . 0 1

)

︸ ︷︷ ︸
Ah

·

(
x

xone

)

︸ ︷︷ ︸
xh

❖ Example.
T ≡

s′

e′

i′

 =

1 1 0

0 0 0

0 0 1

 ·

s

e

i

+

1

0

−1

Th ≡

s′

e′

i′

x′one

 =

1 1 0 1

0 0 0 0

0 0 1 −1

0 0 0 1

 ·

s

e

i

xone

T ≡ Th[xone := 1, x′one := 1]

T ∗ ≡ T ∗

h [xone := 1, x′one := 1] SAV 2013 – Acceleration – p.35/45

Periodicity of Fin. Monoid Aff. Transformations

T ≡ x′ = A · x+ b Th ≡ x′

h = Ah · xh

❖ If A has a finite monoid property, then there exist integers b ≥ 0, c ≥ 1 such that
Ab = Ab+c and thus

{Ai | i ≥ 0} = {A0
, A

1
, . . . , A

b
, . . . , A

b+c−1}

❖ How does {Aih | i ≥ 0} look like? No longer finite.

❖ Theorem 2. Let b ≥ 0, c ≥ 1 be integers such that

{Ai | i ≥ 0} = {A0
, A

1
, . . . , A

b
, . . . , A

b+c−1}

Then, {Aih | i ≥ 0} is periodic w.r.t. prefix b and period c and moroever, the rate is of the
form

λ =

(
0 d

0 . . . 0 0

)
for some d ∈ Z

N

SAV 2013 – Acceleration – p.36/45

Periodicity of Fin. Monoid Aff. Transformations

T ≡ x′ = A · x+ b Th ≡ x′

h = Ah · xh

Th ≡

s′

e′

i′

x′one

 =

1 1 0 1

0 0 0 0

0 0 1 −1

0 0 0 1

 ·

s

e

i

xone

❖ {Ai | i ≥ 0} = {A0, A1, . . . , Ab, . . . , Ab+c−1} for b = 1, c = 1

A0 =

1 0 0

0 1 0

0 0 1

A1 =

1 1 0

0 0 0

0 0 1

A2 = A1

❖ By Theorem 2, {Aih | i ≥ 0} is periodic w.r.t. b = 1, c = 1 with λ =

(
0 d

0 . . . 0 0

)

A0
h A1

h A2
h A3

h λ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1

0 0 0 0

0 0 1 −1

0 0 0 1

1 1 0 2

0 0 0 0

0 0 1 0

0 0 0 1

1 1 0 3

0 0 0 0

0 0 1 1

0 0 0 1

 . . .

0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 0

SAV 2013 – Acceleration – p.37/45

Accelerating Fin. Monoid Aff. Transformations
A0
h A1

h A2
h A3

h λ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1

0 0 0 0

0 0 1 −1

0 0 0 1

1 1 0 2

0 0 0 0

0 0 1 0

0 0 0 1

1 1 0 3

0 0 0 0

0 0 1 1

0 0 0 1

 . . .

0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 0

❖ Defining A1+ℓ
h for each ℓ ≥ 0 parametrically

A
1+ℓ
h = A

1 + ℓ · λ =

1 1 0 1 + ℓ

0 0 0 0

0 0 1 −1 + ℓ

0 0 0 1

❖ Defining closed form of {T ℓh}
∞

ℓ=1

T̂h b,c(ℓ) ≡ x
′

h = A
1+ℓ
h ·xh =

1 1 0 1 + ℓ

0 0 0 0

0 0 1 −1 + ℓ

0 0 0 1

 ·

s

e

i

xone

 ≡

∧

s′ = s+ e+ (1 + ℓ)xone

e′ = 0

i′ = i+ (−1 + ℓ)xone

x′one = xone

SAV 2013 – Acceleration – p.38/45

Accelerating Fin. Monoid Aff. Transformations

T̂h b,c(ℓ) ≡
∧

s′ = s+ e+ (1 + ℓ)xone

e′ = 0

i′ = i+ (−1 + ℓ)xone

x′one = xone

❖ From the closed form of {T ih}
∞

i=1 to the closed form of {T i}∞i=1

T̂b,c(ℓ) ≡ T̂hb,c(ℓ)[xone := 1, x′one := 1] ≡
∧

s′ = s+ e+ 1 + ℓ

e′ = 0

i′ = i− 1 + ℓ

What would happen if λ wasn’t of the form λ =

(
0 d

0 . . . 0 0

)

• multiplicative terms of the form c · ℓ · x, c ∈ Z

SAV 2013 – Acceleration – p.39/45

Deterministic Relations

❖ Second step. Consider the general case with guard (finite monoid affine relations).

φ(x) ∧ x
′ = A · x+ b

❖ A relation R(x,x′) is deterministic iff for each v ∈ Z
x, the set

{v′ ∈ Z
x
′

| |= R(v,v′)}

has cardinality 0 or 1.

❖ Example.

• 2|x ∧ x′ = x+ 2 ∧ y′ = y is determinisitc

• x ≤ 1 ∧ x′ ≥ x+ 1 is not deterministic

• x ≤ y ∧ x′ = x+ 1 is not deterministic

❖ A closed form of a relation R is denoted R̂ and defined as a closed form of {Ri | i ≥ 0}

SAV 2013 – Acceleration – p.40/45

Acceleration of Deterministic Relations

❖ Theorem 3. Let T (x,x′) be a relation of the form T (x,x′) ⇔ φ(x) ∧R(x,x′) where
R(x,x′) is deterministic. Then, T+ can be defined as

T
+(x,x′) ⇔ ∃k > 0 . R̂(k,x,x′) ∧ ∀0 ≤ ℓ < k . ∃y . R̂(ℓ,x,y) ∧ φ(y)

where R̂ defines the closed form of R.

SAV 2013 – Acceleration – p.41/45

Acceleration of Deterministic Relations

❖ Theorem 3. Let T (x,x′) be a relation of the form T (x,x′) ⇔ φ(x) ∧R(x,x′) where
R(x,x′) is deterministic. Then, T+ can be defined as

T
+(x,x′) ⇔ ∃k > 0 . R̂(k,x,x′) ∧ ∀0 ≤ ℓ < k . ∃y . R̂(ℓ,x,y) ∧ φ(y)

where R̂ defines the closed form of R.

❖ Proof of (⇒) Let v,v′ be valuations such that |= T+(v,v′)

• there exist integer n > 0 such that |= Tn(v,v′), |= T̂ (n,v,v′) and valuations
v = v0,v1, . . . ,vn = v′ such that

– for each i = 0 . . . n− 1 . |= T (vi,vi+1) (1)

– for each i = 0 . . . n . |= T̂ (i,v,vi) (2)

• since T (x,x′) ⇒ R(x,x′), it follows from (1), (2) that
– for each i = 0 . . . n− 1 . |= R(vi,vi+1) (3)

– for each i = 0 . . . n . |= R̂(i,v,vi) (4)

• since T (x,x′) ⇒ φ(x), it follows from (1) that
– for each i = 0 . . . n− 1 . |= φ(vi) (5)

• (4), (5) imply that for each i = 0 . . . n− 1 . |= R̂(i,v,vi) ∧ φ(vi) (6)

• (6) implies ∀0 ≤ ℓ < n . ∃y . R̂(ℓ,x,y) ∧ φ(y) SAV 2013 – Acceleration – p.41/45

Acceleration of Deterministic Relations

❖ Theorem 3. Let T (x,x′) be a relation of the form T (x,x′) ⇔ φ(x) ∧R(x,x′) where
R(x,x′) is deterministic. Then, T+ can be defined as

T
+(x,x′) ⇔ ∃k > 0 . R̂(k,x,x′) ∧ ∀0 ≤ ℓ < k . ∃y . R̂(ℓ,x,y) ∧ φ(y)

where R̂ defines the closed form of R.

❖ Proof of (⇐)

• let v,v′ be valuations and n > 0 an integer such that |= R̂(n,v,v′) (1)

• for each i = 0 . . . n− 1, let vi be valuation such that |= R̂(i,v,vi) ∧ φ(vi) (2)

• (1) implies that there exist valuations v = w0,w1, . . . ,wn = v′ such that
– for each i = 0 . . . n− 1 . |= R(wi,wi+1) (3)

– for each i = 0 . . . n . |= R̂(i,v,wi) (4)

• since R is deterministic, (2) and (4) imply that
|= R̂(i,v,vi)

|= R̂(i,v,wi)
⇒ vi = wi (5)

• (3) and (5) imply that for each i = 0 . . . n− 1 . |= R(vi,vi+1) (6)

• (2) and (6) imply that for each i = 0 . . . n− 1 . |= R(vi,vi+1) ∧ φ(vi) (7)

• we infer from (7) that |= Tn(v,v′) and |= T+(v,v′)
SAV 2013 – Acceleration – p.42/45

Accelerating Fin. Monoid Aff. Relations

❖ Since a fin. monoid aff. relation

T (x,x′) ≡ φ(x) ∧ x
′ = A · x+ b

is deterministic, we apply Theorem 3 and define T+ as a Presburger formula.

❖ Theorem 3 can be generalized to situations

T (x,x′) ≡ φ(x) ∧R(z, z′) ∧ ψ(x′)

where z ⊆ x and R(z, z′) is deterministic.

SAV 2013 – Acceleration – p.43/45

Applications

SAV 2013 – Acceleration – p.44/45

Applications

❖ Precise reachability analysis

• finite monoid affine relations
– tool FAST (www.lsv.ens-cachan.fr/Software/fast/)
– reachability of Petri nets and broadcast protocols

• difference bounds and octagonal relations
– tool FLATA (nts.imag.fr/index.php/Flata)
– reachability of programs with lists, VHDL designs
– satisfiability of formulas from an array logic SIL
– summaries of recursive procedures (McCarthy 91 function)

❖ Reachability analysis by predicate abstraction

• acceleration increases the likelihood of convergence of the reachability algorithm

❖ Termination analysis

• Presburger definability of R̂ is used to decide the conditional termination problem
for DB, octagonal, and fin. monoid affine relations

• adaptation of summary computation to transition invariant computation (useful to
check termination)

SAV 2013 – Acceleration – p.45/45

	
	Recap: Verification Conditions (VC)
	VCs for Programs with Loops
	VCs for Programs with Loops
	
	Difference Bounds Relations
	Operations
	Encoding of $xleq c$ and $-xleq c$
	$*$-consistent Relations
	$*$-consistent Relations
	
	Transitive Closures
	Transitive Closures
	Transitive Closures
	
	Periodic Sequences
	Periodic Matrix Sequences
	Periodic Relations
	Transitive Closure of DB Relations
	
	Accelerating Periodic Relation
	Main Idea
	Main Idea
	Main Idea
	Transitive Closure Algorithm
	Illustration of the Algorithm
	Illustration of the Algorithm
	$*$-inconsistent Periodic Relations
	Dealing with Quantifiers
	
	Definition
	Example
	Fin. Monoid Lin. Transformations
	Fin. Monoid Aff. Transformations
	�ontsize {14pt}{14pt}selectfont {Periodicity of Fin. Monoid Aff. Transformations}
	�ontsize {14pt}{14pt}selectfont {Periodicity of Fin. Monoid Aff. Transformations}
	�ontsize {14pt}{14pt}selectfont {Accelerating Fin. Monoid Aff. Transformations}
	�ontsize {14pt}{14pt}selectfont {Accelerating Fin. Monoid Aff. Transformations}
	Deterministic Relations
	Acceleration of Deterministic Relations
	Acceleration of Deterministic Relations
	Accelerating Fin. Monoid Aff. Relations
	
	Applications

