
Lecturecise 12
Abstract Interpretation

2013

Basic idea of abstract interpretation

Abstract interpretation is a way to infer properties of e.g. computations.
Consider the assignment: z = x + y .

Interpreter: x : 10
y : −2
z : 3

 z=x+y−−−−→

 x : 10
y : −2
z : 8

Abstract interpreter: x ∈ [0, 10]
y ∈ [−5, 5]
z ∈ [0, 10]

 z=x+y−−−−→

 x ∈ [0, 10]
y ∈ [−5, 5]
z ∈ [−5, 15]

Program Meaning is a Fixpoint. We Approximate It.

Proving through Fixpoints of Approximate Functions

Meaning of a program (e.g. a relation) is a least fixpoint of F .
Given specification s, the goal is to prove lfp(F) ⊆ s
If F (s) ⊆ s then lfp(F) ⊆ s and we are done.

Otherwise, we need to search for s ′ (inductive invariant) such that:

I F (s ′) ⊆ s ′ (s ′ is inductive). If so, theorem says lfp(F) ⊆ s ′

I s ′ ⊆ s (s ′ implies the desired specification). Then lfp(F) ⊆ s ′ ⊆ s

How to find s ′? One solution is lfp(F) =
⋃

k≥0 F k(∅)
Infinite union, unless F n+1(∅) = F n for some n. This rarely happens.
Instead, we try our luck with some simpler function F#

I suppose F# is approximation: F (r) ⊆ F#(r) for all r

I we can find s ′ such that: F#(s ′) ⊆ s ′ (e.g. s ′ = F n
#(∅) for some n)

Then: F (s ′) ⊆ F#(s ′) ⊆ s ′. So, lfp(F) ⊆ s ′.
If s ′ ⊆ s, we have shown that lfp(F) ⊆ s
Static analysis: automatically construct F# from F (and sometimes s)

Programs as control-flow graphs

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

A possible corresponding control-flow graph is:

Programs as control-flow graphs

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

A possible corresponding control-flow graph is:

Exercise: Sets of states at each program point
Suppose that

I program state is given by the value of the integer variable i

I initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

Exercise: Sets of states at each program point
Suppose that

I program state is given by the value of the integer variable i

I initially, it is possible that i has any value

Compute the set of states at each vertex in the CFG.

//a
i = 0;

//b
while (i < 10) {

//d
if (i > 1)

//e
i = i + 3;

else
//f
i = i + 2;

//g
}
//c

Sets of states at each program point

Running the Program
One way to describe the set of state: for each initial state, run the CFG
with this state and insert the modified states at appropriate points.

Reachable States as A Set of Recursive Equations
If c is the label on the edge of the graph, let ρ(c) denotes the relation
between initial and final state that describes the meaning of statement. For
example,

ρ(i = 0) = {(i , i ′) | i ′ = 0}
ρ(i = i + 2) = {(i , i ′) | i ′ = i + 2}
ρ(i = i + 3) = {(i , i ′) | i ′ = i + 3}
ρ([i < 10]) = {(i , i ′) | i ′ = i ∧ i < 10}

Sets of states at each program point

We will write T (S , c) (transfer function) for the image of set S under
relation ρ(c). For example,

T ({10, 15, 20}, i = i + 2) = {12, 17, 22}

General definition can be given using the notion of strongest postcondition

T (S , c) = sp(S , ρ(c))

If [p] is a condition (assume(p), coming from ’if’ or ’while’) then

T (S , [p]) = {x ∈ S | p}

If an edge has no label, we denote it skip. So, T (S , skip) = S .

Reachable States as A Set of Recursive Equations
Now we can describe the meaning of our program using recursive equations:

S(a) = {. . . ,−2,−1, 0, 1, 2, . . .}
S(b) = T (S(a), i = 0) ∪ T (S(g), skip)
S(c) = T (S(b), [¬(i < 10)])
S(d) = T (S(b), [i < 10])
S(e) = T (S(d), [i > 1])
S(f) = T (S(d), [¬(i > 1)])
S(g) = T (S(e), i = i + 3)

∪T (S(f), i = i + 2)

Note:

I solution we computed satisfies the recursive equations

I our solution is the unique least solution of these equations

The problem:

These exact equations are as difficult to compute as running the program on all

possible input states. Instead, when we do data-flow analysis; we will consider

approximate descriptions of these sets of states.

New Analysis Domain

We continue with the same example but instead of allowing to denote all possible
sets, we will allow sets represented by expressions

[L,U]

which denote the set {x | L ≤ x ∧ x ≤ U}.
Example: [0, 127] denotes integers between 0 and 127.

I L is the lower bound and U is the upper bound, with L ≤ U.

I to ensure that we have only a few elements, we let

L,U ∈ {MININT,−128, 1, 0, 1, 127,MAXINT}

I [MININT,MAXINT] denotes all possible integers, denote it >
I instead of writing [1, 0] and other empty sets, we will always write ⊥

So, we only work with a finite number of sets 1 +
(
7
2

)
= 22.

Denote the family of these sets by D (domain).

Initial Sets

In the ’entry’ point, we put >, in all others we put ⊥.

New Set of Recursive Equations

We want to write the same set of equations as before, but because we have
only a finite number of sets, we must approximate. We approximate sets
with possibly larger sets.

S#(a) = >
S#(b) = T#(S#(a), i = 0) t T (S(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3) t T (S(f), i = i + 2)

I S1 t S2 denotes the approximation of S1 ∪ S2: it is the set that
contains both S1 and S2, that belongs to D, and is otherwise as small
as possible.

I We use approximate functions T#(S , c) that give a result in D.

Updating Sets

We solve the equations by starting in the initial state and repeatedly
applying them.

S#(a) = >
S#(b) = T#(S#(a), i = 0)t

T (S(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)t

T (S(f), i = i + 2)

Updating Sets

Sets after first iteration:

S#(a) = >
S#(b) = T#(S#(a), i = 0)t

T (S(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)t

T (S(f), i = i + 2)

Updating Sets

Final values of sets:

S#(a) = >
S#(b) = T#(S#(a), i = 0)t

T (S(g), skip)
S#(c) = T#(S#(b), [¬(i < 10)])
S#(d) = T#(S#(b), [i < 10])
S#(e) = T#(S#(d), [i > 1])
S#(f) = T#(S#(d), [¬(i > 1)])
S#(g) = T#(S#(e), i = i + 3)t

T (S(f), i = i + 2)

Final values of sets:

I analysis terminates (because this computation is monotonic) even if the
original program does not terminate or takes very long (important for a
compiler!)

I it proves that:

I in all executions i=0 at point f
I i cannot be zero at point e
I value of i is always non-negative

With a larger domain D we can get better results, but analysis can take longer.

Abstract Interpretation Big Picture

Abstract Domains are Partial Orders

Program semantics is given by certain sets (e.g. sets of reachable states).

I subset relation ⊆: used to compare sets

I union of states: used to combine sets coming from different executions
(e.g. if statement)

Our goal is to approximate such sets. We introduce a domain of elements
d ∈ D where each d represents a set.

I γ(d) is a set of states. γ is called concretization function

I given d1 and d2, it could happen that there is no element d
representing union

γ(d1) ∪ γ(d2) = γ(d)

Instead, we use a set d that approximates union, and denote it d1 t d2

This leads us to review the theory of partial orders and (semi)lattices.

Partial Orders

Partial ordering relation is a binary relation ≤ that is reflexive, antisymmetric,
and transitive, that is, the following properties hold for all x , y , z :

I x ≤ x

I x ≤ y ∧ y ≤ x → x = y

I x ≤ y ∧ y ≤ z → x ≤ z

If A is a set and ≤ a binary relation on A, we call the pair (A,≤) a partial order.

Given a partial ordering relation ≤, the corresponding strict ordering relation
x < y is defined by x ≤ y ∧ x 6= y and can be viewed as a shorthand for this
conjunction.

We can view the partial order (A, r) as a first-order interpretation I = (A, α) of
language L = {≤} where α(≤) = r .

Example Partial Orders

I Orders on integers, rationals, reals are all special cases of partial orders
called linear orders.

I Given a set U, let A be any set of subsets of U, that is A ⊆ 2U . Then
(A,⊆) is a partial order.

Example: Let U = {1, 2, 3} and let A = {∅, {1}, {2}, {3}, {2, 3}}. Then
(A,⊆) is a partial order. We can draw it as a Hasse diagram.

Hasse diagram

presents the relation as a directed graph in a plane, such that

I the direction of edge is given by which nodes is drawn above

I transitive and reflexive edges are not represented (they can be derived)

Extreme Elements in Partial Orders

Given a partial order (A,≤) and a set S ⊆ A, we call an element a ∈ A

I upper bound of S if for all a′ ∈ S we have a′ ≤ a

I lower bound of S if for all a′ ∈ S we have a ≤ a′

I minimal element of S if a ∈ S and there is no element a′ ∈ S such that a′ < a

I maximal element of S if a ∈ S and there is no element a′ ∈ S such that a < a′

I greatest element of S if a ∈ S and for all a′ ∈ S we have a′ ≤ a

I least element of S if a ∈ S and for all a′ ∈ S we have a ≤ a′

I least upper bound (lub, supremum, join, t) of S if a is the least element in
the set of all upper bounds of S

I greatest lower bound (glb, infimum, meet, u) of S if a is the greatest element
in the set of all lower bounds of S

Taking S = A we obtain minimal, maximal, greatest, least elements for the entire
partial order.

Extreme Elements in Partial Orders

Notes

I minimal element need not exist: (0, 1) interval of rationals

I there may be multiple minimal elements: {{a}, {b}, {a, b}}
I if minimal element exists, it need not be least: above example

I there are no two distinct least elements for the same set

I least element is always glb and minimal

I if glb belongs to the set, then it is always least and minimal

I for relation ⊆ on sets, glb is intersection, lub is union (not all families
of sets are closed under ∩, ∪)

Least upper bound

Denoted lub(S), least upper bound of S is an element M, if it exists, such
that M is the least element of the set

U = {x | x is upper bound on S}

In other words:

I M is an upper bound on S

I for every other upper bound M ′ on S , we have that M ≤ M ′

Note: this is the same definition as infinum in real analysis.

Real Analysis

Take as S the open interval of reals (0, 1) = {x | 0 < x < 1}
Then

I S has no maximal element

I S thus has no greatest element

I 2, 2.5, 3,... are all upper bounds on S

I lub(S) = 1

If we had rational numbers, there would be no lub(S ′) in general.

Least upper bound (shorthand: t)

a1 t a2 denotes lub({a1, a2})

(. . . (a1 t a2) . . .) t an is in fact lub({a1, . . . , an})

So the operation is

I associative

I commutative

I idempotent

Execise: subsets of U

Consider
A = 2U = {S | S ⊆ U} and (A,⊆)

Do these exist, and if so, what are they?

I s1 ⊆ S , s2 ⊆ S , lub({s1, s2}) =?

I lub(S) =?

Exercise: find the lub

{1} t {2} = {1} t {2} =

Does every pair of elements in this order have a least
upper bound?

Dually, does it have a greatest lower bound?

Partial order for the domain of intervals

Domain: D = {⊥} ∪ {(L,U) | L ∈ {−∞} ∪ Z,R ∈ {+∞} ∪ Z
such that L ≤ U.

The associated set of elements is given by the function γ:

γ : D → 2Z, γ((L,U)) = {x | L ≤ x ∧ x ≤ U}

Lub: for d1, d2 ∈ D, d1 v d2 ↔ γ(d1) ⊆ γ(d2)
hence

(L1,U1) v (L2,U2) ↔ L2 ≤ L1 ∧ U1 ≤ U2

⊥ v d ∀d ∈ D

(L1,U1) t (L2,U2) = (min(L1, L2),max(U1,U2))

Exercises

Prove the following:

1. (x t y) t z = x t (y t z)

2. tA v uB ⇔ ∀x ∈ A.∀y ∈ B.x v y

3. Let (A,v) be a partial order such that every set S ⊆ A has the
greatest lower bound.
Prove that then every set S ⊆ A has the least upper bound.

We do this in class.

Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound.

Lemma: In a lattice every non-empty finite set has a lub (t) and glb (u).

Proof: is by induction!
Case where the set S has three elements x,y and z:
Let a = (x t y) t z .
By definition of t we have z v a and x t y v a.
Then we have again by definition of t, x v x t y and y v x t y . Thus by
transitivity we have x v a and y v a.
Thus we have S v a and a is an upper bound.
Now suppose that there exists a′ such that S v a′. We want a v a′ (a least upper
bound):
We have x v a′ and y v a′, thus x t y v a′. But z v a′, thus ((x t y) t z) v a′.

Thus a is the lub of our 3 elements set.

Lattices

Definition: A lattice is a partial order in which every two-element set has a
least upper bound and a greatest lower bound.

Lemma: In a lattice every non-empty finite set has a lub (t) and glb (u).

Proof: is by induction!
Case where the set S has three elements x,y and z:
Let a = (x t y) t z .
By definition of t we have z v a and x t y v a.
Then we have again by definition of t, x v x t y and y v x t y . Thus by
transitivity we have x v a and y v a.
Thus we have S v a and a is an upper bound.
Now suppose that there exists a′ such that S v a′. We want a v a′ (a least upper
bound):
We have x v a′ and y v a′, thus x t y v a′. But z v a′, thus ((x t y) t z) v a′.

Thus a is the lub of our 3 elements set.

Lattices

Lemma: Every linear order is a lattice.

Example: Every subset of the set of real numbers has a lub. This is an
axiom of real numbers, the way they are defined (or constructed from
rationals).

I If a lattice has least and greatest element, then every finite set
(including empty set) has a lub and glb.

I This does not imply there are lub and glb for infinite sets.
Example: In the oder ([0, 1),≤) with standard ordering on reals is a
lattice, the entire set has no lub. The set of all rationals of interval
[0, 10] is a lattice, but the set {x | 0 ≤ x ∧ x2 < 2} has no lub.

Complete Lattices

Definition: A complete lattice is a lattice where every set S of elements
has lub, denoted tS , and glb, denoted uS

(this implies that there is top and bottom as t∅ = ⊥ and u∅ = >. This is
because every element is an upper bound and a lower bound of ∅ :
∀x .∀y ∈ ∅.y v x is valid, as well as ∀x .∀y ∈ ∅.y w x).

Lattices

Lemma: In every lattice, x t (x u y) = x .

Proof:
We trivially have x v x t (x u y).
Let’s prove that x t (x u y) v x :
x is an upper bound of x and x u y , x t (x u y) is the least upper bound of
x and x u y , thus x t (x u y) v x .

Monotonic functions

Given two partial orders (C ,≤) and (A,v), we call a function α : C → A
monotonic iff for all x , y ∈ C ,

x ≤ y → α(x) v α(y)

Reminder: Fixpoints

Definition: Given a set A and a function f : A→ A we say that x ∈ A is a
fixed point (fixpoint) of f if f (x) = x .

Definition: Let (A,≤) be a partial order, let f : A→ A be a monotonic
function on (A,≤), and let the set of its fixpoints be S = {x | f (x) = x}. If
the least element of S exists, it is called the least fixpoint, if the greatest
element of S exists, it is called the greatest fixpoint.

Fixpoints

Let (A,v) be a complete lattice and G : A→ A a monotonic function.

Definition:
Post = {x | G (x) v x} - the set of postfix points of G
(e.g. > is a postfix point)
Pre = {x | x v G (x)} - the set of prefix points of G
Fix = {x | G (x) = x} - the set of fixed points of G .

Note that Fix ⊆ Post.

Tarski’s fixed point theorem

Theorem: Let a = uPost. Then a is the least element of Fix (dually, tPre
is the largest element of Fix).

Proof:
Let x range over elements of Post.

I applying monotonic G from a v x we get G (a) v G (x) v x

I so G (a) is a lower bound on Post, but a is the greatest lower bound,
so G (a) v a

I therefore a ∈ Post

I Post is closed under G , by monotonicity, so G (a) ∈ Post

I a is a lower bound on Post, so a v G (a)

I from a v G (a) and G (a) v a we have a = G (a), so a ∈ Fix

I a is a lower bound on Post so it is also a lower bound on a smaller set
Fix

In fact, the set of all fixpoints Fix is a lattice itself.

Tarski’s fixed point theorem

Tarski’s Fixed Point theorem shows that in a complete lattice with a
monotonic function G on this lattice, there is at least one fixed point of G ,
namely the least fixed point uPost.

I Tarski’s theorem guarantees fixpoints in complete lattices, but the
above proof does not say how to find them.

I How difficult it is to find fixpoints depends on the structure of the
lattice.

Let G be a monotonic function on a lattice. Let a0 = ⊥ and an+1 = G (an).
We obtain a sequence ⊥ v G (⊥) v G 2(⊥) v · · · . Let a∗ =

⊔
n≥0 an.

Lemma: The value a∗ is a prefix point.
Observation: a∗ need not be a fixpoint (e.g. on lattice [0,1] of real
numbers).

Omega continuity

Definition: A function G is ω-continuous if for every chain
x0 v x1 v . . . v xn v . . . we have

G (
⊔
i≥0

xi) =
⊔
i≥0

G (xi)

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 Gn(⊥) is
the least fixpoint of G .

Iterating sequences and omega continuity

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 G n(⊥) is the least
fixpoint of G .

Proof:

I By definition of ω-continuous we have
G (
⊔

n≥0 G n(⊥)) =
⊔

n≥0 G n+1(⊥) =
⊔

n≥1 G n(⊥).

I But
⊔

n≥0 G n(⊥) =
⊔

n≥1 G n(⊥) t ⊥ =
⊔

n≥1 G n(⊥) because ⊥ is the least
element of the lattice.

I Thus G (
⊔

n≥0 G n(⊥)) =
⊔

n≥0 G n(⊥) and a∗ is a fixpoint.

Now let’s prove it is the least. Let c be such that G (c) = c . We want⊔
n≥0 G n(⊥) v c . This is equivalent to ∀n ∈ N.G n(⊥) v c .

We can prove this by induction : ⊥ v c and if G n(⊥) v c , then by monotonicity

of G and by definition of c we have G n+1(⊥) v G (c) v c .

Iterating sequences and omega continuity

Lemma: For an ω-continuous function G , the value a∗ =
⊔

n≥0 Gn(⊥) is
the least fixpoint of G .

When the function is not ω-continuous, then we obtain a∗ as above (we
jump over a discontinuity) and then continue iterating. We then take the
limit of such sequence, and the limit of limits etc., ultimately we obtain the
fixpoint.

Exercise

Let C [0, 1] be the set of continuous functions from [0, 1] to the reals.
Define ≤ on C [0, 1] by f ≤ g if and only if f (a) ≤ g(a) for all a ∈ [0, 1].

i) Show that ≤ is a partial order and that C [0, 1] with this order forms a
lattice.

ii) Does an analogous statement hold if we consider the set of
differentiable functions from [0, 1] to the reals? That is, instead of
requiring the functions to be continuous, we require them to have a
derivative on the entire interval. (The order is defined in the same
way.)

Exercise
Let A = [0, 1] = {x ∈ R | 0 ≤ x ≤ 1} be the interval of real numbers. Recall that,
by definition of real numbers and complete lattice, (A,≤) is a complete lattice
with least lattice element 0 and greatest lattice element 1. Here t is the least
upper bound operator on sets of real numbers, also called supremum and denoted
sup in real analysis.
Let function f : A→ A be given by

f (x) =

1
2 + 1

4x , if x ∈ [0, 23)

3
5 + 1

5x , if x ∈ [23 , 1]

(It may help you to try to draw f .)

a) Prove that f is monotonic and injective (so it is strictly monotonic).

b) Compute the set of fixpoints of f .

c) Define iter(x) = t{f n(x) | n ∈ {0, 1, 2, . . .}}. (This is in fact equal to
limn→∞ f n(x) when f is a monotonic bounded function.)

Compute iter(0) (prove that the computed value is correct by definition of
iter , that is, that the value is indeed t of the set of values). Is iter(0) a
fixpoint of f ? Is iter(iter(0)) a fixpoint of f ?

Galois Connection

Galois connection (named after Évariste Galois) is defined by two
monotonic functions α : C → A and γ : A→ C between partial orders ≤ on
C and v on A, such that

∀c , a. α(c) v a ⇐⇒ c ≤ γ(a) (∗)

(intuitively the condition means that c is approximated by a).

Lemma: The condition (∗) holds iff the conjunction of these two
conditions:

c ≤ γ(α(c))

α(γ(a)) v a

holds for all c and a.

Abstract Interpretation Recipe

Key steps (details to be filled in):

I design abstract domain A that represents sets of program states

I define γ : A→ C giving meaning to elements of A

I define lattice ordering v on A such that a1 v a2 → γ(a1) ⊆ γ(a2)

I define sp# : A× 2S×S → A that maps an abstract element and a CFG
statement to new abstract element, such that
sp(γ(a), r) ⊆ γ(sp#(a, r))
(for example, by defining function α so that (α, γ) becomes a Galois
Connection)

I extend sp# to work on control-flow graphs, by defining F # (handling
multiple incoming edges)

I compute least fixpoint of F #

