
Lecturecise 10
Hoare Logic continued

2013

Hoare Triple and Friends

P,Q ⊆ S r ⊆ S × S

Hoare Triple

{P} r {Q} ⇐⇒ ∀s, s ′ ∈ S .
(
s ∈ P ∧ (s, s ′) ∈ r → s ′ ∈ Q

)
Strongest postcondition:

sp(P, r) = {s ′ | ∃s. s ∈ P ∧ (s, s ′) ∈ r}

Weakest precondition:

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Exercise: Prove wp Distributivity

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

wp(r1 ∪ r2,Q) =

Rules for WP

Rules for Computing Weakest Preconditions

We derive the rules below from the definition of weakest precondition
on sets and relations

wp(r ,Q) = {s | ∀s ′.(s, s ′) ∈ r → s ′ ∈ Q}

Assume Statement
Suppose we have one variable x, and identify the state with that
variable. Note that ρ(assume(F)) = ∆Fs . By definition

wp(∆Fs ,Qs) = {x | ∀x ′.(x , x ′) ∈ ∆Fs → x ′ ∈ Qs}
= {x | ∀x ′.(x ∈ Fs ∧ x = x ′)→ x ′ ∈ Qs}
= {x | x ∈ Fs → x ∈ Qs} = {x | F → Q}

Changing from sets to formulas, we obtain the rule for wp on formulas:

wpF (assume(F),Q) = (F → Q)

Rules for Computing Weakest Preconditions

Assignment Statement
Consider the case of two variables. Recall that the relation associated
with the assignment x = e is

x ′ = e ∧ y ′ = y

Then we have, for formula Q containing x and y :

wp(ρ(x = e), {(x , y) | Q}) = {(x , y) | ∀x ′.∀y ′. x ′ = e ∧ y ′ = y →
Q[x := x ′, y := y ′]}

= {(x , y) | Q[x := e]}

From here we obtain a justification to define:

wpF (x = e,Q) = Q[x := e]

Rules for Computing Weakest Preconditions

Havoc Statement

wpF (havoc(x),Q) = ∀x .Q

Sequential Composition

wp(r1 ◦ r2,Qs) = wp(r1,wp(r2,Qs))

Same for formulas:

wpF (c1 ; c2,Q) = wpF (c1,wpF (c2,Q))

Nondeterministic Choice (Branches)
In terms of sets and relations

wp(r1 ∪ r2,Qs) = wp(r1,Qs) ∩ wp(r2,Qs)

In terms of formulas

wpF (c1[]c2,Q) = wpF (c1,Q) ∧ wpF (c2,Q)

Summary of Weakest Precondition Rules

c wp(c ,Q)

x = e Q[x := e]
havoc(x) ∀x .Q

assume(F) F → Q
c1 c2 wp(c1,Q) ∧ wp(c2,Q)
c1; c2 wp(c1,wp(c2,Q))

Size of Generated Verification Conditions

Because of the rule

wpF (c1[]c2,Q) = wpF (c1,Q) ∧ wpF (c2,Q)

which duplicates Q, the size can be exponential.

wpF ((c1 c2); (c3 c4),Q) =

Avoiding Exponential Blowup

Propose an algorithm that, given an arbitrary program c and a formula
Q, computes in polynomial time formula equivalent to wpF (c ,Q)

Syntactic Rules for Hoare Logic

Summary of Proof Rules

We next present (one possible) summary of proof rules for Hoare logic.

Weakening and Strengthening
Strengthening precondition:

|= P1 → P2 {P2}c{Q}
{P1}c{Q}

Weakening postcondition:

{P}c{Q1} |= Q1 → Q2

{P}c{Q2}

Loop Free Blocks
We can directly use the rules we derived for basic loop-free code.
Either through weakest preconditions or strongest postconditions.

{wp(c ,Q)}c{Q}

or,

{P}c{sp(P, c)}

For example, we have:

{Q[x := e]} (x = e) {Q}

{∀x .Q} havoc(x) {Q}

{(F → Q)} assume(F) {Q}

{P} assume(F) {P ∧ F}

Rules continued

Loops
{I}c{I}

{I} while(∗)c{I}

Sequential Composition

{P} c1{Q} {Q} c2 {R}
{P} c1; c2 {R}

Non-Deterministic Choice

{P}c1{Q} {P}c2{Q}
{P}c1[]c2{Q}

While Loops

Knowing that the while loop: while (F) c;

is equivalent to:
while(∗){assume(F); c} ;
assume(¬ F);

Question: What is the rule for while loops?
Hint

(|= P →?); {?}c{?}; (|=?→ Q)

{P} while{I}(F)(c) {Q}

It follows that the rule for while loops is:

(|= P → I); {I ∧ F}c{I}; (|= (I ∧ ¬F)→ Q))

{P} while{I}(F)(c) {Q}

While Loops

Knowing that the while loop: while (F) c;

is equivalent to:
while(∗){assume(F); c} ;
assume(¬ F);

Question: What is the rule for while loops?
Hint

(|= P →?); {?}c{?}; (|=?→ Q)

{P} while{I}(F)(c) {Q}

It follows that the rule for while loops is:

(|= P → I); {I ∧ F}c{I}; (|= (I ∧ ¬F)→ Q))

{P} while{I}(F)(c) {Q}

Applying Proof Rules given Invariants

Let us treat {P} as a new kind of statement, written

assert(P)

For the moment the purpose of assert is just to indicate preconditions
and postconditions. When we write

assert(P)
c1;

assert(Q)
c2;

assert(R)

we expect that these Hoare triples hold:

{P}c1{Q}
{Q}c2{R}

Sufficiently annotated program

Consider the control-flow graph of a program with statements assert,
assume, x=e and with graph edges expressing ”[]” and ”;”.
We will say that the program c is sufficiently annotated iff

I the first statement is assert(Pre)

I the last statement is assert(Post)

I every cycle in the control-flow graph contains at least one assert

Assertion path

An assertion path is a path in its control-flow graph that starts and
ends with assert. Given the assertion path

assert(P)
c1
...
cK

assert(Q)

we omit any assert statements in the middle, obtaining from c1,...,cK
statements d1,...,dL. We call

{P}d1 ; . . . ; dL{Q}

the Hoare triple of the assertion path.

Proving Hoare triple for entire program

A basic path is an assertion path that contains no assert commands
other than those at the beginning and end. Each sufficiently annotated
program has finitely many basic paths.

Theorem: If the Hoare triple for each basic path is valid, then the
Hoare triple {Pre}c{Post} is valid.
Proof: If each basic path is valid, then each path is valid, by induction
and Hoare logic rule for sequential composition. Each program is
union of (potentially infinitely many) paths, so the property holds for
the entire program. (Another explanation: consider any given
execution and corresponding path in the control-flow graph. By
induction on the length of the path we prove that all assert statements
hold, up to the last one.)

Verification recipe

The verification condition of a basic path is the formula whose validity
expresses the validity of the Hoare triple for this path.
Simple verification conditions for a sufficiently annotated program is
the set of verification conditions for each each basic path of the
program.
One approach to verification condition generation is therefore:

I start with sufficiently annotated program

I generate simple verification conditions

I prove each of the simple verification conditions

In a program of size n, what is the bound on the number of basic
paths?

It can be 2O(n).

Verification recipe

The verification condition of a basic path is the formula whose validity
expresses the validity of the Hoare triple for this path.
Simple verification conditions for a sufficiently annotated program is
the set of verification conditions for each each basic path of the
program.
One approach to verification condition generation is therefore:

I start with sufficiently annotated program

I generate simple verification conditions

I prove each of the simple verification conditions

In a program of size n, what is the bound on the number of basic
paths?
It can be 2O(n).

Handling the path explosion

In a program of size n, the number of basic paths can be 2O(n).
Remedies:

I require more annotations (e.g. at each merge point)

I extreme case: assertion on each CFG vertex - this gives classical
Hoare logic proof

I merge subgraphs without annotations: perform sequential
composition and disjunction of formulas on edges

I generate correctness formulas for multiple paths in an acyclic
subgraph at once, using propositional variables to encode the
existence of paths

Exercise

Give a complete Hoare logic proof for the following program:

{n >= 0 && d > 0}
q = 0
r = n
while (r >= d) {

q = q + 1
r = r − d

}
{n == q ∗ d + r && 0 <= r < d}

The proof should be step-by-step as in the example proof in the lecture
on Hoare Logic. To prove each step you can use the syntactic rules for
Hoare Logic.

Exercise

// {n >= 0 && d > 0}
q = 0
// {n >= 0 && d > 0 && q == 0}
r = n
// {n >= 0 && d > 0 && q == 0 && r == n}
while // {d > 0 && n == q ∗ d + r && 0 <= r}

(r >= d) {
// {d > 0 && n == q ∗ d + r && d <= r}

q = q + 1
// {d > 0 && n == (q−1) ∗ d + r && d <= r}

r = r − d
// {d > 0 && n == (q−1) ∗ d + r + d && 0 <= r}
// {d > 0 && n == q ∗ d + r && 0 <= r}
}
// {d > 0 && n == q ∗ d + r && 0 <= r && r < d}
// {n == q ∗ d + r && 0 <= r < d}

What can be omitted to still have sufficiently annotated program?

...back to Algebraic Data Types

Unification Algorithm

A set of equations is in solved form if it is of the form
{x1

.
= t1, . . . , xn

.
= tn} where variables xi do not appear in terms tj ,

that is {x1, . . . , xn} ∩ (FV (t1) ∪ . . .FV (tn)) = ∅
We obtain a solved form in finite time using the algorithm that applies
the following rules in any order as long as no clash is reported and as
long as the equations are not in solved form.

I Orient: Select t
.

= x where t is not x, and replace it with x
.

= t.

I Delete: Select x
.

= x , remove it.

I Eliminate: Given x
.

= t where x does not occur in t, substitute x
with t in all remaining equations.

I Occurs Check: Given x
.

= t where x occurs in t, report clash.

I Decomposition: Given f (t1, . . . , tn)
.

= f (s1, . . . , sn), replace it
with t1

.
= s1, . . . , tn

.
= sn.

I Clash: Given f (t1, . . . , tn)
.

= g(s1, . . . , sm) for f not g , report
clash

Run Unification Algorithm

Σ = {h, f , a, b} with arities 2, 2, 0, 0

h(x , f (x , y)) = h(f (a, v), f (f (u, b), f (u, u)))

h(x , f (x , x)) = h(f (a, v), f (f (u, b), f (u, u)))

h(x , f (x , y)) = h(f (u, v), v)

Conjunctions of Equations and Disequations

Represent each disequation t1 6= t2 as

x1 = t1 ∧ x2 = t2 ∧ x1 6= x2

where x1, x2 are fresh variables.
If the most general unifier does not have same values for x1 and x2,
then there is a substitution that assigns x1 and x2 different terms.

Theorem
Let E be a set of equations and disequations where disequations are
only between variables. Let E + = {(t1

.
= t2) | (t1 = t2) ∈ E}. Then

I if E + has no unifier, the set E is unsatisfiable over ground terms;

I if E + has a most general unifier σ such that for all (x 6= y) ∈ E
we have σ(x) 6= σ(y), then if the language contains at least one
function symbol of arity at least one (i.e. the set of ground terms
is infinite) then E is satisfiable.

Why do we need infinite language? Σ = {a, b}, x 6= y ∧ x 6= z ∧ y 6= z

Example from Verification

Σ = {Leaf ,Node}, ar(Leaf) = 0, ar(Node) = 2
Consider ’flip’ of a tree invoked twice z1 ; z2 ; z3

Show that the following implication holds for all variables
z1, z2, z3, x1, y1, x2, y2 whose values range over TermsΣ

(((z1 = Leaf ∧ z2 = Leaf) ∨ (z1 = Node(x1, y1) ∧ z2 = Node(y1, x1)))
∧((z3 = Leaf ∧ z3 = Leaf) ∨ (z2 = Node(x2, y2) ∧ z3 = Node(y2, x3))))
→ z3 = z1

Decision Proceudures for Term Algebras

How to handle arbitrary quantifier-free formulas?

How to handle selectors and tests?

Can we also support quantifiers?

