Theorem Provers using
Cooperating Decision Procedures
* |ntroduced by Nelson and Oppen [TOPLAS 1979]

* Combines decision procedures for a set of disjoint
theories, producing a procedure for their union
* Key ideas

— introduce auxiliary variables to remove mixed application of
function symbols

— theories propagate discovered equalities to each other



Example

e Suppose we want to check satisfiability of
(x=y) A (f(x)<f(y))

* Introduce auxiliary variables v, w

x=y) A (Vv < w)
A (v=1x) A (w=t(y))
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Checking (x=y) A (f(x) <f(y))
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Backtracking in Nelson-Oppen

e Consider
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Inconsistency detected by the EUF procedure.
So backtrack, and try other branch.

11



Backtracking in Nelson-Oppen
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Backtracking in Nelson-Oppen

e Consider
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Backtracking in Nelson-Oppen

e Consider

This assignment is also inconsistent with EUF.
There are no branches left, so the formula is unsatisfiable.
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Simplify

» Written by Greg Nelson, Dave Detlefs and Jim Saxe

e Supports

— EUF (using the E-graph data structure)
— rational linear arithmetic (using the Simplex algorithm)
— quantified formulae involving 3 and YW (using matching)

* Very successful: used as the engine in many checkers
- ESC/Modula-3, ESC/Java, SLAM, ...
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Experience with Simplify

* Backtracking search is too slow
— Far surpassed by recent advances in SAT solving
* |Inconsistencies reveal only one bit of information

— Theory modules repeatedly rediscover the “same”
inconsistencies
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A Prover using Lazy Proof Explication

* Key ideas

— use a fast SAT solver to find candidate truth assignments to
atomic formulae

— have theory modules produce compact “proofs” that are
added to the SAT problem to reject all truth assignments
containing the “same” inconsistency

* Requires

— proof-explicating theory modules
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Example using lazy proof explication
e Suppose we want to check satisfiability of
(@=b) A (f@)#f(b) v b=c) A (f(a)#f(c))
* Encode it in propositional logic
o A ([ 0 Vo r) A S

where p denotes (a=b), and so on
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Example using lazy proof explication
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Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
) P, q, T, S
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
a=b B
) ) _Ir1 S
f(a)=(b) i -
b=C ; Zp_%'ng
f(a)#f(c S
(@)= q. f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Example using lazy proof explication

PA@VI)AS
Theory Manager SAT Solver
a=b B
) !_Iris
f(a)(b) P-4 -
- Inconsistent: p: Z[)—%ng
f(a)=f(c | 9T
el azb = f(a)={(b) g: f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure




Example using lazy proof explication

PA(QVTI)AS
A\ p = _Iq
Theory Manager " SAT Solver
Mapping
Inconsistent: p: a=b
a=b = f(a)=f(b) q: f(a)=f(b)
Equallty r b=c
Decision g f(a)zf(c)
Procedure
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Example using lazy proof explication

PA(QVI)AS
A P=70
Theory Manager " SAT Solver
) p,q, T, S
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Example using lazy proof explication

PA(QVI)AS
A\ p = _Iq
Theory Manager " SAT Solver
a=b D
) 1 ) r! S
f(a):f(b/ P, = |
Mapping
= p: a=b
il q: f(a)zf(b)
Equallty r b=c
Decision g f(a)zf(c)
Procedure
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Example using lazy proof explication

Theory Manager

a=b

f(a)=1(b)
f(at;;?(c) Inconsistent:
a=b A b=c = f(a)=f(c)

Equality
Decision
Procedure

PAQVI)AS
A P="(Q
SAT Solver
) p,q,r,S
Mapping
p: a=b
q: f(a)=f(b)
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Example using lazy proof explication

PA(QVI)AS
A Pp=7Q
A (p A= —s)
Theory Manager " SAT Solver
Mapping
/nconsistent: p: a=b
a=b A b=c = f(a)=f(c) q: f(a)zf(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Example using lazy proof explication

PA(QVI)AS
AN p=7Q
AN PATr= ﬁs)>
Theory Manager SAT Solver
i Unsatisfiable
Mapping
p: a=b
q: f(a)=f(b)
Equallty r b=c
Decision g f(a)if(C)
Procedure
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Definitions

* Aliteral is an atomic formula or its negation, e.g, (a<b)

* A quantified formula is either a \7-formula or its negation
e.g., ~y.F where F is a formula (we also write this as 3y.—F)

* A formula is an arbitrary boolean combination of
atomic formulae and quantified formulae,
e.g, (b>0 = Wx.(PXx) Vv Iy.—~Q(xy)))

* A monome is a set of literals and quantified formulae,
e.g., {b>0,-Q(ab), ¥x.(P(x) Vv Iy.-~Q(xy)) }
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Two key procedures

* satisfyProp(F)
— returns either UNSAT, or

— amonome m representing a satisfying boolean assignment to
the atomic formulae and outermost quantified formulae in F

* satisfyTheories(m)

— returns either SAT, or

— aformula F such that
F is a tautology wrt the underlying theories, and
(F Am) is propositionally unsatisfiable
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Algorithm for quantifier-free formulae

* satisfy(F) { /* returns UNSAT or a monome satisfying F */
E :=true
while (true) {
m := satisfyProp(F A E)
If (m = UNSAT) {return UNSAT }
else {
R := satisfyTheories(m)
If (R =SAT) {returnm }
else{E.=E AR}
}
}
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Further Information

* Theorem Proving Using Lazy Proof Explication
Flanagan, Joshi, Ou, Saxe
CAV 2003

 An Explicating Theorem Prover for Quantified Formulas
Flanagan, Joshi, Saxe
HP Tech Report (in preparation)
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