Theorem Provers using Cooperating Decision Procedures

- Introduced by Nelson and Oppen [TOPLAS 1979]
- Combines decision procedures for a set of disjoint theories, producing a procedure for their union
- Key ideas
 - introduce auxiliary variables to remove mixed application of function symbols
 - theories propagate discovered equalities to each other

Example

Suppose we want to check satisfiability of

$$(x = y) \wedge (f(x) < f(y))$$

Introduce auxiliary variables v, w

$$(x = y)$$
 \wedge $(v < w)$
 \wedge $(v = f(x))$ \wedge $(w = f(y))$

Checking $(x = y) \land (f(x) < f(y))$

Checking $(x = y) \land (f(x) < f(y))$

Checking $(x = y) \land (f(x) < f(y))$

Consider

Inconsistency detected by the EUF procedure. So backtrack, and try other branch.

Consider

This assignment is also inconsistent with EUF.

There are no branches left, so the formula is unsatisfiable.

Simplify

- Written by Greg Nelson, Dave Detlefs and Jim Saxe
- Supports
 - EUF (using the E-graph data structure)
 - rational linear arithmetic (using the Simplex algorithm)
 - quantified formulae involving ∃ and ∀ (using matching)
- Very successful: used as the engine in many checkers
 - ESC/Modula-3, ESC/Java, SLAM, ...

Experience with Simplify

- Backtracking search is too slow
 - Far surpassed by recent advances in SAT solving
- Inconsistencies reveal only one bit of information
 - Theory modules repeatedly rediscover the "same" inconsistencies

A Prover using Lazy Proof Explication

Key ideas

- use a fast SAT solver to find candidate truth assignments to atomic formulae
- have theory modules produce compact "proofs" that are added to the SAT problem to reject all truth assignments containing the "same" inconsistency

Requires

proof-explicating theory modules

Suppose we want to check satisfiability of

$$(a = b) \land (f(a) \neq f(b) \lor b = c) \land (f(a) \neq f(c))$$

Encode it in propositional logic

$$p \wedge (q \vee r) \wedge s$$

where p denotes (a=b), and so on

Equality Decision

Procedure

Mapping

p: a=b

q: $f(a) \neq f(b)$

r: b=c

s: $f(a) \neq f(c)$

Equality

Decision

Procedure

Mapping

p: a=b

q: $f(a) \neq f(b)$

r: b=c

s: $f(a) \neq f(c)$

Equality

Decision

Procedure

Mapping

p: a=b

q: $f(a) \neq f(b)$

r: b=c

s: $f(a) \neq f(c)$

Equality
Decision
Procedure

Mapping

p: a=b

q: $f(a) \neq f(b)$

r: b=c

s: $f(a) \neq f(c)$

Definitions

- A literal is an atomic formula or its negation, e.g, (a<b)
- A quantified formula is either a ∀-formula or its negation
 e.g., ¬∀y.F where F is a formula (we also write this as ∃y.¬F)
- A formula is an arbitrary boolean combination of atomic formulae and quantified formulae,

e.g,
$$(b > 0 \Rightarrow \forall x.(P(x) \lor \exists y.\neg Q(x,y)))$$

• A monome is a set of literals and quantified formulae, e.g., $\{b > 0, \neg Q(a,b), \forall x.(P(x) \lor \exists y. \neg Q(x,y))\}$

Two key procedures

- satisfyProp(F)
 - returns either UNSAT, or
 - a monome *m* representing a satisfying boolean assignment to the atomic formulae and outermost quantified formulae in *F*
- satisfyTheories(m)
 - returns either SAT, or
 - a formula F such that F is a tautology wrt the underlying theories, and $F \land m$ is **propositionally** unsatisfiable

Algorithm for quantifier-free formulae

```
    satisfy(F) { /* returns UNSAT or a monome satisfying F */

     E := true
     while (true) {
        m := satisfyProp(F \land E)
        if (m = UNSAT) { return UNSAT }
        else {
          R := satisfyTheories(m)
          if (R = SAT) { return m }
          else { E := E \wedge R }
```

Related Work

- CVC [Dill, Stump, Barrett], CVC-Lite [Barrett, Berezin]
- ICS [de Moura, Ruess, Shankar,]
- Math-SAT [Audemard, Bertoli, Cimatti, Kornilowicz, Sebastiani]
- DPLL(T) [Ganzinger, Hagen, Nieuwenhius, Oliveras, Tinelli]
- UCLID [Bryant, Velev, Strichman, Seshia, Lahiri]
- Zapato [Ball,Cook,Lahiri,Zhang]
- TSAT++ [Armando, Castellini, Giunchiglia, Idini, Maratea]

Further Information

 Theorem Proving Using Lazy Proof Explication Flanagan, Joshi, Ou, Saxe CAV 2003

 An Explicating Theorem Prover for Quantified Formulas
 Flanagan, Joshi, Saxe
 HP Tech Report (in preparation)