Predicate abstraction and interpolation

Many pictures and examples are borrowed from

The Software Model Checker
BLAST

presentation.

Outline

1. Predicate abstraction – the idea in pictures

2. Counter-example guided refinement

3. wp, sp for predicate discovery

4. Interpolation

The task

Given a program, we wish to check it satisfies some property:

- never divide by zero
- variable x is always positive
- never call lock() twice in a row
- •

The problem:

In general, programs have large or (for practical purposes) infinite state spaces:

- many variables
- integers

Let's say we have two 32bit integer variables, the number of states is 18446744065119617025

Group concrete states that satisfy a certain property together.

→ finitely many abstract states, labeled by predicates

Each such concrete state \mathbf{s}_i consists of

- program counter
- state of variables

Hence, one node in the CFG can correspond to many different program states.

We are given the concrete relation with transitions $(s_i, s_j) \in r$, i.e whenever we have an edge in the CFG.

Using some abstraction function β we get corresponding abstract states $a_i = \beta(s_i)$ and $a_j = \beta(s_j)$ and we merge those states whose predicates are the same.

$$a_i = \beta(s_i)$$
 and $a_j = \beta(s_j)$

Then, if $(s_i, s_j) \in r$ we require $(a_i, a_j) \in a$.

$$a_i = \beta(s_i)$$
 and $a_j = \beta(s_j)$

Then, if $(s_i, s_j) \subset r$ we require $(a_i, a_j) \subset a$.

Error

Error states are bad states where the property to check does not hold.

Reachability question:

Is there a **path** from an **initial** to an **error** state ?

Initial

Is there a **path** from an **initial** to an **error** state ?

We are guaranteed to not get any false negatives:

if a state is unreachable in abstraction, it is unreachable in the concrete state space.

Outline

1. Predicate abstraction – the idea in pictures

2. Counter-example guided refinement

3. wp, sp for predicate discovery

4. Interpolation

False positives

Suppose we find a path to some error state. Have we found a true bug in the program?

Maybe, or we just found a spurious counterexample.

How to check:

- take the concrete path through the program and construct the formula describing its relation
- feed this formula to a theorem prover
 - path feasible: true bug found, report and finish
 - path infeasible: no bug, refine abstraction

Note: how we get the concrete path will become obvious later.

Counter-example guided refinement

If path is infeasible, add more predicates to distinguish paths and rule out this particular one.

Idea: use infeasible path to generate predicates such that when added, this path will not appear any more.

Repeat until

- find a true counterexample
- system is proven safe
- timeout

Counter-example guided refinement

Suppose we have a black-box tool that can provide us with the missing predicates.

We're done, right?

Lazy abstraction

Not quite...

Abstraction is expensive: # abstract states is finite, but still too large:

2^{# predicates}

Observation:

- not all predicates are needed everywhere
- only a fraction of states is reachable

Abstract reachability tree

Unroll the CFG:

- pick a tree node
- add children
- if we revisit a state already seen, cut off


```
Example () {
1: do{
   lock();
   old = new;
    q = q->next;
2: if (q != NULL){
3: q->data = new;
      unlock();
     new ++;
4: } while(new != old);
5: unlock ();
  return;
```


"An attempt to re-acquire an acquired lock or release a released lock will cause a deadlock."

Calls to lock and unlock must alternate.

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;
2: if (q != NULL){
    3:        q->data = new;
        unlock();
        new ++;
        }
    4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK

1 : LOCK

```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;
2: if (q != NULL){
    3:        q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK


```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;

2: If (q != NULL){
    3:        q->data = new;
        unlock();
        new ++;
    }

4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK


```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;

2:        if (q != NULL){
        3:        q->data = new;
             unlock();
        new ++;
        }

4:}while(new != old);

5: unlock ();
}
```


Predicates: LOCK


```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;

2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }

4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK


```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;
2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK


```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;
2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }
4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK

Reachability Tree

```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;

2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }

4:}while(new != old);

5: unlock ();
}
```


Predicates: LOCK

Reachability Tree

```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;
2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK, new==old

1 : LOCK

LOCK, new==old

```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;
2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }
    4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK, new==old

Reachability Tree

: LOCK

lock() old = new

q=q->next

```
Example ( ) {
    1: do{
        lock();
        old = new;
        q = q->next;

2:        if (q != NULL){
        3:        q->data = new;
             unlock();
        new ++;
        }

4:}while(new != old);

5: unlock ();
}
```



```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;

2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }

4:}while(new != old);

5: unlock ();
}
```



```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;

2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }

4:}while(new != old);
5: unlock ();
}
```


Predicates: LOCK, new==old

```
Example () {
    1: do{
        lock();
        old = new;
        q = q->next;

2: if (q!= NULL){
    3: q->data = new;
        unlock();
        new ++;
    }

4:}while(new != old);

5: unlock ();
}
```


Reachability Tree

Predicates: LOCK, new==old

Outline

1. Predicate abstraction – the idea in pictures

2. Counter-example guided refinement

3. wp, sp for predicate discovery

4. Interpolation

How to find the predicates: wp, sp

We have a path

init(
$$x_1$$
) $\bigwedge r_1(x_1, x_2) \bigwedge r_2(x_2, x_3)$

that is infeasible, i.e. set of states at position error is empty.

$$\forall x, x'. \neg (P(x) \land r(x, x') \land Q(x'))$$

$$\forall x, x'. P(x) \land r(x, x') \rightarrow \neg Q(x') \Leftrightarrow \{P\} r \{\neg Q\}$$

The 'P' is what we are looking for, hence use

to derive predicates for position s.

We effectively compute the weakest condition such that the error state is not reached.

How to find the predicates: wp, sp

wp(r₂, false)

Propagate backwards through the ART to compute predicates for all positions.

Alternatively, use sp(init, r) to compute predicates forwards.

However,

- wp, sp introduce quantifiers
- formulae can become quite complex

What kind of predicates are needed?

Suppose our path consists of states s₁, s_{2, ...,} s_{n.}

What we want are predicates P_i (corresponding to s_i), such that

$$P_1 -> P_2 -> ... P_{n-1}$$
 and

 P_{n-1} and P_n are inconsistent.

→ the path has been ruled out.

Note: it is always sound to pick predicates at random!

Outline

1. Predicate abstraction – the idea in pictures

2. Counter-example guided refinement

3. wp, sp for predicate discovery

4. Interpolation

So what is the magic?

Definition:

Given two formulas F and G, such that |=F->G, an **interpolant** for (F,G) is a formula H such that:

- 1. |= F-> H
- 2. |= H-> G
- 3. H only contains free variables common to both F and G

Craig's interpolation theorem (1957):

Let F and G be formulas in first-order logic. If $F \rightarrow G$ is valid, then an interpolant for (F, G) always exists.

(... but it can contain quantifiers.)

The examples are all in propositional logic:

F:
$$(P \lor (Q \land R))$$

H:

G:
$$(P \lor \neg \neg Q)$$

$$F: (P \land \neg P)$$

H:

H:

$$G: (P \lor \neg P)$$

F:
$$\neg (P \land Q) \rightarrow (\neg R \land Q)$$
 H:

G:
$$(T \rightarrow P) \lor (T \rightarrow \neg R)$$

The examples are all in propositional logic:

F:
$$(P \lor (Q \land R))$$

H:
$$P \lor Q$$

G:
$$(P \lor \neg \neg Q)$$

$$F: (P \land \neg P)$$

$$G: (P \lor \neg P)$$

F:
$$\neg (P \land Q) \rightarrow (\neg R \land Q)$$
 H: $(P \lor \neg R)$

G:
$$(T \rightarrow P) \vee (T \rightarrow \neg R)$$

Two simple ways of computing an interpolant

Suppose F -> G.

Let

$$H_{min} \equiv elim(\exists p_1, p_2, ..., p_n. F) \text{ where } \{p_1, p_2, ..., p_n\} = FV(F) \backslash FV(G)$$

 $H_{max} \equiv elim(\forall q_1, q_2, ..., q_m. G) \text{ where } \{q_1, q_2, ..., q_m\} = FV(G) \backslash FV(F)$

and let I(F, G) be the set of all interpolants for (F, G):

$$\mathcal{I}(F,G) = \{H \mid H \text{ is interpolant for } (F,G)\}$$

Theorem:

The following properties hold for H_{min} , H_{max} , I(F, G) defined above:

- (1) $H_{min} \in \mathcal{I}(F,G)$
- (2) $\forall H \in \mathcal{I}(F,G). \models (H_{min} \to H)$
- (3) $H_{max} \in \mathcal{I}(F,G)$
- (4) $\forall H \in \mathcal{I}(F,G). \models (H \to H_{max})$

Effectively, H_{min} is the strongest interpolant and H_{max} is the weakest one.

Proof

WLOG, let F be over the variables x, y and G over y, z.

Then by assumption $\forall x, y, z. F(x, y) \to G(y, z)$ and for any interpolant H in \mathcal{I} it holds

$$\forall x, y. \ F(x, y) \to H(y)$$

$$\forall y, z. \ H(y) \to G(y, z)$$

Now, for H_{min} to be an interpolant, it must hold $\forall x, y. F(x, y) \rightarrow \exists x_1. F(x_1, y)$

This statement is equivalent to $\forall y. (\exists x. F(x,y)) \rightarrow \exists x_1. F(x_1,y)$ which is trivially true.

Similarly $\forall y, z.(\exists x_1. F(x_1, y)) \to G(y, z) \Leftrightarrow \forall x_1, y, z. F(x_1, y) \to G(y, z)$

hence H_{min} is indeed an interpolant.

To show that it is the strongest interpolant consider $\forall x, y \colon F(x, y) \to H(y)$ which is equivalent to $\forall y \colon (\exists x \colon F(x, y)) \to H(y)$ which is what we wanted to show.

The proof for H_{max} follows similarly.

Remarks

- By the last theorem, if a theory has quantifies elimination, then it also has interpolants, e.g.
 - Presburger arithmetic
 - field of complex and real numbers
 - mixed linear and integer constraints
- But, interpolants may exist even if there is no quantifier elimination (e.g. FOL).
- There are also other ways of computing them.
- Some theories do not have interpolants, e.g. quantifier free theory of arrays

$$F: M' = wr(M, x, y)$$

$$G: (a \neq b) \land (rd(M, a) \neq rd(M', a)) \land (rd(M, b) \neq rd(M', b))$$

Since the interpolant cannot use x, y, a, b, it has to use quantifiers.

Alternatively

Instead of validity of implication, we can consider unsatisfiability.

Definition:

Given two formulas F and G, such that F ^ G is inconsistent, an interpolant for (F, G) is a formula H such that:

- 1. |= F -> H
- 2. H ^ G is inconsistent
- 3. H only contains free variables common to both F and G

Intuition:

H is an abstraction of F containing just the inconsistent information with G.

I.e. H is the *reason* why F and G are inconsistent.

Example:

F:
$$2z-1 \le 0 \land y-z+2 \le 0$$
 H: $x-y \le 0 \land -3x+y+1 \le 0$ Interpolant: $2y+3 \le 0$

It is possible to extract interpolants from a proof of F ^ G being inconsistent.

Putting it all together

Putting it all together

Putting it all together

