Predicate abstraction and interpolation

Many pictures and examples are borrowed from
The Software Model Checker
BLAST

presentation.



Outline

Predicate abstraction —the idea in pictures
Counter-example guided refinement
wp, sp for predicate discovery

Interpolation



The task

Given a program, we wish to check it
satisfies some property:

* never divide by zero
e variable x is always positive
* never call lock() twice in a row

The problem:

In general, programs have large or (for
practical purposes) infinite state spaces:

* many variables

* integers

Let’s say we have two 32bit integer
variables, the number of states is

18446744065119617025



Predicate abstraction

Group concrete states that satisfy a
certain property together.

- finitely many abstract states, labeled
by predicates

Each such concrete state s; consists of
* program counter
* state of variables

Hence, one node in the CFG can
correspond to many different program
states.



Predicate abstraction

We are given the concrete relation with
transitions (s;, sj) er, i.e whenever we
have an edge in the CFG.

Using some abstraction function 3 we
get corresponding abstract states

a;=f3(s;) and a;=f3(s))
and we merge those states whose
predicates are the same.



Predicate abstraction

| L S a=fls) and a; = f(s)

— | ~J
/I o I Then, if

(sis) €T
we require

(ai; aj) € d.




Predicate abstraction

—— e ——  — ai=/3(5i) and a.=/3’(s-)
4 L 414 14 [ o
v | ’I - | I Then, if

A A 4| (s, S)E T
I * we require

A A A \4 (a;, a) € a.
|




Predicate abstraction

Error

J s e 4

\, Error states are bad states where the
T property to check does not hold.

I—> Reachability question:
\[ ] fg{fle Is there a path from an initial to an

/e » » error state ?
/ TZ/ T,



Predicate abstraction

e

l_ = A:_\»A ?
i i,

Is there a path from an initial to an
error state ?

We are guaranteed to not get any
false negatives:

if a state is unreachable in
abstraction, it is unreachable in the
concrete state space.



Outline

Predicate abstraction — the idea in pictures
Counter-example guided refinement
wp, sp for predicate discovery

Interpolation



False positives

Suppose we find a path to some error state.

Have we found a true bug in the program?

Maybe, or we just found a spurious
counterexample.

How to check:
* take the concrete path through the

program and construct the formula
describing its relation

* feed this formula to a theorem prover

— path feasible: true bug found, report and
finish

— path infeasible: no bug, refine
abstraction

Note: how we get the concrete path will become obvious later.



Counter-example guided refinement

;
gt

If path is infeasible, add more predicates
to distinguish paths and rule out this
particular one.

|ldea: use infeasible path to generate
predicates such that when added, this
path will not appear any more.

Repeat until

* find a true counterexample
e system is proven safe

* timeout



Counter-example guided refinement

Suppose we have a black-box tool

that can provide us with the missing
predicates.

We're done, right?




Lazy abstraction

Not quite...

Abstraction is expensive:

# abstract states is finite, but still too large:

2 # predicates

Observation:
* not all predicates are needed everywhere
* only a fraction of states is reachable




N

Abstract reachability tree

Initial

1

\ 4

2

Unroll the CFG:
pick a tree node
add children

if we revisit a state already seen,
cut off

!

\




Example () {
1: dof
lock();
old = new;
g = g->next;
2: if (g !'= NULL){
3: g->data = new;
unlock();
new ++,
}
4: } while(new != old);
5: unlock ();
return;

}

Example

unlock ’ lock

“An attempt to re-acquire an acquired
lock or release a released lock will
cause a deadlock.”

Calls to lock and unlock must
alternate.



Example () {
1: dof
lock();
old = new;
g = g->next;
2 if (q != NULL)
3: qg->data =new;
unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}

1

Predicates: Lock

Example

1| LOCK

Reachability Tree



Example () {

17401
lock();
old = new;

g = g->next;
2: if (g '= NULL){
3: qg->data =new;
unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}

1= 12

Predicates: Lock

Example

:LOCK
lock() 1
old = new ‘
g=g->next y
2 LOCK

Reachability Tree



Example () {

1: dof
lock();

old = new;

g = g->next;
~“ZT T (qI=NULCH
3: qg->data =new;
unlock();
new ++;

}

4:}while(new != old);

5: unlock ();

}

1—

—9 —

—3

Predicates: Lock

Example

1 . LOCK
v ‘
2 LOCK
[q!=NULL]
3 LOCK

Reachability Tree



Example () {
1: dof
lock();
old = new;
q = g->next;

Z: 1t (q = NULL){
3: g->data =new;
unlock();
new ++,

}
4:}while(new != old);
5: unlock ();
}

1—12713

Predicates: Lock

Example

1 . LOCK
v ‘
2 LOCK
3 LOCK
g->data = new
unlock
niock() | O
4 : LOCK

Reachability Tree



Example () {
1: dof
lock();
old = new;
q = g->hext;
2: if (q != NULL){
3: qg->data =new;

unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}
3
|
1
112713

Predicates: Lock

Example

[new==o0ld]

1 . LOCK
v ‘
2 LOCK

3 LOCK

I O

4 : LOCK

\ 4

5 :LOCK

Reachability Tree



Example () {
1: dof
lock();
old = new;
q = g->hext;
2: if (q != NULL){
3: qg->data =new;

unlock();
new ++;
}
4:}while(new != old);
~5: unlock ();
}
3
|
1
112713

Predicates: Lock

Example

unlock()

1 . LOCK
v ‘
2 LOCK
3 LOCK
I O
4 : LOCK
\4
5 :LOCK
:LOCK

Reachability Tree



Example

Example () {
1: dof
lock();
old = new; 1| : LOCK Yol
q = g->next, ‘ oolé =0new
2: if (g != NULL) Y g=g->next
3: g->data = new; 2 LOCK
unlock();
new ++; [g!=NULL]
}
4:}while(new != old); 3 LOCK g->data = new
5: unlock (); O unlock()
} 3 new++
4 1 LOCK
v [new==old]
5 :LOCK
§ unlock()
| O
? : LOCK
1—127713

Predicates: Lock Reachability Tree



Example () {
1: dof
lock();
old = new;
g = g->next;
2: if (g != NULL){
3: qg->data =new;
unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}

—n

1127713

Predicates: Lock

Example

1| LOCK

2 LOCK

3 LOCK

4 :LOCK

O

:LOCK

Reachability Tree

old = new

hew++

[new==o0ld]

Inconsistent

new == old



Example () {
1: dof
lock();
old = new;
g = g->next;
2: if (g != NULLN
3: qg->data =new;
unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}

1

Predicates: [L0ocCK, new==old

Example

1| LOCK

Reachability Tree



Example () {

1700t
lock();
old = new;

q = g->next;
2: if (g != NULL){
3: g->data=new;
unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}

11

Predicates: [L0ocCK, new==old

Example

1| LOCK
. lock()
LOCK , new==old 2 old = new

g=g->next

Reachability Tree



Example () {
1: dof
lock();
old = new;
g = g->next;

2.7 (q 1= NULLK
3: qg->data =new;

:LOCK , :new =old | 4

unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}
41k
1——+7 —+> 2

Example

1| LOCK

LOCK , new==old 2

LOCK , new==old | 3

g->data = new
O unlock()
new++

Predicates: LOCK, new==old Reachability Tree



Example () {
1: dof
lock();
old = new;
g = g->next;
2: if (g != NULL){
3: qg->data =new;

unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}
41k
1——+7 —+> 2

Example

LOCK , new==old 2

LOCK , new==old

O

:LOCK , : new = old

A

Predicates: [L0ocCK, new==old

1| LOCK
®
3
4
[new==0ld]

Reachability Tree



Example () {
1: dof
lock();
old = new;
g = g->next;
2: if (g != NULL){
3: qg->data =new;
unlock();
new ++;

}

4:}while(new != old);
5: unlock ();
}

:LOCK , :new =old | 4

144

—

11, P

Example

1| LOCK

LOCK , new==old 2

LOCK , new==old | 3

O

A/i [new!=0ld]

1

: LOCK,
:new == old

Predicates: [L0ocCK, new==old



Example () {
1: dof
lock();
old = new;
g = g->next;
2: if (g != NULL){
3: qg->data =new;
unlock();
new ++;
}
4:}while(new != old);
5: unlock ();
}

44 | 144

113

Example

1| LOCK

LOCK , new==old 2

LOCK , new==old | 3 SAF E

O . !
:LOCK , : new =old | 4 4 | LOCK , new=old
A 4
1 5
: LOCK, O Y
: new == old

: LOCK , new==old

Predicates: LOCK, new==old Reachability Tree



Outline

Predicate abstraction — the idea in pictures
Counter-example guided refinement
wp, sp for predicate discovery

Interpolation



How to find the predicates: wp, sp

We have a path

init(x;) A ri(Xg, X;) A (%, X;)

that is infeasible, i.e. set of states at position error is empty.

Vx,x'.—-(P(x) Ar(x,x")A Q(x'))
Vi, x'.P(x)Ar(x,x)—=-0(x") < {P}r{-0}

The ‘P’ is what we are looking for, hence use
wp(r,, false)
to derive predicates for position s.

We effectively compute the weakest condition such that the
error state is not reached.



How to find the predicates: wp, sp

wp(r,, false)

init
o
Propagate backwards through the ART to compute predicates
r for all positions.
1 Alternatively, use sp(init, r) to compute predicates forwards.
v
s
However,
r * wp, sp introduce quantifiers
2  formulae can become quite complex
v



What kind of predicates are needed?

eey

What we want are predicates P, (corresponding to s;), such that
P,->P,->..P , and
P..,and P, areinconsistent.

— the path has been ruled out.

Note: it is always sound to pick predicates at random!




Outline

Predicate abstraction — the idea in pictures
Counter-example guided refinement
wp, sp for predicate discovery

Interpolation



So what is the magic?

Definition:

Given two formulas F and G, such that |= F -> G, an interpolant for (F, G) is a
formula H such that:

1. |= F->H

2. |=H->G

3. Honly contains free variables common to both F and G

Craig’s interpolation theorem (1957):

Let F and G be formulas in first-order logic. If F -> G is valid, then an interpolant for
(F, G) always exists.

(... but it can contain quantifiers.)



Examples

The examples are all in propositional logic:

= (PV(Q/\R)) H:
G: (Pv—'ﬂQ)

F: (P/\_‘P) H:
G: QO

F: O H:
G: (PV-P)

F: =(PAQ)— (=RAQ) H:
G: (T = P)v(T —-R)



Examples

The examples are all in propositional logic:

F: (Pv(QAR)) H: PvQ
G: (Pv—'ﬂQ)

F: (P/\_‘P) H: L

G: QO

F: O H: T

G: (PV-P)

F: ~(PAQ)—=(—RAQ) H: (P v=R)
G: (T —=P)v(T —-R)



Two simple ways of computing an interpolant

Suppose F -> G.

Let
Honin = elim(3p1, p2, ..., pn. F') where {p1,p2,....,pn} = FV(F)\FV(G)
Hpar = elim(Yq1,q2, -, ¢m. G) where {q1,q2,...,qm} = FV(G)\FV(F)

and let I(F, G) be the set of all interpolants for (F, G):
I(F,G)={H | H is interpolant for (F,G)}
Theorem:

The following properties hold for H |(F, G) defined above:

(1) Hupin € Z(F,G)
(2) VH € Z(F, Q). = (Hypin — H)
(3) Hpaw € Z(F,G)
(4) VH € Z(F, Q). = (H — Hypas)

Effectively, H, ., is the strongest interpolant and H__, is the weakest one.



Proof

WLOG, let F' be over the variables =,y and G over y, z.
Then by assumption Vz,y, z.F(x,y) — G(y, z) and for any interpolant H in Z it holds

Va,y. F(x,y) = H(y)
Vy,z. H(y) = G(y, 2)

Now, for H,,;, to be an interpolant, it must hold Vz,y. F(x,y) — Jz1. F(x1,y)

This statement is equivalent to Vy. (3z. F(x,y)) — 3Jx1. F(x1,y) which is trivially true.
Similarly Vy, z.(3z1. F(x1,y)) — G(y,2) < Vzi,y,z2. F(x,y) = G(y, 2)

hence H,,;, is indeed an interpolant.

To show that it is the strongest interpolant consider V,y. F(x,y) — H(y) which is equiv-
alent to Vy. (3z. F(x,y)) — H(y) which is what we wanted to show.

The proof for H,,,, follows similarly.



Remarks

By the last theorem, if a theory has quantifies elimination, then it also has
interpolants, e.g.

— Presburger arithmetic

— field of complex and real numbers

— mixed linear and integer constraints

But, interpolants may exist even if there is no quantifier elimination (e.g. FOL).

There are also other ways of computing them.

Some theories do not have interpolants, e.g. quantifier free theory of arrays
F: M =wr(M,z,vy)
G: (a#b) A(rd(M,a)#rd(M', a)) A (rd(M,b) # rd(M’,b))

Since the interpolant cannot use x, vy, a, b, it has to use quantifiers.



Alternatively

Instead of validity of implication, we can consider unsatisfiability.

Definition:

Given two formulas F and G, such that F * G is inconsistent, an interpolant for (F, G)
is a formula H such that:

1. |= F->H

2. HA™Gisinconsistent

3. Honly contains free variables common to both F and G

Intuition:

H is an abstraction of F containing just the inconsistent information with G.

l.e. H is the reason why F and G are inconsistent.

Example:

F: 2z-1=0Ay-z+2<0 H: x—y<0A-3x+y+1=<0 Interpolant: 2y+3=<0

It is possible to extract interpolants from a proof of F A G being inconsistent.



Putting it all together

init
® N
ry
v
©s > F
p)
v Y, The information the executing
© S, ~ — program has at this point contains
variables common to F and G.
r; > G

© error



Putting it all together

init
® N

£
v
©s > F

r>
v . Use the interpolant H here as
o S3 N < additional predicate.

r > G

3
Note: there is way to compute

2 / interpolants from the proof of
error unsatisfiability of the path.



Putting it all together

init

® N

r > F

Repeat for all nodes in the ART.

v /
o 51 N

p)
v
®s, > G

k!
¥ J




