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Let (A,v) be a complete lattice and G : A→ A a monotonic function.

Definition:
Post = {x | G(x) v x} - the set of postfix points of G (e.g. > is a postfix point)
Pre = {x | x v G(x)} - the set of prefix points of G
Fix = {x | G(x) = x} - the set of f ixed points of G. Note that Fix ⊆ Post.

Theorem: Let a = uPost. Then a is the least element of Fix (dually, tPre is the largest element
of Fix).

Proof.
Let x range over elements of Post.

• applying monotonic G from a v x we get ++— G(a) v G(x) v x

• so G(a) is a lower bound on Post, but a is the greatest lower bound, so G(a) v a

• therefore a ∈ Post

• Post is closed under G, by monotonicity, so G(a) ∈ Post

• a is a lower bound on Post, so a v G(a)

• from a v G(a) and G(a) v a we have ++— a = G(a), so a ∈ Fix

• a is a lower bound on Post so ++ —it is also a lower bound on a smaller set Fix

In fact, the set of all fixpoints Fix is a lattice itself.
Tarski’s Fixed Point theorem shows that in a complete lattice with a monotonic function G on this
lattice, there is at least one fixed point of G, namely the least fixed point uPost.
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1 Iterating Sequences and Omega Continuity

Tarski’s theorem guarantees fixpoints in complete lattices, but the above proof does not say how
to find them. How difficult it is to find fixpoints depends on the structure of the lattice.
Let G be a monotonic function on a lattice. Let a0 = ⊥ and an+1 = G(an). We obtain a sequence
⊥ v G(⊥) v G2(⊥) v · · · . Let a∗ =

⊔
n≥0 an.

Lemma: The value a∗ is a prefix point.

Observation: a∗ need not be a fixpoint (example in exercises, e.g. on lattice [0,1] of real numbers).
Definition: A function G is ω-continuous if for every chain x0 v x1 v . . . v xn v . . . we have

G(
⊔
i≥0

xi) =
⊔
i≥0

G(xi)

Lemma:
For an ω-continuous function G, the value a∗ =

⊔
n≥0G

n(⊥) is the least fixpoint of G.

Proof:
By definition of ω-continuous we have G(

⊔
n≥0G

n(⊥)) =
⊔

n≥0G
n+1(⊥) =

⊔
n≥1G

n(⊥).
But

⊔
n≥0G

n(⊥) =
⊔

n≥1G
n(⊥) t ⊥ =

⊔
n≥1G

n(⊥) because ⊥ is the least element of the lattice.
Thus G(

⊔
n≥0G

n(⊥)) =
⊔

n≥0G
n(⊥) and a∗ is a fixpoint.

Now let’s prove it is the least.
Let c be such that G(c) = c. We want

⊔
n≥0G

n(⊥) v c. This is equivalent to ∀n ∈ N.Gn(⊥) v c.
We can prove this by induction : ⊥ v c and if Gn(⊥) v c, then by monotonicity of G and by
definition of c we have Gn+1(⊥) v G(c) v c.
When the function is not ω-continuous, then we obtain a∗ as above (we jump over a discontinuity)
and then continue iterating. We then take the limit of such sequence, and the limit of limits etc.,
ultimately we obtain the fixpoint.

2 References

• Constructive proof using ordinals, by Cousot & Cousot,
http://www.di.ens.fr/ cousot/COUSOTpapers/Tarski-79.shtml

• A shorter constructive proof using ordinals,
http://129.3.20.41/eps/ge/papers/0305/0305001.pdf

• Many more details on lattices: J.B.Nation’s notes,
http://bigcheese.math.sc.edu/ mcnulty/alglatvar/lat0.pdf,
http://bigcheese.math.sc.edu/ mcnulty/alglatvar/lat1.pdf
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