
Lecture 5

Substitution Example

(2*x > y /\ x > 0) [x := u+3] =

2*(u+3) > y /\ u+3 > 0

(2*x > y /\ x > 0) [x := u+3, y:= 7] =

2*(u+3) > 7 /\ u + 3 > 0

Substitution Defined

(F1  F2) [x := t] = F1[x := t]  F2[x := t]

x [x:=t] = t

y [x:=t] = y (for y not x)

For binders:

( y. F) [x:=t] = ( y1.F’) [x:=t] =  y1. F’[x:=t]

 where F’ is F[y:=y1] and y1 is fresh in F,t

• analogous for  , 

• avoids capture, needed when t contains y

Variable Capture

If x.F and t is a term, then F[x:=t]

Let F be y. (x < y)

 t be y

x. y. (x < y) true (about integers)

 y. (y < y) false! Not a result of F[x:=t].

Our substitution is capture avoiding

Informal Notation for Substitutions

F(x) means:

– F is a formula

– x is some variable (or a vector of variables)

– when we write F(t) later, we will mean

F[x:=t] - substitute t instead of x

This notation does not say anything about

whether x appears in F

– It is about the meaning of future occurrences

of F(t)

– One way to think of it: F is function z. F[x:=z]

Translations of Control Constructs

s1 ; s2

if (E) s1 else s2

while (E) s

s1 ; s2

(assume (E) ; s1) []

(assume (! E) ; s2)

(assume (E); s)* ;

assume(! E)

Relation Composition

r1 = {(a,b) | F1(a,b)}

r2 = {(b,c) | F2(b,c)}

r1 o r2 = {(a,c) |  b. (a,b) r1  (b,c)  r2} =

 {(a,c) |  b. F1(a,b) /\ F2(b,c)} =

 {(x,x’) |  b. F1(x,b) /\ F2(b,x’)}

Usually formulas are between x and x’

 F1(x,x’) is F1 F2(x,x’) is F2

 F1(x,b) is F1[x’:=b] F2(b,x’) is F2[x:=b]

Formulas for Loop-Free Code

Translate such CFG into Formula

Remember rules, when y does not occur in G

 (y. F(y)) /\ G)  y. (F(y) /\ G)

 (y. F(y)) \/ G)  y. (F(y) \/ G)

Theorem

Any loop-free CFG labeled with formulas

F1, …, Fn can be translated into a \/,/\

combination of formulas F’i with some

variables renamed by variables that are

existentially quantified at the top-level.

We can do this in polynomial time.

Proving that program satisfies spec

Prove:

{pre(x)} ( y1, …, yn. F) {post(x,x’)}

i.e.

 x,x’. (pre(x) /\ ( y1, …, yn. F)  post(x,x’))

 x,x’,y1, …, yn. pre(x) /\ F  post(x,x’)

i.e. we need to prove that

pre(x) /\ F /\ post(x,x’)

is not satisfiable. No quantifiers in the query.

More on Hoare Triples

Hoare triple transitivity.

Hoare triple distributes over infinite

disjunctions of relations.

{P} ri {Q}  i. {P} ri {Q}

Use above to derive rule for * and for while

Rules for computing sp

spF(P(x,y), F(x,y,x’,y’)) =

 x0, y0. P(x0,y0) /\ F(x0, y0,x,)

In many cases, this can be simplified.

Rules for computing wp

wpF(F(x,y,x’,y’), Q(x,y)) =

 x’, y’. (F(x, y,x’,y’)  Q(x’,y’))

In many cases, this can be simplified.

