Lecture 5

Substitution Example

$\left(2^{*} x>y \wedge x>0\right)[x:=u+3]=$
$2^{*}(u+3)>y \wedge u+3>0$
$\left(2^{*} x>y \wedge x>0\right)[x:=u+3, y:=7]=$ $2^{*}(u+3)>7 \wedge u+3>0$

Substitution Defined

$\left(F_{1} \oplus F_{2}\right)[x:=t]=F_{1}[x:=t] \oplus F_{2}[x:=t]$
$x[x:=t] \quad=t$
$y[x:=t] \quad=y \quad($ for $y \operatorname{not} x)$

For binders:
$(\exists \mathrm{y} . \mathrm{F})[\mathrm{x}:=\mathrm{t}]=\left(\exists \mathrm{y}_{1} . \mathrm{F}^{\prime}\right)[\mathrm{x}:=\mathrm{t}]=\exists \mathrm{y}_{1} . \mathrm{F}^{\prime}[\mathrm{x}:=\mathrm{t}]$ where F^{\prime} is $F\left[y:=y_{1}\right] \quad$ and y_{1} is fresh in F, t

- analogous for \forall, λ
- avoids capture, needed when t contains y

Variable Capture

If $\forall x . F$ and t is a term, then $F[x:=t]$
Let F be $\exists \mathrm{y}$. $(\mathrm{x}<\mathrm{y})$
t bey
$\forall x . \exists y .(x<y)$ true (about integers)
$\exists \mathrm{y} .(\mathrm{y}<\mathrm{y})$ false! Not a result of $\mathrm{F}[\mathrm{x}:=\mathrm{t}]$.
Our substitution is capture avoiding

Informal Notation for Substitutions

$F(x)$ means:
$-F$ is a formula
$-x$ is some variable (or a vector of variables)

- when we write $F(t)$ later, we will mean
$\mathrm{F}[\mathrm{x}:=\mathrm{t}]$ - substitute t instead of x
This notation does not say anything about whether x appears in F
- It is about the meaning of future occurrences of $F(t)$
- One way to think of it: F is function λz. $\mathrm{F}[\mathrm{x}:=\mathrm{z}]$

Translations of Control Constructs

s1; s2 s1; s2
if (E) s1 else s2
while (E) s
(assume (E) ; s1) [] (assume (! E) ; s2)

(assume (E); s)*; assume(!E)

Relation Composition

$$
\begin{aligned}
& r_{1}=\left\{(a, b) \mid F_{1}(a, b)\right\} \\
& r_{2}=\left\{(b, c) \mid F_{2}(b, c)\right\} \\
& r_{1} \circ r_{2}=\left\{(a, c) \mid \exists b . \quad(a, b) \in r_{1} \wedge(b, c) \in r_{2}\right\}= \\
&\left\{(a, c) \mid \exists b . F_{1}(a, b) \wedge F_{2}(b, c)\right\}= \\
&\left\{\left(x, x^{\prime}\right) \mid \exists b \cdot F_{1}(x, b) \wedge F_{2}\left(b, x^{\prime}\right)\right\}
\end{aligned}
$$

Usually formulas are between x and x^{\prime}
$F_{1}\left(x, x^{\prime}\right)$ is F_{1}
$F_{2}\left(x, x^{\prime}\right)$ is F_{2}
$F_{1}(x, b)$ is $F_{1}\left[x^{\prime}:=b\right]$
$F_{2}\left(b, x^{\prime}\right)$ is $F_{2}[x:=b]$

Formulas for Loop-Free Code

$$
\begin{aligned}
& x=t \rrbracket_{0}^{i} \\
& \operatorname{assume}(F) \prod_{0}^{0} \\
& \int_{0}^{0} F \wedge x^{\prime}=x \wedge y^{\prime}=y \\
& \operatorname{havoc}(x) \prod_{0}^{0} y_{0}=y \\
& F_{1} \int_{0}^{0} F_{2} \\
& \varliminf_{0}^{0} F_{1} V F_{2} \\
& \begin{array}{l}
\int_{0}^{0} F_{1} \\
j_{0}^{0} F_{2}
\end{array} \\
& \begin{array}{l}
\nexists x_{1}, y_{1} . \\
F_{1}\left[x^{\prime}:=x_{1}, y^{\prime}:=y_{1}\right] \wedge \\
F_{2}\left[x:=x_{1}, y_{i}=y_{1}\right] \\
x_{1}, y_{1} \text {-fresh }
\end{array}
\end{aligned}
$$

Translate such CFG into Formula

$$
\exists x_{1}, x_{3} .
$$

$$
\begin{gathered}
\left(\binom{F_{1}\left(x, x_{1}\right)}{\hat{F_{2}}\left(x_{1}, x_{3}\right)} \vee F_{3}\left(x, x_{3}\right)\right) \\
F_{4}\left(x_{3}, x^{\prime}\right)
\end{gathered}
$$

Remember rules, when y does not occur in G

$$
\begin{aligned}
(\exists y . F(y)) \wedge G) & \Leftrightarrow \exists y .(F(y) \wedge G) \\
(\exists y . F(y)) \vee G) & \Leftrightarrow \exists y .(F(y) \vee G)
\end{aligned}
$$

Theorem

Any loop-free CFG labeled with formulas F_{1}, \ldots, F_{n} can be translated into a \vee, \wedge combination of formulas F_{i} with some variables renamed by variables that are existentially quantified at the top-level.

We can do this in polynomial time.

Proving that program satisfies spec

Prove:

$$
\{\operatorname{pre}(x)\}\left(\exists \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}} . \mathrm{F}\right)\left\{\operatorname{post}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right\}
$$

i.e.
$\forall x, x^{\prime} .\left(\operatorname{pre}(x) \wedge\left(\exists y_{1}, \ldots, y_{n} . F\right) \rightarrow \operatorname{post}\left(x, x^{\prime}\right)\right)$
$\forall x, x^{\prime}, y_{1}, \ldots, y_{n} . \operatorname{pre}(x) \wedge F \rightarrow \operatorname{post}\left(x, x^{\prime}\right)$
i.e. we need to prove that pre $(x) \wedge F \wedge \neg \operatorname{post}\left(x, x^{\prime}\right)$
is not satisfiable. No quantifiers in the query.

More on Hoare Triples

Hoare triple transitivity.

Hoare triple distributes over infinite disjunctions of relations. $\{P\} \cup r_{i}\{Q\} \quad \Leftrightarrow \quad \forall i .\{P\} r_{i}\{Q\}$

Use above to derive rule for * and for while

Rules for computing sp

$$
\begin{aligned}
& \operatorname{sp}_{\mathrm{F}}\left(\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{F}\left(\mathrm{x}, \mathrm{y}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right)= \\
& \quad \exists \mathrm{x}_{0}, \mathrm{y}_{0} \cdot \mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \wedge \mathrm{F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{x},\right)
\end{aligned}
$$

In many cases, this can be simplified.

Rules for computing wp

$$
\begin{aligned}
& \operatorname{wp}_{F}\left(F\left(x, y, x^{\prime}, y^{\prime}\right), Q(x, y)\right)= \\
& \quad \forall x^{\prime}, y^{\prime} .\left(F\left(x, y, x^{\prime}, y^{\prime}\right) \rightarrow Q\left(x^{\prime}, y^{\prime}\right)\right)
\end{aligned}
$$

In many cases, this can be simplified.

