Lecture 5



Substitution Example

(2*x>y N x>0)[x:=u+3] =
2*(u+3) >y N u+3>0

(2*x>y N x>0)[x:=u+3,y:=7] =
2*(u+3)>7 Nu+3>0



Substitution Defined
(FL,®F,)[XxX:=t = Fx:=1 & F,[x:=1
X [X:=t] =t
Y [X:=t] =y (for y not x)

For binders:
Ay.F)[x=t]=3y,.F) [x=t]= 3Fy,. F[x:=t]
where F'is Fly:=y,] andy,is freshin Ft
* analogous for V , A
* avoids capture, needed when t contains y



Variable Capture

If Vx.F andtisaterm, then F[x:=t]

Let F be dy. (x <Yy)
t bey

VX. Jy. (X <vy) true (about integers)
dy. (y <y) false! Not a result of F[x:=t].
Our substitution Is capture avoiding



Informal Notation for Substitutions

F(X) means:
— F 1s a formula
— X IS some variable (or a vector of variables)

— when we write F(t) later, we will mean
F[x:=t] - substitute t instead of x

This notation does not say anything about
whether x appears in F

— It Is about the meaning of future occurrences
of F(t)

— One way to think of it: F Is function Az. F[x:=Z]



Translations of Control Constructs
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Relation Composition

r, ={(ab) | Fy(a,b))

r, = {(b,c) | Fy(b,C)}

r,or,={@,c)|3b. (a,b) er, A(b,Cc) er,} =
{(@,c) | 3 b. F(a,b) AN F,(b,c)} =
{(xX,x") | 3 b. F;(x,b) A F,(b,x')}

Usually formulas are between x and x’

F.(x,x') is F; F,(x,x') is F,

F,(x,b) is F;[x:=b] F,(b,x") Is F,[x:=D]




Formulas for Loop-Free Code
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Translate such CFG into Formula

. E
= (&’”/ Fa (%, X,_\
o Fa(x,x') A v Ry (X,Y3)
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Remember rules, when y does not occur in G
3y. F(y) NG) <« dy. (Fy) A G)
3y. F(y) VG) <« dy. (F(y) VG)



Theorem

Any loop-free CFG labeled with formulas
F,, ..., F, can be translated into a \/,AA
combination of formulas F’; with some
variables renamed by variables that are
existentially quantified at the top-level.

We can do this in polynomial time.



Proving that program satisfies spec

Prove:
Pre()} @ vy, ..., Yo F) {pOSt(x,x")}
.e.
V X,xX. (prex) A (3 vy, ..., ¥, F) 2 post(x,x))
V X,X,Y1, .-, Yoo Pre(x) A\ F = post(x,x’)
l.e. we need to prove that
pre(x) N F A =post(x,x’)
IS not satisfiable. No quantifiers in the query.



More on Hoare Triples

Hoare triple transitivity.

Hoare triple distributes over infinite
disjunctions of relations.

PrunQ  ©  VI.{P;r{Q;

Use above to derive rule for * and for while



Rules for computing sp

SpF(P(X’y)’ F(X,y,X,,y,)) =
3Xgs Yo- P(X0:Y0) N F(Xg, Yo, X))

In many cases, this can be simplified.



Rules for computing wp

WpF(F(X7y1X,=y,)! Q(X1y)) —
VX, Y. (F(X y,XLy') 2 Q(XLY))

In many cases, this can be simplified.



