
Lecture 5 



Substitution Example 

 

 

(2*x > y   /\   x > 0) [x := u+3]  = 

2*(u+3) > y  /\  u+3 > 0 

 

 

(2*x > y   /\   x > 0) [x := u+3, y:= 7]  = 

2*(u+3) > 7   /\  u + 3 > 0 

 



Substitution Defined 

(F1  F2) [x := t]  =   F1[x := t]  F2[x := t] 

x [x:=t]                = t 

y [x:=t]                = y       (for y not x) 

 

For binders: 

( y. F) [x:=t] = ( y1.F’)  [x:=t] =    y1.  F’[x:=t] 

    where F’ is F[y:=y1] and y1 is fresh in F,t 

• analogous for  ,   

• avoids capture, needed when t contains y 



Variable Capture 

If   x.F    and t is a term,  then  F[x:=t] 

 

Let F be y. (x < y)  

      t   be y 

 

x. y. (x < y) true (about integers) 

      y. (y < y)   false!  Not a result of F[x:=t]. 

Our substitution is capture avoiding 



Informal Notation for Substitutions 

F(x)  means: 

– F is a formula 

– x is some variable (or a vector of variables) 

– when we write F(t) later, we will mean 

F[x:=t]   - substitute t instead of x 

This notation does not say anything about 

whether x appears in F 

– It is about the meaning of future occurrences 

of F(t) 

– One way to think of it: F is function z. F[x:=z] 



Translations of Control Constructs 

s1 ; s2 

 

 

if ( E ) s1 else s2 

 

 

 

while ( E ) s 

 

s1 ; s2 

 

 

(assume ( E ) ; s1) [] 

(assume ( ! E) ; s2) 

 

 

(assume ( E ); s)* ; 

assume( ! E) 

 



Relation Composition 

r1 = {(a,b) | F1(a,b)} 

r2 = {(b,c) | F2(b,c)} 

r1 o r2 = {(a,c) |  b.  (a,b) r1  (b,c)  r2} = 

             {(a,c) |  b. F1(a,b) /\ F2(b,c)} = 

             {(x,x’) |  b. F1(x,b) /\ F2(b,x’)}  

Usually formulas are between x and x’ 

 F1(x,x’)  is F1      F2(x,x’)  is F2 

 F1(x,b)  is F1[x’:=b]   F2(b,x’)  is F2[x:=b]  

 



Formulas for Loop-Free Code 



Translate such CFG into Formula 

Remember rules, when y does not occur in G 

  (y. F(y)) /\ G)     y. (F(y) /\ G) 

  (y. F(y)) \/ G)     y. (F(y) \/ G) 



Theorem 

Any loop-free CFG labeled with formulas  

F1, …, Fn  can be translated into a \/,/\ 

combination of formulas F’i with some 

variables renamed by variables that are 

existentially quantified at the top-level. 

 

We can do this in polynomial time. 



Proving that program satisfies spec 

Prove: 

{pre(x)} ( y1, …, yn. F)  {post(x,x’)} 

i.e. 

 x,x’. (pre(x) /\ ( y1, …, yn. F)  post(x,x’)) 

 x,x’,y1, …, yn. pre(x) /\ F  post(x,x’) 

i.e. we need to prove that 

pre(x) /\ F /\ post(x,x’) 

is not satisfiable. No quantifiers in the query. 



More on Hoare Triples 

Hoare triple transitivity. 

 

Hoare triple distributes over infinite 

disjunctions of relations. 

{P} ri {Q}          i. {P} ri {Q} 

 

Use above to derive rule for * and for while 



Rules for computing sp 

 

spF(P(x,y), F(x,y,x’,y’))  = 

    x0, y0. P(x0,y0) /\ F(x0, y0,x,) 

 

In many cases, this can be simplified. 

 



Rules for computing wp 

 

wpF(F(x,y,x’,y’), Q(x,y))  = 

 x’, y’.  (F(x, y,x’,y’)  Q(x’,y’)) 

 

In many cases, this can be simplified. 


