Lecture 5

Substitution Example

$$(2^*x > y \land x > 0)$$
 [x := u+3] = $2^*(u+3) > y \land u+3 > 0$

$(2^*x > y \land x > 0)$ [x := u+3, y:= 7] = $2^*(u+3) > 7 \land u + 3 > 0$

Substitution Defined

 $(F_1 \oplus F_2) [x := t] = F_1[x := t] \oplus F_2[x := t]$ x [x:=t] = t y [x:=t] = y (for y not x)

For binders:

- $(\exists y. F) [x:=t] = (\exists y_1.F') [x:=t] = \exists y_1. F'[x:=t]$ where F' is F[y:=y_1] and y_1 is fresh in F,t
- analogous for \forall , λ
- avoids capture, needed when t contains y

Variable Capture

If $\forall x.F$ and t is a term, then F[x:=t]

Let F be ∃y. (x < y) t be y

∀x. ∃y. (x < y) true (about integers)
∃y. (y < y) false! Not a result of F[x:=t].
Our substitution is *capture avoiding*

Informal Notation for Substitutions

F(x) means:

- F is a formula
- x is some variable (or a vector of variables)
- when we write F(t) later, we will mean
 F[x:=t] substitute t instead of x
- This notation does not say anything about whether x appears in F
 - It is about the meaning of future occurrences of F(t)
 - One way to think of it: F is function λz . F[x:=z]

Relation Composition

 $r_1 = \{(a,b) | F_1(a,b)\}$ $r_2 = \{(b,c) | F_2(b,c)\}$ $r_1 \circ r_2 = \{(a,c) \mid \exists b. (a,b) \in r_1 \land (b,c) \in r_2\} =$ $\{(a,c) \mid \exists b. F_1(a,b) \land F_2(b,c)\} =$ $\{(\mathbf{x},\mathbf{x}') \mid \exists \mathbf{b}, \mathbf{F}_1(\mathbf{x},\mathbf{b}) \land \mathbf{F}_2(\mathbf{b},\mathbf{x}')\}$ Usually formulas are between x and x' $F_1(x,x')$ is F_1 $F_2(x,x')$ is F_2 $F_1(x,b)$ is $F_1[x':=b]$ $F_2(b,x')$ is $F_2[x:=b]$

Formulas for Loop-Free Code $\int x' = t \wedge Y' = Y$ x=t assume(F) $\int F \wedge x' = x \wedge y' = y$ $A_1 = A$ havoc (x) $\int F_2 V F_2$ $F_1 \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) F_2$ $\begin{cases} \exists x_{1}, y_{1}, \\ F_{1} [x' := x_{1}, y' := y_{1}] \land \\ F_{2} [x := x_{1}, y := y_{2}] \end{cases}$ X1. Y1 - fresh

Translate such CFG into Formula

$$\exists x_{1}, x_{3}.$$

$$F_{1}(x, x') \qquad F_{3}(x, x') \qquad \left(\begin{pmatrix} F_{1}(x, x_{1}) \\ A \\ F_{2}(x, x') \end{pmatrix} \vee F_{3}(x, x_{3}) \right)$$

$$F_{2}(x, x') \qquad f_{4}(x, x') \qquad F_{4}(x, x') \qquad F_{4}(x, x')$$

Remember rules, when y does not occur in G

 $(\exists y. F(y)) \land G) \iff \exists y. (F(y) \land G)$ $(\exists y. F(y)) \lor G) \iff \exists y. (F(y) \lor G)$

Theorem

Any loop-free CFG labeled with formulas $F_1, ..., F_n$ can be translated into a V,A combination of formulas F'_i with some variables renamed by variables that are existentially quantified at the top-level.

We can do this in polynomial time.

Proving that program satisfies spec

Prove:

{pre(x)} (
$$\exists y_1, ..., y_n$$
. F) {post(x,x')} i.e.

 $\forall x, x'. (pre(x) \land (\exists y_1, ..., y_n, F) \rightarrow post(x, x')) \\ \forall x, x', y_1, ..., y_n, pre(x) \land F \rightarrow post(x, x')$

i.e. we need to prove that

pre(x) $\Lambda F \Lambda \neg post(x,x')$

is not satisfiable. No quantifiers in the query.

More on Hoare Triples

Hoare triple transitivity.

Hoare triple distributes over infinite disjunctions of relations. {P} \cup r_i {Q} $\Leftrightarrow \forall$ i. {P} r_i {Q}

Use above to derive rule for * and for while

Rules for computing sp

$sp_{F}(P(x,y), F(x,y,x',y')) =$ $\exists x_{0}, y_{0}. P(x_{0},y_{0}) \land F(x_{0}, y_{0},x,)$

In many cases, this can be simplified.

Rules for computing wp

$wp_{F}(F(x,y,x',y'), Q(x,y)) = \\ \forall x', y'. (F(x, y,x',y') \rightarrow Q(x',y'))$

In many cases, this can be simplified.