Lecture 5

Substitution Example

(2*x>y N x>0)[x:=u+3] =
2*(u+3) >y N u+3>0

(2*x>y N x>0)[x:=u+3,y:=7] =
2*(u+3)>7 Nu+3>0

Substitution Defined
(FL,®F,)[XxX:=t = Fx:=1 & F,[x:=1
X [X:=t] =t
Y [X:=t] =y (for y not x)

For binders:
Ay.F)[x=t]=3y,.F) [x=t]= 3Fy,. F[x:=t]
where F'is Fly:=y,] andy,is freshin Ft
* analogous for V , A
* avoids capture, needed when t contains y

Variable Capture

If Vx.F andtisaterm, then F[x:=t]

Let F be dy. (x <Yy)
t bey

VX. Jy. (X <vy) true (about integers)
dy. (y <y) false! Not a result of F[x:=t].
Our substitution Is capture avoiding

Informal Notation for Substitutions

F(X) means:
— F 1s a formula
— X IS some variable (or a vector of variables)

— when we write F(t) later, we will mean
F[x:=t] - substitute t instead of x

This notation does not say anything about
whether x appears in F

— It Is about the meaning of future occurrences
of F(t)

— One way to think of it: F Is function Az. F[x:=Z]

Translations of Control Constructs

| [s1
sl :s2 sl;s2 J/

is?.

1(E)stekesz (2Ume(E) syl u(@)jw,a
sa,\, /sz

(assume (E); s)*; {

while (E) s assume(! E) assu (&) ‘/j\assu(! E)
’ A

|

Relation Composition

r, ={(ab) | Fy(a,b))

r, = {(b,c) | Fy(b,C)}

r,or,={@,c)|3b. (a,b) er, A(b,Cc) er,} =
{(@,c) | 3 b. F(a,b) AN F,(b,c)} =
{(xX,x") | 3 b. F;(x,b) A F,(b,x')}

Usually formulas are between x and x’

F.(x,x') is F; F,(x,x') is F,

F,(x,b) is F;[x:=b] F,(b,x") Is F,[x:=D]

Formulas for Loop-Free Code

o]

0 X":‘\'.’\ \1‘:
K=t 1 l ! !
T t/\\: [_ V-
assuwe(F\l \\IFAX'XAV T
havoe (%) Y I gy
o © o
o ¢ \IF
k. g) F, }\,' o2
0 6
[T
o Folxieng Mizyal A
| Fa T Dxe=xa iz va]
° (o)

\(&\\1'\. »&'QS\I\

Translate such CFG into Formula

. E
= (&’”/ Fa (%, X,_\
o Fa(x,x') A v Ry (X,Y3)
\ ((Fa.(xt,*a))
Fa (%))) z A |
1 Fy (x,X') FA(‘5,X)

Remember rules, when y does not occur in G
3y. F(y) NG) <« dy. (Fy) A G)
3y. F(y) VG) <« dy. (F(y) VG)

Theorem

Any loop-free CFG labeled with formulas
F,, ..., F, can be translated into a \/,AA
combination of formulas F’; with some
variables renamed by variables that are
existentially quantified at the top-level.

We can do this in polynomial time.

Proving that program satisfies spec

Prove:
Pre()} @ vy, ..., Yo F) {pOSt(x,x")}
.e.
V X,xX. (prex) A (3 vy, ..., ¥, F) 2 post(x,x))
V X,X,Y1, .-, Yoo Pre(x) A\ F = post(x,x’)
l.e. we need to prove that
pre(x) N F A =post(x,x’)
IS not satisfiable. No quantifiers in the query.

More on Hoare Triples

Hoare triple transitivity.

Hoare triple distributes over infinite
disjunctions of relations.

PrunQ © VI.{P;r{Q;

Use above to derive rule for * and for while

Rules for computing sp

SpF(P(X’y)’ F(X,y,X,,y,)) =
3Xgs Yo- P(X0:Y0) N F(Xg, Yo, X))

In many cases, this can be simplified.

Rules for computing wp

WpF(F(X7y1X,=y,)! Q(X1y)) —
VX, Y. (F(X y,XLy') 2 Q(XLY))

In many cases, this can be simplified.

