Lecture 9 Illustrations

Lattices. Fixpoints
Abstract Interpretation



Partially Ordered Set (A, <)

X < X
X<y/\y<x—=2>x=y (elseitis only pre-order)
X<y/\y<z—=>x<z

Typical example: (A,c), where A c 2Y for some U
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Key Terminology .
Ir

Let S c A.
upper bound of S: bigger than all @

dual: lower bound

maximal element of S: there’s no bigger
dual: minimal element (0,1)

greatest element of S: upper bound on S, in S
dual: least element M



Least Upper Bound

Denoted lub(S), least upper bound of Sis an
element M, if it exists, such that M is the least

element of the set U oM
U ={x | xis upper bound on S} /IM

In other words:
e Misan upper boundonS

* For every other upper bound M’ on S, we have
that M <M’

Note: same definition as “inf” in real analysis
— applies not only to total orders, but any partial order



Real Analysis

Take as S the open interval of reals
(0,1)={x | 0<x<1}
Then
— S has no maximal element
— S thus has no greatest element
—2,2.5,3, ...are all upper bounds on S
— lub(S)=1

If we had rational numbers, there would be no
lub(S’) in general.



Shorthand: L‘

a;(Ja, denotes lub({a;,a,})

(..(a;Ua,) ) Ua, Iis, infact, lub({a,.., a,})

So the operation is ACU
* associative

* commutative

* idempotent



Consider sets of all subsets of U

Atl“t{s\sév} (A,QS
Do these exist, and if so, what are they?
* lub({s,,s,})=¢ S €S 5,€58 §151()S2
e lub(S) ke (51 €5'h52€9 = s €59)
115 = Us
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Two More Examples
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Does every pair of elements in this
order have least upper bound?
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Dually, does it have greatest lower bound?



Approximation of Sets by Supersets
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Domain of Intervals
p= 100§ LV ] Lef-oju2 [ ReZ U?*w\}
The domain elements, D, are
. d, cd

* pairs (L,U) where 1 2

— L is an integer or minus infinity

— U is an integer or plus infinity

— if Land U are integers, then L< U
* The special element L representing empty set
The associated set of elements

gamma :I?% 24 Bg((L\U)\'.Q»L \\.éx A%< U Y



Definition of gamma, ordering, lub
dy d, €D
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