Lecture 9 Illustrations

Lattices. Fixpoints
Abstract Interpretation

Partially Ordered Set (A, \leq)

$\mathrm{X} \leq \mathrm{X}$
$x \leq y / y \leq x \rightarrow x=y$ (else it is only pre-order)
$x \leq y / \lambda y \leq z \rightarrow x \leq z$
Typical example: (\mathbf{A}, \subseteq), where $\mathbf{A} \subseteq \mathbf{2}^{\mathbf{U}}$ for some \mathbf{U}

Key Terminology

Let $S \subseteq A$.
upper bound of S : bigger than all dual: lower bound maximal element of S : there's no bigger dual: minimal element
greatest element of S : upper bound on S, in S dual: least element

Least Upper Bound

Denoted lub(S), least upper bound of S is an element M, if it exists, such that M is the least element of the set
$U=\{x \mid x$ is upper bound on $S\}$

In other words:

- M is an upper bound on S

- For every other upper bound M^{\prime} on S, we have that $\mathrm{M} \leq \mathrm{M}^{\prime}$
Note: same definition as "inf" in real analysis
- applies not only to total orders, but any partial order

Real Analysis

Take as S the open interval of reals
$(0,1)=\{x \mid 0<x<1\}$
Then

- S has no maximal element
- S thus has no greatest element
$-2,2.5,3, \ldots$ are all upper bounds on S
- lub(S)=1

If we had rational numbers, there would be no lub(S^{\prime}) in general.

Shorthand : \downarrow

$a_{1} \cup a_{2}$ denotes $\operatorname{lub}\left(\left\{a_{1}, a_{2}\right\}\right)$

$$
\left(\ldots\left(a_{1} \cup a_{2}\right) \ldots\right) \cup a_{n} \quad \text { is, in fact, } \operatorname{lub}\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)
$$

So the operation is ACU

- associative
- commutative
- idempotent

Consider sets of all subsets of U
$A=2^{v}=\{s \mid s \leq u\}$
(A, \subseteq)
Do these exist, and if so, what are they?

- $\operatorname{lub}\left(\left\{s_{1}, s_{2}\right\}\right)=S \quad S_{1} \subseteq S \quad s_{2} \subseteq S \quad S=S_{1} \cup S_{2}$
- lubeS)
$\forall s^{\prime},\left(S_{1} \subseteq S^{\prime} \wedge s_{2} \subseteq S^{\prime} \rightarrow S \subseteq S^{\prime}\right)$
$U S=\underset{s \in S^{\prime}}{U s}$
$\Pi S=\cap s$
$s \in S$

Two More Examples

$$
\{1\} \sqcup\{2\}=\{1,2\}
$$

$$
\{1\} \cup\{2\}=
$$

Does every pair of elements in this order have least upper bound?

Dually, does it have greatest lower bound?

Approximation of Sets by Supersets

$$
\begin{aligned}
& \text { Domain of Intervals } \\
& D=\{1\} \cup\{(L, \cup) \mid L \in\{-\infty\} \cup Z, R \in Z \cup\{+\infty)\}
\end{aligned}
$$

The domain elements, D, are

- pairs (L,U) where

$$
d_{1} \subseteq d_{2}
$$

$-L$ is an integer or minus infinity
$-U$ is an integer or plus infinity

- if L and U are integers, then $L \leq U$
- The special element \perp representing empty set

The associated set of elements

Definition of gamma, ordering, lub

$$
\begin{aligned}
& d_{1}, d_{2} \in D \\
& d_{1} \sqsubseteq d_{2} \leftrightarrow \gamma^{e}\left(d_{1}\right) \subseteq 8\left(d_{2}\right) \\
& \left(L_{1}, U_{1}\right) \subseteq\left(L_{2}, U_{2}\right) \quad L_{1}, U_{1}, L_{2}, U_{2} \in Z \\
& \leftrightarrow L_{2} \leqslant L_{1} \wedge U_{1} \leqslant U_{2} \\
& L \cong d \quad \forall d \in D \\
& \left(L_{1}, U_{1}\right) \cup\left(L_{2}, V_{2}\right)=\left(\min \left(1,1, L_{2}\right) \max \left(0, V_{2}\right)\right) \\
& {\left[L_{1}, U_{1}\right]}
\end{aligned}
$$

