Lecture 11

Abstract Interpretation on Control-Flow Graphs

Example

k=1; while(k < 100) $\{\mathrm{k}=\mathrm{k}+3$ \}; assert($\mathrm{k}<=255$) k=1; loop \{assume(k < 100); k=k+3\}; assume(k>=100); assert(k <= 255)

$$
r=\left\{\left(k, k^{\prime}\right) \mid\left(k<100 / \backslash k^{\prime}=k+3\right)\right\}
$$

Approximating sp(\{1\}, $\left.r^{*}\right)$
$\operatorname{post}(\mathrm{P})=\{1\} \cup \operatorname{sp}(\mathrm{P}, \mathrm{r})=\{1\} \cup\{\mathrm{k}+3 \mid \mathrm{k} \in \mathrm{P}, \mathrm{k}<100\}$ postn(\{\}):
$\{1,\{1\},\{1,4\}, \ldots,\{1, \ldots, 97\},\{1, \ldots, 97,100\}$,
$\{1, \ldots, 97,100\}$

Multiple variables

Wish to track an interval for each variable We track not [L,U] but ([L1,U1],[L2,U2])

If program state is (x, y), define

$$
\left.\begin{array}{ll}
\gamma_{2}(([L 1, U 1],[L 2, U 2]))=\{(x, y) \mid L 1 \leq x \leq U 1, L 2 \leq y \leq U 2 \\
\alpha(p)=([L 1, U 1],[L 2, U 2]) & =\gamma_{2}^{\left[(L 1, U 1] \times \mathcal{P}_{1}[L 2, U 2]\right.}
\end{array}\right\}
$$

L1 =
U1 =
L2 =
U2 =

Product of Partial Orders

($\mathrm{A}_{\mathrm{i}}, \leq_{i}$) partial orders for $\mathrm{i} \in \mathrm{J}$
(A, \leq) given by $A=\left\{f: J \rightarrow U_{i \in J} A_{i}, \forall i . f(i) \in A_{i}\right\}$ $\mathrm{f}, \mathrm{g} \in \mathrm{A}$ ordered by

$$
f \leq g \Leftrightarrow \forall i . f(i) \leq_{i} g(i)
$$

example: $\mathrm{J}=\{1,2\}$
Then (A, \leq) is a partial order. Morever: If ($\mathrm{A}_{\mathrm{i}}, \leq_{i}$) all have lub, then so does (A, \leq). If $\left(A_{i}, \leq_{i}\right)$ all have glb, then so does (A, \leq).

Example: Counter and a Mode

```
mode = 1
x =0
while (-100 < x && x < 100) {
    if (mode == 1) {
        x = x+10
    mode =2
    } else {
        x=x-1
        mode=1
    }
assert(1 <= mode && mode <= 2 && x <= 109)
```


Two Counters

$$
\left.\begin{array}{l}
x=0 \\
y=0 \\
\text { while }(x<100)\{ \\
x=x+1 \\
y=y+2
\end{array}\right\} \begin{aligned}
& \text { assert }(y<=200)
\end{aligned}
$$

Non-relational analysis: tracks each variable separately. It often loses correlations between them.

Beyond One Loop

- Precise formulation of one-step relation for a CFG
- The form of post in new form: deriving collecting semantics
- Example collecting semantics for a program
- Abstraction of this semantics in example
- Abstract Interpretation Recipe
- Termination of fixpoint computation
- Choatic iteration
- Widening

