
Linked List Implementation 
class List { 

  private List next; 

  private Object data; 

  private static List root; 

  private static int size;   

 

  public static void addNew(Object x) { 

     List n1 = new List(); 

     n1.next = root; 

     n1.data = x; 

     root = n1; 

     size = size + 1; 

  } 

} 

next next next 

root 

data data data data 
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invariant : size = |{data(x). next*(root,x)}| 



Verification Condition for addNew  

next0*(root0,n1)  x  {data0(n) | next0*(root0,n)}   

next=next0[n1:=root0] data=data0[n1:=x]  

|{data(n) . next*(n1,n)}| =  

|{data0(n) . next0*(root0,n)}| + 1 

Expressing this VC requires a rich logic 

– transitive closure * (in lists and also in trees) 

– unconstraint functions (data, data0) 

– cardinality operator on sets | ... | 

Is there a decidable logic containing all this? 

“The number of stored objects has increased by one.” 



Decomposing the Formula 

Consider a (simpler) formula 

|{data(x) . next*(root,x)}|=k+1 

Introduce fresh variables denoting sets: 

A = {x. next*(root,x)}   

B = {y.  x. data(x,y)  x  A}   

|B|=k+1 

Conjuncts belong to decidable fragments! 

1) WS2S 

2) C2 

3) BAPA 

Next 

– define these 3 fragments 

– sketch a technique to combine them 



WS2S: Monadic 2nd Order Logic 

Weak Monadic 2nd-order Logic of 2 Successors 

In HOL, satisfiability of formulas of the form: 

 tree[f1,f2] & F(f1,f2,S,T) 

where 

- tree[f1,f2] means f1,f2 form a tree 

F ::= x=f1(y) | x=f2(y) |xS | ST | 9S.F | F1 Æ F2  | :F 

- quantification is over finite sets of positions in tree 

- transitive closure encoded using set quantification 

Decision procedure 

- recognize WS2S formula within HOL 

- run the MONA tool (tree automata, BDDs) 
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C2 : Two-Variable Logic w/ Counting 

Two-Variable Logic with Counting 

 F ::= P(v1,...,vn) | F1 Æ F2  | :F | 9count vi.F 

where 

P : is a predicate symbol 

vi  : is one of the two variable names x,y 
count : is =k, k, or k for nonnegative constants k 

We can write (9 k vi.F) as |{vi.F}|k 

We can define 9,8 and axiomatize total functions: 

8x9=1y.R(x,y) 

Decidable sat. and fin-sat. (1997), NEXPTIME  

even for binary-encoded k: Pratt-Hartman ‘05 



BAPA: 

Boolean Algebra with Presburger Arithmetic 

Essence of decidability: Feferman, Vaught 1959 

Our results 

– first implementation for BAPA (CADE’05) 

– first, exact, complexity for full BAPA (JAR’06) 

– first, exact, complexity for QFBAPA (CADE’07) 

– generalize to multisets (VMCAI’08,CAV’08,CSL’08) 

New: role of BAPA in combination of logics 

 

S ::= V  |  S1 [ S2  |  S1 Å S2  |  S1 n S2 

T ::= k  |  C  |  T1 + T2  |  T1 – T2  | C¢T |   |S| 

A ::= S1 = S2  |  S1 µ S2  |  T1 = T2  |  T1 < T2 

F ::= A |  F1 Æ F2  |  F1 Ç F2  | :F | 9S.F | 9k.F 



Back to Decomposing the Formula 

Consider a (simpler) formula 

|{data(x) . next*(root,x)}|=k+1 

Introduce fresh variables denoting sets: 

A = {x. next*(root,x)}   

B = {y.  x. data(x,y)  x  A}   

|B|=k+1 

Conjuncts belong to decidable fragments 

1) WS2S 

2) C2 

3) BAPA 

Next 

– define these 3 fragments – we have seen this 

– sketch a technique to combine them 



Combining Decidable Logics 

Satisfiability problem expressed in HOL: 

 (all free symbols existentially quantified) 

 next,data,k.  root,A,B. 

A = {x. next*(root,x)}   

B = {y.  x. data(x,y)  x  A}   

|B|=k+1 

We assume formulas share only: 

- set variables (sets of uninterpreted elems) 

- individual variables, as a special case - {x} 

1) WS2S 

2) C2 

3) BAPA 



Satisfiability problem expressed in HOL, 

 after moving fragment-specific quantifiers 

 root,A,B.  

 next. A = {x. next*(root,x)}   

 data. B = {y.  x. data(x,y)  x  A}   

 k. |B|=k+1 

Extend decision procedures into  

projection procedures for WS2S,C2,BAPA 

   applies  to all non-set variables 

Combining Decidable Logics 

FWS2S 

FC2 
FBAPA 

: {root}µA  

: |B||A| 
: 1  |B| 

   root,A,B. {root}µA |B||A|  1  |B| 

Conjunction of projections satisfiable  so is original formula 



Fragment of Insertion into Tree 

right left 

right left data 

data data 

p 

left 

data 



Verification Condition for Tree Insertion 

Conjunction of projections unsatisfiable  so is original formula 



Decision Procedure for Combination 

1. Separate formula into WS2S, C2, BAPA parts 

2. For each part, compute projection onto set vars 

3. Check satisfiability of conjunction of projections 

Definition: Logic is effectively cardinality-linear iff 

there is an algorithm that computes projections of 

formulas onto set variables, and these projections 

are quantifier-free BAPA formulas. 

Theorem: WS2S, C2, BAPA are all cardinality linear. 

Proof: WS2S – Parikh image of tree language is in PA 

   C2 – proof by Pratt-Hartmann reduces to PA 

    BAPA - has quantifier elimination 


