
Linked List Implementation
class List {

 private List next;

 private Object data;

 private static List root;

 private static int size;

 public static void addNew(Object x) {

 List n1 = new List();

 n1.next = root;

 n1.data = x;

 root = n1;

 size = size + 1;

 }

}

next next next

root

data data data data

x

invariant : size = |{data(x). next*(root,x)}|

Verification Condition for addNew

next0*(root0,n1)  x  {data0(n) | next0*(root0,n)} 

next=next0[n1:=root0] data=data0[n1:=x] 

|{data(n) . next*(n1,n)}| =

|{data0(n) . next0*(root0,n)}| + 1

Expressing this VC requires a rich logic

– transitive closure * (in lists and also in trees)

– unconstraint functions (data, data0)

– cardinality operator on sets | ... |

Is there a decidable logic containing all this?

“The number of stored objects has increased by one.”

Decomposing the Formula

Consider a (simpler) formula

|{data(x) . next*(root,x)}|=k+1

Introduce fresh variables denoting sets:

A = {x. next*(root,x)} 

B = {y.  x. data(x,y)  x  A} 

|B|=k+1

Conjuncts belong to decidable fragments!

1) WS2S

2) C2

3) BAPA

Next

– define these 3 fragments

– sketch a technique to combine them

WS2S: Monadic 2nd Order Logic

Weak Monadic 2nd-order Logic of 2 Successors

In HOL, satisfiability of formulas of the form:

 tree[f1,f2] & F(f1,f2,S,T)

where

- tree[f1,f2] means f1,f2 form a tree

F ::= x=f1(y) | x=f2(y) |xS | ST | 9S.F | F1 Æ F2 | :F

- quantification is over finite sets of positions in tree

- transitive closure encoded using set quantification

Decision procedure

- recognize WS2S formula within HOL

- run the MONA tool (tree automata, BDDs)

f2 f1

f2 f1 f2 f1

C2 : Two-Variable Logic w/ Counting

Two-Variable Logic with Counting

 F ::= P(v1,...,vn) | F1 Æ F2 | :F | 9count vi.F

where

P : is a predicate symbol

vi : is one of the two variable names x,y
count : is =k, k, or k for nonnegative constants k

We can write (9 k vi.F) as |{vi.F}|k

We can define 9,8 and axiomatize total functions:

8x9=1y.R(x,y)

Decidable sat. and fin-sat. (1997), NEXPTIME

even for binary-encoded k: Pratt-Hartman ‘05

BAPA:

Boolean Algebra with Presburger Arithmetic

Essence of decidability: Feferman, Vaught 1959

Our results

– first implementation for BAPA (CADE’05)

– first, exact, complexity for full BAPA (JAR’06)

– first, exact, complexity for QFBAPA (CADE’07)

– generalize to multisets (VMCAI’08,CAV’08,CSL’08)

New: role of BAPA in combination of logics

S ::= V | S1 [S2 | S1 Å S2 | S1 n S2

T ::= k | C | T1 + T2 | T1 – T2 | C¢T | |S|

A ::= S1 = S2 | S1 µ S2 | T1 = T2 | T1 < T2

F ::= A | F1 Æ F2 | F1 Ç F2 | :F | 9S.F | 9k.F

Back to Decomposing the Formula

Consider a (simpler) formula

|{data(x) . next*(root,x)}|=k+1

Introduce fresh variables denoting sets:

A = {x. next*(root,x)} 

B = {y.  x. data(x,y)  x  A} 

|B|=k+1

Conjuncts belong to decidable fragments

1) WS2S

2) C2

3) BAPA

Next

– define these 3 fragments – we have seen this

– sketch a technique to combine them

Combining Decidable Logics

Satisfiability problem expressed in HOL:

 (all free symbols existentially quantified)

 next,data,k.  root,A,B.

A = {x. next*(root,x)} 

B = {y.  x. data(x,y)  x  A} 

|B|=k+1

We assume formulas share only:

- set variables (sets of uninterpreted elems)

- individual variables, as a special case - {x}

1) WS2S

2) C2

3) BAPA

Satisfiability problem expressed in HOL,

 after moving fragment-specific quantifiers

 root,A,B.

 next. A = {x. next*(root,x)} 

 data. B = {y.  x. data(x,y)  x  A} 

 k. |B|=k+1

Extend decision procedures into

projection procedures for WS2S,C2,BAPA

 applies  to all non-set variables

Combining Decidable Logics

FWS2S

FC2
FBAPA

: {root}µA

: |B||A|
: 1  |B|

  root,A,B. {root}µA |B||A|  1  |B|

Conjunction of projections satisfiable  so is original formula

Fragment of Insertion into Tree

right left

right left data

data data

p

left

data

Verification Condition for Tree Insertion

Conjunction of projections unsatisfiable  so is original formula

Decision Procedure for Combination

1. Separate formula into WS2S, C2, BAPA parts

2. For each part, compute projection onto set vars

3. Check satisfiability of conjunction of projections

Definition: Logic is effectively cardinality-linear iff

there is an algorithm that computes projections of

formulas onto set variables, and these projections

are quantifier-free BAPA formulas.

Theorem: WS2S, C2, BAPA are all cardinality linear.

Proof: WS2S – Parikh image of tree language is in PA

 C2 – proof by Pratt-Hartmann reduces to PA

 BAPA - has quantifier elimination

