Linked List Implementation

class List $\{$
private List next;
private Object data;
private static List root;
private static int size;
invariant : size = |\{data(x). next*(root, $x)\} \mid$
public static void addNew (Object x) \{
List n1 = new List();
n1.next $=$ root;
n1.data $=x$;
root = n1;
size = size + 1;
\}
\}

Verification Condition for addNew

\neg next0*(root0,n1) ^x $\notin\{\operatorname{data0}(\mathrm{n}) \mid \operatorname{next0*}($ root0,n) $\} \wedge$ next=next0[n1:=root0] ^ data=data0[n1:=x] \rightarrow
$\mid\{d a t a(n)$. next*(n1,n) $\} \mid=$
$\mid\{d a t a 0(n)$. next0*(root0,n)\}| + 1
"The number of stored objects has increased by one."
Expressing this VC requires a rich logic - transitive closure * (in lists and also in trees)

- unconstraint functions (data, data0)
- cardinality operator on sets | ... |

Is there a decidable logic containing all this?

Decomposing the Formula

Consider a (simpler) formula

$$
\mid\{\operatorname{data}(\mathrm{x}) \text {. next*}(\text { root }, \mathrm{x})\} \mid=\mathrm{k}+1
$$

Introduce fresh variables denoting sets:

$$
\begin{array}{ll}
A=\{x . \operatorname{next}(\text { root }, x)\} \wedge & \text { 1) } \text { WS2S } \\
B=\{y . \exists x \cdot \operatorname{data}(x, y) \wedge x \in A\} \wedge & \text { 2) } C^{2} \\
|B|=k+1 & \text { 3) BAPA }
\end{array}
$$

Conjuncts belong to decidable fragments!
Next

- define these 3 fragments
- sketch a technique to combine them

WS2S: Monadic $2^{\text {nd }}$ Order Logic

Weak Monadic $2^{\text {nd }}-$ order Logic of 2 Successors In HOL, satisfiability of formulas of the form: tree[f1,f2] \& $F(f 1, f 2, S, T)$ where

- tree[f1,f2] means $\mathrm{f} 1, \mathrm{f} 2$ form a tree
$F::=x=f 1(y)|x=f 2(y)| x \in S|S \subseteq T| \exists S . F\left|F_{1} \wedge F_{2}\right| \neg F$
- quantification is over finite sets of positions in tree
- transitive closure encoded using set quantification

Decision procedure

- recognize WS2S formula within HOL
- run the MONA tool (tree automata, BDDs)

C^{2} : Two-Variable Logic w/ Counting

Two-Variable Logic with Counting

$$
F::=P\left(v_{1}, \ldots, v_{n}\right)\left|F_{1} \wedge F_{2}\right| \neg F \mid \exists \text { count } v_{i} \cdot F
$$

where
P : is a predicate symbol
v_{i} : is one of the two variable names x, y
count : is $=k, \leq k$, or $\geq k$ for nonnegative constants k
We can write $\left(\exists \exists^{\leq k} v_{i} . F\right)$ as $\left|\left\{v_{i} . F\right\}\right| \leq k$
We can define \exists, \forall and axiomatize total functions:
$\forall x \exists=1 y . R(x, y)$
Decidable sat. and fin-sat. (1997), NEXPTIME even for binary-encoded k: Pratt-Hartman ‘05

BAPA:

Boolean Algebra with Presburger Arithmetic

$$
\begin{aligned}
& \mathbf{S}::=\mathrm{V}\left|\mathrm{~S}_{1} \cup \mathrm{~S}_{2}\right| \mathrm{S}_{1} \cap \mathrm{~S}_{2} \mid \mathrm{S}_{1} \backslash \mathrm{~S}_{2} \\
& \mathbf{T}::=\mathrm{k}|\mathrm{C}| \mathrm{T}_{1}+\mathrm{T}_{2}\left|\mathrm{~T}_{1}-\mathrm{T}_{2}\right| \mathrm{C} \cdot \mathrm{~T}| | \mathrm{S} \mid \\
& A::=S_{1}=S_{2}\left|S_{1} \subseteq S_{2}\right| T_{1}=T_{2} \mid T_{1}<T_{2} \\
& F::=A\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\neg F| \exists S . F \mid \exists k . F
\end{aligned}
$$

Essence of decidability: Feferman, Vaught 1959
Our results

- first implementation for BAPA (CADE'05)
- first, exact, complexity for full BAPA (JAR'06)
- first, exact, complexity for QFBAPA (CADE'07)
- generalize to multisets (VMCAl'08,CAV'08,CSL'08)

New: role of BAPA in combination of logics

Back to Decomposing the Formula

Consider a (simpler) formula

$$
\mid\left\{\operatorname{data}(x) . \text { next }^{*}(\text { root }, x)\right\} \mid=k+1
$$

Introduce fresh variables denoting sets:

$$
\begin{array}{ll}
A=\left\{x . \operatorname{next}^{*}(\text { root }, x)\right\} \wedge & \text { 1) } \text { ws2S } \\
B=\{y . \exists x \cdot \operatorname{data}(x, y) \wedge x \in A\} \wedge & \text { 2) } C^{2} \\
|B|=k+1 & \text { 3) BAPA }
\end{array}
$$

Conjuncts belong to decidable fragments Next

- define these 3 fragments - we have seen this
- sketch a technique to combine them

Combining Decidable Logics

Satisfiability problem expressed in HOL:
(all free symbols existentially quantified)
\exists next,data,k. \exists root,A,B.
${ }^{G} A=\left\{x\right.$. next $^{\star}($ root,$\left.x)\right\} \wedge$

1) WS2S
$B=\{y . \exists x$ data $(x, y) \wedge x \in A\} \wedge$
2) C^{2}
$|B|=\underline{k}+1$
3) BAPA

We assume formulas share only:

- set variables (sets of uninterpreted elems)
- individual variables, as a special case - $\{x\}$

Combining Decidable Logics

Satisfiability problem expressed in HOL,
after moving fragment-specific quantifiers
\exists root, A, B. $F_{\text {ws2s }}:\{r o o t\} \subseteq A$
\exists next. $A=\left\{x\right.$. next $^{*}($ root,$\left.x)\right\} \wedge$
\exists data. $B=\{y . \exists x . \operatorname{data}(x, y) \wedge x \in A\} \wedge$
ヨk. $|B|=k+1$ — $F_{\text {BAPA }}: 1 \leq|B|$
$\mathrm{F}_{\mathrm{C} 2}:|\mathrm{B}| \leq|\mathrm{A}|$
Extend decision procedures into projection procedures for WS2S, $\mathrm{C}^{2}, \mathrm{BAPA}$
Conjunction of projections satisfiable \rightarrow so is original formula

$$
\exists \operatorname{root}, A, B .\{\operatorname{root}\} \subseteq A \wedge|B| \leq|A| \wedge 1 \leq|B|
$$

Fragment of Insertion into Tree

Verification Condition for Tree Insertion

SHARED SETS: nodes, nodes1, content, content1, $\{\mathrm{e}\},\{\mathrm{tmp}\}$

WS2S FRAGMENT:

tree[left , right] \wedge left $p=$ null $\wedge p \in$ nodes \wedge left tmp $=$ null \wedge right tmp $=$ null \wedge nodes $=\{x$. (root,$\left.x) \in\{(x, y) \text {. left } x=y \mid \text { right } x=y\}^{*} *\right\} \wedge$
nodes $1=\{x .($ root,$x) \in\{(x, y) .($ left $(p:=t m p)) x=y) \mid$ right $x=y\}$
CONSEQUENCE: nodes1=nodes $\cup\{$ tmp $\}$
C2 FRAGMENT:
data $\operatorname{tmp}=$ null $\wedge(\forall \mathrm{y}$. data $\mathrm{y} \neq \mathrm{tmp}) \wedge \mathrm{tmp} \notin$ alloc \wedge nodes \subseteq alloc \wedge content $=\{x . \exists \mathrm{n} . \mathrm{n} \neq \mathrm{null} \wedge \mathrm{n} \in$ nodes \wedge data $\mathrm{n}=\mathrm{x}\} \wedge$ content $1=\{x . \exists \mathrm{n} . \mathrm{n} \neq$ null $\wedge \mathrm{n} \in \operatorname{nodes} 1 \wedge(\operatorname{data}($ tmp $:=e)) \mathrm{n}=\mathrm{x}\}$
CONSEQUENCE: nodes $1 \neq$ nodes $\cup\{$ tmp $\} \vee$ content $1=$ content $\cup\{e\}$
BAPA FRAGMENT: e \notin content \wedge card content $1 \neq$ card content +1 CONSEQUENCE: $e \notin$ content \wedge card content $1 \neq$ card content +1

Conjunction of projections unsatisfiable \rightarrow so is original formula

Decision Procedure for Combination

1. Separate formula into WS2S, C^{2}, BAPA parts
2. For each part, compute projection onto set vars
3. Check satisfiability of conjunction of projections

Definition: Logic is effectively cardinality-linear iff there is an algorithm that computes projections of formulas onto set variables, and these projections are quantifier-free BAPA formulas.
Theorem: WS2S, C², BAPA are all cardinality linear.
Proof: WS2S - Parikh image of tree language is in PA C^{2} - proof by Pratt-Hartmann reduces to PA BAPA - has quantifier elimination

