Selected Decision Procedures and Techniques for SMT

- More on combination
- theories sharing sets
- convex theory
- Un-interpreted function symbols
(quantifier-free first-order logic)
- Ground terms (unification and dis-unification)
- Integers and bitvectors
- Quantifier instantiation

SMT

decidable

quantifier-free combination

using \wedge, \vee, ᄀ
quantifier-free

quantifier-free

SAT
 solver

linear programing solver
congruence closure implementation

Satisfiability modulo theories (SMT) solver

State of the art SMT solvers combine formulas with disjoint signatures (Nelson-Oppen approach)
 $$
x<y+1 \wedge y<x+1 \wedge x^{\prime}=f(x) \wedge y^{\prime}=f(y) \wedge x^{\prime}=y^{\prime}+1
$$

linear programing solver

$$
\begin{aligned}
& x<y+1 \\
& y<x+1 \\
& x^{\prime}=y^{\prime}+1
\end{aligned}
$$

$$
0=1
$$

SMT

congruence closure implementation
exchange equalities on demand

Essence of such existing approach is reduction to equalities

$$
x<y+1 \wedge y<x+1 \wedge x^{\prime}=f(x) \wedge y^{\prime}=f(y) \wedge x^{\prime}=y^{\prime}+1
$$

reduction for SMT
reduction for congruence

$$
\begin{array}{ll}
x<y+1 & \\
y<x+1 & \exists(<)_{y}(+) \\
x^{\prime}=y^{\prime}+1 & x^{\prime}=f(x) \\
y^{\prime}=f(y)
\end{array}
$$

exchange equalities eagerly
unsatifiable propositional combination of equalities

Generalize this reduction to sets of elements

reduction for a logic quantified sets

$\forall x . x \in A \rightarrow x \in B$
$D=A \cup\{c\}$
quantifier elimination
$A \mu B$
$D=A \cup\{c\}$

$$
|\mathrm{D}| \leq|\mathrm{A}|
$$

$$
\{c\} \cap B=\varnothing
$$

unsatisfiable quantifier-free formula about sets

Why the example is unsatisfiable

$A \mu B \quad|D| \leq|A|$
$D=A \cup\{c\}$
$\{c\} \cap B=\varnothing$
unsatisfiable quantifier-free formula about sets

Soundness and Completeness by Definition

(3) symbols to extend are disjoint
across components
reduction for
...
prover for data structures
reduction for logic of set images
(1) R is a consequence (in language of sets)
(2) models of R extend to models of original formula

$$
|\mathrm{D}| \leq|\mathrm{A}|
$$

$$
\{c\} \cap B=\varnothing
$$

Essence of the reduction is simple

$$
\exists y . \exists z . \exists \mathrm{h} . \quad(\mathrm{P}(\mathrm{~h}, \mathrm{y}) \wedge \mathrm{Q}(\mathrm{y}, \mathrm{z}))
$$

is equivalent to

$$
\begin{aligned}
& \exists y \cdot((\exists h \cdot P(h, y)) \wedge(\exists z \cdot Q(y, z))) \\
& \exists y \cdot\left(\quad R_{P}(y) \wedge R_{Q}(y)\right)
\end{aligned}
$$

Reduction eliminates local symbols, h from P , gives formula $R_{P}(y)$ equivalent to $\exists \mathrm{h} . \mathrm{P}(\mathrm{h}, \mathrm{y})$
Quantifiers may be bounded and higher-order Applies to Nelson-Oppen and more generally

