
Abstractions from Proofs
�

Thomas A. Henzinger Ranjit Jhala Rupak Majumdar
EECS Department, University of California

Berkeley, CA 94720-1770, U.S.A.�
tah,jhala,rupak � @eecs.berkeley.edu

Kenneth L. McMillan
Cadence Berkeley Labs.

Berkeley, CA, U.S.A.

mcmillan@cadence.com

Abstract

The success of model checking for large programs depends cru-
cially on the ability to efficiently construct parsimonious abstrac-
tions. A predicate abstraction is parsimonious if at each control
location, it specifies only relationships between current values of
variables, and only those which are required for proving correct-
ness. Previous methods for automatically refining predicate ab-
stractions until sufficient precision is obtained do not systemati-
cally construct parsimonious abstractions: predicates usually con-
tain symbolic variables, and are added heuristically and often uni-
formly to many or all control locations at once. We use Craig inter-
polation to efficiently construct, from a given abstract error trace
which cannot be concretized, a parsominous abstraction that re-
moves the trace. At each location of the trace, we infer the relevant
predicates as an interpolant between the two formulas that define
the past and the future segment of the trace. Each interpolant is
a relationship between current values of program variables, and is
relevant only at that particular program location. It can be found by
a linear scan of the proof of infeasibility of the trace.

We develop our method for programs with arithmetic and pointer
expressions, and call-by-value function calls. For function calls,
Craig interpolation offers a systematic way of generating relevant
predicates that contain only the local variables of the function and
the values of the formal parameters when the function was called.
We have extended our model checker BLAST with predicate dis-
covery by Craig interpolation, and applied it successfully to C pro-
grams with more than 130,000 lines of code, which was not possible
with approaches that build less parsimonious abstractions.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings

�
This research was supported in part by the NSF grants CCR-

0085949, CCR-0234690, and ITR-0326577, by the AFOSR grant
F49620-00-1-0327, by the DARPA grant F33615-00-C-1693, and
by the ONR grant N00014-02-1-0671.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’04, January 14–16, 2004, Venice, Italy.
Copyright 2004 ACM 1-58113-729-X/04/0001 ...$5.00

of Programs]: Specifying and Verifying and Reasoning about Pro-
grams.

General Terms: Languages, Verification, Reliability.

Keywords: Software model checking, predicate abstraction, coun-
terexample analysis.

1 Introduction

Increasing dependency on software systems amplifies the need for
techniques that can analyze such systems for errors and prove them
safe. The two most desirable features of such analyses is that they
be precise and scalable. Precision is required so that the analy-
sis does not report errors where none exist, nor assert correctness
when there are bugs. Scalability is necessary so that the method
works for large software systems, where the need for analysis is
most acute. These two features are often mutually exclusive: flow
based interprocedural analyses [11, 15] achieve scalability by fixing
a small domain of dataflow facts to be tracked, and compute flow
functions over the abstract semantics of the program on this fixed
set. For complicated properties, if the set of facts that are tracked is
too small, many false positives are reported. Model checking based
approaches [25] on the other hand offer the promise of precision as
they are path-sensitive, but they often track too many facts, so state
explosion comes in the way of scalability.

To avoid the pitfalls arising from using a fixed set of facts, much re-
cent interest has focused on interprocedural analyses that automati-
cally tune the precision of the analysis using false positives, i.e., in
a counterexample-guided manner. These start with some coarse ab-
stract domain and successively refine the domain by adding facts
that make the abstraction sufficiently precise to refute spurious
counterexamples [4, 5, 8, 12, 19]. The “facts” are predicates that
relate values of programs variables. While this approach holds the
promise of precision, there are several obstacles that must be over-
come before it can be scaled to very large programs. The first chal-
lenge is how to efficiently analyze a false positive and learn from it
a small set of predicates such that the refined abstraction does not
contain the spurious error trace. The second, closely related prob-
lem is how to use the discovered predicates parsimoniously. The
number of facts that one needs to track grows with the size of the
program being analyzed. However, most predicates are only locally
useful, i.e., only useful when analyzing certain parts of the program,
and irrelevant in others. If locality is not exploited, then the sheer
number of facts may render the abstract system too detailed to be
amenable to analysis, as the size of the abstract system grows ex-
ponentially with the number of predicates.

We solve both problems using the following observation: the rea-
son why an abstract trace is infeasible is succinctly encoded in a
proof that the trace is infeasible, and so the appropriate abstraction
can be culled from the proof. The difficulty in extracting the rele-
vant facts from the proof is that the proof uses the entire history of
the trace, while our analysis, and hence our facts, should refer at all
points of the trace only to relationships between the “current” val-
ues of program variables. Inspired by the use of Craig Interpolation
for image-computation in [22], we introduce a method by which the
proof can be sliced to yield the relevant facts at each point of the
trace. Given an abstract trace, we construct a trace formula (TF),
which is the conjunction of several constraints, one per instruction,
such that the TF is satisfiable iff the trace is feasible. If the trace
is infeasible, then we use Craig’s interpolation theorem [9] to ex-
tract, for each point of the trace, the relevant facts from the proof of
unsatisfiability of the TF. Given two formulas ϕ � and ϕ

�
, whose

conjunction is unsatisfiable, the Craig interpolant of
�
ϕ ��� ϕ

���
is a

formula ψ such that (i) ϕ � implies ψ, (ii) ψ � ϕ
�

is unsatisfiable,
and (iii) ψ contains only symbols common to ϕ � and ϕ

�
. If ϕ � is

the part of the TF that represents a prefix of an infeasible trace, and
ϕ
�

encodes the remainder of the trace, then the Craig interpolant
ψ consists of precisely the facts, as relations between current val-
ues of the variables, which need to be known at the cut-point of the
trace in order to prove infeasibility.

In this paper, we make the following contributions. First, we show
how a proof of unsatisfiability of ϕ ��� ϕ

�
can be mined to build

the interpolant ψ. The method is efficient in that it uses the same
theorem proving effort as is needed to produce a proof of unsatisfia-
bility: the interpolant is generated by a linear scan of the proof. Sec-
ond, we show how to infer from the interpolants, at each cut-point
of an infeasible abstract trace, enough facts to rule out the trace.
Moreover, the cut-points provide precise information at which pro-
gram locations the inferred facts are useful, thus enabling a parsi-
monious use of predicates. The method can be combined with on-
the-fly lazy abstraction [19], and presents an improvement: while
in pure lazy abstraction, the set of predicates increases monotoni-
cally along a trace, the interpolant predicates may change from one
control location to the next, i.e., interpolation provides a procedure
for deciding when a predicate becomes irrelevant, and therefore ob-
solete. We show that the method is both sound and complete, in the
sense that if an abstract trace is infeasible, then the interpolants al-
ways provide sufficient information for proving infeasibility. More-
over, when abstractions are used as certificates for program cor-
rectness following the proof-carrying code paradigm [17], then our
parsimonious use of predicates yields more compact proofs.

We illustrate the method on an imperative language of arithmetic
and pointer expressions with call-by-value function calls. There are
two orthogonal sources of complexity in generating interpolants.
The first is function calls and scoping. We want the analysis of a
function to be polymorphic in all callers, i.e., the inferred predicates
should involve only lvalues that are local to the scope of the func-
tion. Here, interpolation provides a procedure for systematically
discovering predicates that refer only to (i) the local variables of
the function and (ii) the values of the formal parameters at the time
of the function call. This allows us to keep the subsequent anal-
ysis interprocedural [1, 29]. The second issue is the presence of
pointers and aliasing. We want to generate predicates that soundly
and completely capture the semantics of programs with pointers
and memory allocation. As McCarthy’s theory of arrays [21] does
not offer suitable interpolants, we need to model memory locations
individually.

Finally we report on our experiences with this new kind of abstrac-

tion refinement. We have implemented the method in BLAST [19].
Owing to the fact that we only track a few predicates at every pro-
gram location, we have been able to precisely model check pro-
grams considerably larger than have been reported before [7, 17],
including a driver that consists of 138,000 lines of C code (we found
several behaviors that violate the specification). Even though 382
predicates are required in total to show correctness, the reason the
analysis scales is that the average number of relevant predicates at
each program location is about 8.

2 Overview

Consider the program fragment shown in Figure 1. The property we
wish to check is that locking and unlocking alternate, i.e., between
any two calls of lock there must be a call of unlock, and between
any two calls of unlock there must be a call of lock. Suppose that
the code not shown does not contain any calls of lock or unlock.

while(*) 	
1: if (p1) lock ();
��������� p1;

if (p1) unlock (); lock ();�����
����������� p1;
2: if (p2) lock ();
��������� p2;

if (p2) unlock (); lock ();�����
n: if (pn) lock ();

if (pn) unlock ();�
Figure 1. Program; spurious counterexample.

A static analysis that tracks whether or not the lock is held returns
false positives, i.e., error traces that arise from the imprecision of
the analysis. One such spurious error trace is shown on the right
in Figure 1. The analysis is fooled because it does not track the
predicate p1 which correlates the first two if statements; either
both happen or neither happens, and either way the error cannot be
reached. We would like to make the analysis more precise so that
this spurious counterexample is eliminated, and we would like to
keep refining the analysis until we either have a real counterexam-
ple, or, as in this case, the program is proved safe.

Various methods can analyze this particular counterexample and
learn that the analysis should track the value of p1. Similar coun-
terexamples show that all of the predicates p1 ��������� pn must be
tracked, but as a result, the analysis blows up, because it is not clear
when we can “merge” states with different predicate values, and
without merging there are an exponential number of states.1 Notice
however that in this program, each predicate is only locally useful,
i.e., each pi is “live” only at the statements between labels i and
(not including) i � 1. Hence, to make a precise analysis scalable
we need a method that infers both the predicates and where they are
useful. In our experience, many large software systems have the
property that, while the number of relevant predicates grows with
the size of the system, each predicate is useful only in a small part
of the state space, i.e., the number of predicates that are relevant at
any particular program location is small. By exploiting this prop-
erty one can make a precise analysis scale to large programs. In
particular, our algorithm infers the predicates pi and also that pi
is useful only between the labels i and i � 1; outside these labels,
we can forget the value of pi. Thus our analysis considers, in this
example, only a linear number of distinct states.

1For this particular example certain state representation methods
such as BDDs would implicitly merge the states.

1: x : � ctr;
�
x � 1 ��� � ctr � 0 � x � ctr

2: ctr : � ctr � 1;
�
ctr � 1 ��� � ctr � 0 ��� 1 x � ctr � 1

3: y : � ctr;
�
y � 2 ��� � ctr � 1 � x � y � 1

4:
���������
	 x � m � ; �
x � 1 ��� � m � 0 � y � m � 1

5:
���������
	 y �� m � 1 � ; �
y � 2 ��� � m � 0 �� 1

Figure 2. Infeasible trace; constraints; predicates.

The problem, then, is (i) to prove that an abstract trace is infeasible,
i.e., it does not correspond to a concrete program trace, and (ii) to
extract predicates from the proof, together with (iii) information
where to use each predicate, such that the refined abstraction no
longer contains the infeasible trace. This is not always as simple
as in the locking example; consider the infeasible trace shown in
Figure 2, where x, y, ctr, and i are program variables, : � denotes an
assignment, and ����������� represents an if statement.

Preliminary definitions. Suppose that the formula ϕ (over the pro-
gram variables) describes a set of program states, namely, the states
in which the values of the variables satisfy ϕ. The strongest post-
condition [16] of ϕ w.r.t. an operation ��� is a formula that describes
the set of states reachable from some state in ϕ by performing the
operation ��� . For an assignment, ��� � ϕ � � x : � e

�
is
���

x � � ϕ � x �! x " � x �
e � x � x " � , and for an ����������� we have, �#� � ϕ � � �$��������� p

� � �
ϕ � p

�
.

For example,
�
x � ctr

�
describes the set of states where the value of

x equals that of ctr, and ��� � � x � ctr
�
� � ctr : � ctr � 1

� � �%�
ctr � � x �

ctr � � ctr � ctr � � 1
�
. The operator ��� is extended to sequences

of operations by �#� � ϕ � � t1;t2
� �&�#� � � ��� � ϕ � t1

�
� t2. A trace t is

feasible if �#� � '�(�
� � t is satisfiable. Given a set P of predicates
and a formula ϕ, the predicate abstraction of ϕ w.r.t. P, writ-
ten α � P� ϕ is the strongest formula ϕ̂ (in the implication order-
ing) such that (i) ϕ̂ is a boolean combination of predicates in P,
and (ii) ϕ implies ϕ̂. For example, if P �*) a � 0 � b + 0 , , then
α � P� � a � b � c � b � 2 � c + 0

�
is - � a � 0

� � �
b + 0

�
. The ab-

stract strongest postcondition of ϕ w.r.t. the operation ��� and pred-
icates P is �#�#. � ϕ � ���/� α � P� � ��� � ϕ � ��� � . This is extended to traces
by ���0. � ϕ � � t1;t2

� �1���#. � � ���#. � ϕ � t1
�
� t2. A trace t is abstractly fea-

sible w.r.t. P if �#�#. � '�(�
� � t is satisfiable. The problem is, given an
infeasible trace t, find a set P of predicates such that t is abstractly
infeasible w.r.t. P.

Symbolic simulation. One way to solve this problem is to symbol-
ically simulate the trace until an inconsistent state is reached; such
inconsistencies can be detected by decision procedures [6]. A de-
pendency analysis can be used to compute which events in the trace
cause the inconsistency, and this set of events can then be heuristi-
cally minimized to obtain a suitable set of predicates [3, 7]. There
are two problems with this approach. First, the inconsistency may
depend upon “old” values of program variables, e.g., in the trace
shown, such an analysis would use facts like x equals “the value of
ctr at line 1,” and that the “current” value of ctr is one more than
the “value at line 1.” In general there may be many such old val-
ues, and not only must one use heuristics to deduce which ones to
keep, a problem complicated by the presence of pointers and proce-
dures, but one must also modify the program appropriately in order
to explicitly name these old values. Intuitively, however, since the
program itself does not remember “old” values of variables, and yet
cannot follow the path, it must be possible to track relationships be-
tween “live” values of variables only, and still show infeasibility.
Second, this approach yields no information about where a predi-
cate is useful.

Example. We now demonstrate our technique on the trace of Fig-
ure 2. First, we build a trace formula (TF) which is satisfiable iff
the trace is feasible. The TF ϕ is a conjunction of constraints, one

per instruction in the trace. In Figure 2, the constraint for each in-
struction is shown on the right of the instruction. Each term 243 � 3 5
denotes a special constant which represents the value of some vari-
able at some point in the trace, e.g., 2 ctr � 1 5 represents the value of
ctr after the first two instructions. The constraints are essentially
the strongest postconditions, where we give new names to variables
upon assignment [10, 14]. Thus, for the assignment in line 1, we
generate the constraint 2 x � 1 5��62 ctr � 0 5 , where 2 x � 1 5 is a new name
for the value of x after the assignment, and 2 ctr � 0 5 is the name for
ctr at that point. Notice that the “latest” name of a variable is used
when the variable appears in an expression on the right. Also note
that the conjunction ϕ of all constraints is unsatisfiable.

To compute the set P of relevant predicates, we could simply
take all atomic predicates that occur in the constraints, rename the
constants to corresponding program variables, create new names
(“symbolic variables”) for “old” values of a variable e.g., for
2 ctr � 1 57�82 ctr � 0 5 � 1 create a new name that denotes the value of
ctr at the previous instruction, and add these names as new vari-
ables to the program. However, such a set P is often too large, and
in practice [3, 19] one must use heuristics to minimize the sets of
predicates and symbolic variables by using a minimally infeasible
subset of the constraints.

Craig interpolation. Given a pair
�
ϕ � � ϕ

� �
of formulas, an in-

terpolant for
�
ϕ � � ϕ

� �
is a formula ψ such that (i) ϕ � implies ψ,

(ii) ψ � ϕ
�

is unsatisfiable, and (iii) the variables of ψ are common
to both ϕ � and ϕ

�
. If ϕ � � ϕ

�
is unsatisfiable, then an interpolant

always exists [9], and can be computed from a proof of unsatisfia-
bility of ϕ � � ϕ

�
. We present an algorithm for extracting an inter-

polant from an unsatisfiability proof in Section 3; if P is a proof of
unsatisfiability of ϕ � � ϕ

�
, then we write ITP � � ϕ ��� ϕ

� �
� � P

�
for the

extracted interpolant for
�
ϕ � � ϕ

� �
.

In our example, suppose that P is a proof of unsatisfiability for the
TF ϕ. Now consider the partition of ϕ into ϕ �2 , the conjunction of
the first two constraints (2 x � 1 59�:2 ctr � 0 5 �;2 ctr � 1 5<�:2 ctr � 0 5 � 1),
and ϕ

�
2 , the conjunction of the last three constraints (2 y � 2 5=�

2 ctr � 1 5 �;2 x � 1 5<�:2 m � 0 5 �>2 y � 2 5<�*2 m � 0 5 � 1). The symbols com-
mon to ϕ �2 and ϕ

�
2 are 2 x � 1 5 and 2 ctr � 1 5 ; they denote, respectively,

the values of x and ctr after the first two operations of the trace.
The interpolant ITP � � ϕ �2 � ϕ

�
2

�
� � P

�
is ψ2 �

� 2 x � 1 5?�@2 ctr � 1 50A 1
�
.

Let ψ̂2 be the formula obtained from ψ2 by replacing each constant
with the corresponding program variable, i.e., ψ̂2 �

�
x � ctr A 1

�
.

Since ψ2 is an interpolant, ϕ �2 implies ψ2, and so x � ctr A 1 is
an overapproximation of the set of states that are reachable after
the first two instructions (as the common constants denote the val-
ues of the variables after the first two instructions). Moreover, by
virtue of being an interpolant, ψ2 � ϕ

�
2 is unsatisfiable, meaning that

from no state satisfying ψ̂2 can one execute the remaining three
instructions, i.e., the suffix of the trace is infeasible for all states
with x � ctr A 1. If we partition the TF ϕ in this way at each point
i � 1 ��������� 4 of the trace, then we obtain from P four interpolants
ψi � ITP � � ϕ �i � ϕ

�
i

�
� � P

�
, where ϕ �i is the conjunction of the first

i constraints of φ, and ϕ
�
i is the conjunction of the remaining con-

straints. Upon renaming the constants, we arrive at the formulas ψ̂i,
which are shown in the rightmost column of Figure 2. We collect
the atomic predicates that occur in the formulas ψ̂i, for i � 1 � ������� 4,
in the set P of predicates.

We can prove that the trace is abstractly infeasible w.r.t. P. In-
tuitively, for each point i � 1 ��������� 4 of the trace, the formula ψ̂i
represents an overapproximation of the states s such that s is reach-
able after the first i instructions of the trace, and the remaining in-

structions are infeasible from s. From Equation 1 of Section 3, it
follows that ��� � � ψ̂i

�
� ��� i

�
1 implies ψ̂i

�
1, for each i. For example,

��� � � x � ctr A 1
�
� � y : � ctr

�
implies x � y A 1. Therefore, by adding

all predicates from all ψi to P, we have �#�#. � '�(�
� � � ��� 1; ����� ; ��� i
�

implies ψ̂i. Note that, as the trace is infeasible, ψ̂5 � ψ5 ���
���$��� .
Thus, ��� . � ' (�
� � � ��� 1; ����� ; ��� 5

�
implies �
���$� � , i.e., the trace is ab-

stractly infeasible w.r.t. P.

Locality. The interpolants give us even more information. Con-
sider the naive method of looking at just the TF. The predicates we
get from it are such that we must track all of them all the time.
If, for example, after the third instruction, we forget that x equals
the “old” value of ctr, then the subsequent �$�������� does not tell
us that y � m � 1 (dropping the fact about x breaks a long chain
of reasoning), thus making the trace abstractly feasible. In this
example, heuristic minimization cannot rule out any predicates,
so all predicates that occur in the proof of unsatisfiability of the
TF must be used at all points in the trace. Using the interpolant
method, we show that for infeasible traces of length n, the for-
mula �����ψ � �

� ����� � �����ψ � � '�(�
� � ��� 1
���
� ��� n is unsatisfiable (see Theo-

rem 1 for a precise statement of this). Thus, at each point i in the
trace, we need only to track the predicates in ψ̂i. For example, after
executing the first instruction, all we need to know is x � ctr, after
the second, all we need to know is x � ctr A 1, after the third, all we
need to know is x � y A 1, and so on. This gives us a way to localize
predicate usage. Thus, instead of a monolithic set of predicates all
of which are relevant at all points of a trace, we can deduce a small
set of predicates for each point of the trace.

Function calls. The method described above can be generalized to
systematically infer well-scoped predicates for an interprocedural
analysis [29]. To obtain predicates that contain only locally visi-
ble variables, we cut the TF at each point i in a different way. The
first part ϕ � of a formula pair consists of the constraints from the
instructions between and including iL and i, where iL is the first in-
struction of the call body to which i belongs. The second part ϕ

�
contains all remaining constraints. It can be shown that interpolants
for such pairs

�
ϕ � � ϕ

� �
contain only variables that are in scope at

the point i, and are sufficient to rule out the false positive when the
subsequent static analysis is done in an interprocedural, polymor-
phic way [1].

Paper outline. Next, we describe how to extract interpolants from
proofs. In Section 4 we describe the syntax and semantics of our
language. In Section 5 we show how the predicate inference al-
gorithm works for programs without pointers, and in Section 6 we
discuss how pointers can be handled. Finally, in Section 7 we report
on our experimental results.

3 Interpolants from Proofs

We now present rules that, given a refutation of a formula ϕ � � ϕ
�

in cnf, derives an interpolant ψ for the pair
�
ϕ � � ϕ

� �
. Let FOL

be the set of formulas in the first-order logic of linear equality.
A term in the logic is a linear combination c0 � c1x1 � 343 3 cnxn,
where x1 ��� ����� xn are individual variables and c0 � ������� cn are integer
constants. An atomic predicate is either a propositional variable or
an inequality of the form 0 	 x, where x is a term. A literal is ei-
ther an atomic predicate or its negation. A clause is a disjunction of
literals. Here we consider formulas in the quantifier-free fragment
of FOL. A sequent is of the form Γ
 ∆, where Γ and ∆ are sets of
formulas. The interpretation of Γ
 ∆ is that the conjunction of the
formulas in Γ entails the disjunction of the formulas in ∆.

HYP Γ � φ φ � Γ

COMB
Γ � 0 x Γ � 0 y

Γ � 0 c1x � c2y
c1 � 2 � 0

CONTRA
	 φ1 �������4� φn

� � 0 c
Γ � � φ1 �������4� � φn

c � 0

RES
Γ � 	 φ ��� Θ Γ � 	 � φ

���
Θ �

Γ � Θ
�

Θ �
Figure 3. Proof system.

We use a theorem prover that generates refutations for sets of
clauses using the sequent proof system of Figure 3. In particular, all
boolean reasoning is done by resolution. This system is complete
for refutation of clause systems over the rationals. We obtain an
incomplete system for the integers by systematically translating the
literal - � 0 	 x

�
to 0 	1A 1 A x, which is valid for the integers.

We will use the notation φ � ρ to indicate that all variables occur-
ring in φ also occur in ρ. An interpolated sequent is of the form�
ϕ � � ϕ

� �
 ∆ �ψ " , where ϕ � and ϕ
�

are sets of clauses, ∆ is a set
of formulas, and ψ is a formula. This encodes the following three
facts:

(1) ϕ �
 ψ, (2) ψ � ϕ
�
 ∆, and (3) ψ � ϕ

���
∆.

Note that if
�
ϕ � � ϕ

� �
�� �ψ " , then ψ is an interpolant for
�
ϕ � � ϕ

� �
.

We now give a system of derivation rules for interpolated sequents
corresponding to the rules of our proof system. These rules are a
distillation of methods found in [20, 28]. They are sound, in the
sense that they derive only valid interpolated sequents, and also
complete relative to our proof system, in the sense that we can trans-
late the derivation of any sequent ϕ �

�
ϕ
�
 ∆ into the derivation

of an interpolated sequent
�
ϕ ��� ϕ

� �
 ∆ �ψ " .
We begin with the rule for introduction of hypotheses. Here, we dis-
tinguish two cases, depending on whether the hypothesis is from ϕ �
or ϕ

�
:

HYP-A �
ϕ � � ϕ

���
 φ � φ " φ � ϕ �

HYP-B �
ϕ � � ϕ

� �
 φ � �=" φ �� ϕ �

We take � here to be an abbreviation for 0 	 0. The rule for in-
equalities is as follows:

COMB

�
ϕ � � ϕ

���
 0 	 x � 0 	 x � "�
ϕ ��� ϕ

���
 0 	 y � 0 	 y � "�
ϕ ��� ϕ

���
 0 	 c1x � c2y � 0 	 c1x � � c2y � "
c1 � 2 + 0

In effect, to obtain the interpolant for a linear combination of in-
equalities from ϕ � and ϕ

�
we just replace the inequalities from ϕ

�
with 0 	 0. Interpolated sequents derived using these rules satisfy
the following invariant.

INVARIANT 1. For any interpolated sequent of the form�
ϕ � � ϕ

� �
 0 	 x � 0 	 x � " , we have ϕ
�
 0 	 y � such that x � x ��� y � .

Further, for all individual variables v such that v �� ϕ
�

, the coeffi-
cients of v in x and x � are equal.

Using this invariant, we can show that the above rules to generate
interpolants are sound.

As an example, Figure 4 shows the derivation of an interpolant for
the case where ϕ � is

�
0 	 y A x

� �
0 	 z A y

�
and ϕ

�
is
�
0 	 x A z A 1

�
.

In the figure, we abbreviate
�
ϕ � � ϕ

� �
 φ �ψ " to
 φ �ψ " . Using the
above rules, we derive the sequent
 0 	8A 1 � 0 	 z A x " . Since
0 	 A 1 is equivalent to � , it follows that 0 	 z A x is an interpolant
for

�
ϕ ��� ϕ

���
(which the reader may wish to confirm).

Inequality reasoning is connected to Boolean reasoning in our sys-
tem via the CONTRA rule. The corresponding interpolation rule is
as follows:

CONTRA

�) a1 ����� ��� ak , �) b1 � ������� bm ,
�
�� �ψ "�

ϕ � � ϕ
� �
 - a1 ��� ����� - ak � - b1 ��������� - bm
� � - a1 � 343 3 � - ak

�
� ψ "

This rule is sound because both the consequent and the interpolant
it generates are tautologies. Moreover, we apply the side condition
that all the bi are literals occurring in ϕ

�
, while all the ai are literals

not occurring in ϕ
�

. This establishes the following invariant.

INVARIANT 2. For any interpolated sequent
�
ϕ � � ϕ

� �
 Θ �ψ " ,
the set Θ is a collection of literals, and ψ is of the form φ � ρ, where
φ is the disjunction of those literals in Θ not occurring in ϕ

�
.

Notice that, provided ϕ � is in clause form, our two hypothesis in-
troduction rules HYP-A and HYP-B also establish this invariant
(any clause from ϕ � can be rewritten into the form φ � ρ required
by the invariant).

Now, we introduce two interpolation rules for resolution: one for
resolution on a literal occurring in ϕ

�
, and the other for resolution

on a literal not occurring in ϕ
�

:

RES-A

�
ϕ � � ϕ

� �
 φ � Θ � � φ � ρ
�
� ψ "�

ϕ � � ϕ
� �
 - φ � Θ � � � - φ � ρ � � � ψ � "�

ϕ � � ϕ
� �
 Θ � Θ � � � ρ � ρ � � � �

ψ � ψ � � "

RES-B

�
ϕ � � ϕ

� �
 φ � Θ � ρ � ψ " �
ϕ � � ϕ

� �
 - φ � Θ � � ρ � � ψ � "�
ϕ � � ϕ

� �
 Θ � Θ � � � ρ � ρ � � � �
ψ � ψ � � "

In effect, when resolving a literal on the ϕ � side (not occurring in
ϕ
�

) we take the disjunction of the interpolants, and when resolving
a literal on the ϕ

�
side (occurring in ϕ

�
) we take the conjunction

of the interpolants. Using Invariant 2 we can show that these rules
are sound.

As an example, Figure 5 shows a derivation of an interpolant for�
ϕ ��� ϕ

���
, where ϕ � is

�
b
� � - b � c

�
and ϕ

�
is
� - c

�
. Using the res-

olution rule, we derive the sequent
�
ϕ � � ϕ

� �
�� � c " . Thus c is an
interpolant for

�
ϕ � � ϕ

� �
.

Using the invariants given above, we can also show that for every
derivation P of a sequent

�
ϕ � � ϕ

� �
 φ in our original proof system,
there is a corresponding derivation P � of an interpolated sequent of
the form

�
ϕ � � ϕ

���
 φ �ψ " . We will refer to the interpolant ψ thus
derived as ITP � � ϕ ��� ϕ

���
� � P

�
. Using the same proof but partitioning

the antecedent differently, we can obtain related interpolants. For
example, we can show the following fact:

ITP � � ϕ � � φ
�

ϕ
� �

� � P
� � φ ��� ITP � � ϕ �

�
φ � ϕ

� �
� � P

�
(1)

This fact will be useful later in showing that a set of interpolants

derived from an infeasible program trace provides a sufficient set of
predicates to rule out that trace.

We can also give interpolation rules for treating equalities and un-
interpreted functions. This is omitted here due to space considera-
tions. We also note that some useful theories do not have the Craig
interpolation property. For example, interpolants do not always ex-
ist in the quantifier-free theory of arrays (with ��� � and ����� opera-
tors) [21]. For this reason, we avoid arrays in this work, although
the use of array operators would simplify the theory somewhat.

4 Languages and Abstractions

We illustrate our algorithm on a small imperative language with
integer variables, references, and functions with call-by-value pa-
rameter passing.

Syntax. We consider a language with integer variables and point-
ers. Lvalues (memory locations) in the language are declared vari-
ables or dereferences of pointer-typed expressions. We assume
for simplicity that at the beginning of a function, memory is allo-
cated for each reference variable. Arithmetic comparison or pointer
equality constitute boolean expressions. For any lvalue l, let ���$� � l
be the type of l; ���$� � x is the declared type of the variable x in the
current scope, and �	�$� ��
 l1 is τ if ���$� � l1 is (� � τ (and there is a type
error otherwise). The operation l : � e writes the value of the expres-
sion e in the memory location l; the operation �$�������� � p � succeeds
if the boolean expression p evaluates to '�(�
� , the program halts
otherwise. An operation f

�
x1 � ������� xn

�
corresponds to a call to func-

tion f with actual parameters x1 to xn, and (� ' � (� corresponds to
a return to the caller. We assume that all operations are type safe.

We represent each function f as a control flow automaton (CFA)
C f �

�
L f � E f � l0

f � Op f � V f
�
. The CFA C f is a rooted, directed graph

with a set of vertices L f � PC which correspond to program loca-
tions, a set of edges E f � L f � L f , a special start location l0

f � L f ,
a labeling function Op f : E f � Ops that yields the operation label-
ing each edge, and a set of typed local variables V f � Lvals. The
set V f of local variables has a subset X f � V f of formal parameters
passed to f on a call, and a variable r f � V f that stores the return
value. A program is a set of CFAs �;�) C f0 ��� ����� C fk , , where each
C fi is the CFA for a function fi. There is a special function � ��� �
and corresponding CFA C������� , program execution begins there.

Let PC � �) L f � C f ��� , be the set of program locations. A com-
mand is a pair

� ��� � pc
� � Ops � PC. A trace of � is a sequence of

commands
� ��� 1 : pc1

�
; � ��� ; � ��� n : pcn

�
, where (1) there is an edge�

l0������� � pc1
�

in C������� such that Op
�
l0������� � pc1

� � ��� 1, (2) if ��� i is
a function call f

� 3 3 3 � , then pci is l0
f , the initial location of func-

tion f , (3) the function calls and returns are properly matched, so
if ��� i is a (� ' � (� , then pci is the control location immediately af-
ter the call in the appropriate caller, (4) otherwise (if ��� i is not
a function call or return), there is an edge

�
pci � 1 � pci

� � E f such
that Op

�
pci � 1 � pci

� � ��� i (where f is the CFA such that pci � L f).
For a trace t � � ��� 1 : pc1

�
; ����� ; � ��� n : pcn

�
, let Cl � t be a function

such that if opi is a function call, then ��� Cl � t � i is the matching re-
turn, and Cl � t � i � n otherwise. For each 1 	 i 	 n, define L � t � i to
be max) j � j 	 i � and ��� j is a function call, and Cl � t � j � i , , and 0
if this set is empty, and R � t � i � Cl � t � � L � t � i

�
. For a trace t � � ��� 1 :

pc1
�
; ����� ; � ��� n : pcn

�
, and 1 	 i 	 n, the position L � t � i has the call

that begins the scope to which ��� i belongs, and R � t � i has the return
that ends that scope. For simplicity of notation, we assume that
every function call returns.

COMB

COMB

HYP-A � 0 y � x � 0 y � x � HYP-A � 0 z � y � 0 z � y �
� 0 z � x � 0 z � x � HYP-B � 0 x � z � 1 � 0 0 �

� 0 ;� 1 � 0 z � x �

Figure 4. Deriving an interpolant.

RES

RES

HYP-A � b � b ����� HYP-A � � b � c � � b � c �
� c � ���#	���� c ��� HYP-B � � c � ���
	��

����� ��#	%	���� c ����	 ���

Figure 5. Deriving an interpolant using resolution.

We fix the following notation for the sequel. We use t for the trace� ��� 1 : pc1
�
; ��� � ; � ��� n : pcn

�
. For formulas φ � φ1 � φ2 � FOL, we write� ��� � φ � φ1 � φ2 to abbreviate

�
φ � φ1

�
� � - φ � φ2

�
.

Semantics. The semantics of a program is defined over the set v of
states. The state of a program contains valuations to all lvalues, the
value of the program counter, as well as the call stack. For our pur-
poses, we only consider the data state, which is a type-preserving
function from all lvalues to values. A region is a set of data states.
We represent regions using first-order formulas with free variables
from the set of program variables. Each operation ��� � Ops de-
fines a state transition relation ���A � � v � v in a standard way [23].
The semantics of a trace can also be given in terms of the strongest
postcondition operator [16]. Let ϕ be a formula in FOL represent-
ing a region. The strongest postcondition of ϕ w.r.t. an operation
��� , written ��� � ϕ � ��� is the set of states reachable from states in ϕ
after executing ��� . The strongest postcondition operator for our
language can be computed syntactically as a predicate transformer.

The strongest postcondition operator gives the concrete semantics
of the program. Our analyses will consider abstract semantics of
programs. The abstract domain will be defined by a set of predicates
over the program variables. As we use decision procedures to com-
pute predicate abstractions, we require quantifier-free predicates.
For a formula ϕ � FOL and a set of atomic predicates P � FOL, the
predicate abstraction of ϕ w.r.t. the set P is the strongest formula
ψ (in the implication order) with atomic predicates from P such
that ϕ implies ψ. Let Π: PC � 2FOL be a mapping from program
locations to sets of atomic predicates. The operator �#��� is the ab-
straction of the operator ��� w.r.t. Π. Formally, let ϕ denote a set of
states, and let

� ��� : pc
�

be a command. Then ��� � � ϕ � � ��� : pc
�

is the
predicate abstraction of ��� � ϕ � ��� w.r.t. Π � pc.

Let ��� be a syntactic strongest postcondition operation, and �����
its abstraction w.r.t. the mapping Π. For any trace t, the trace t is
(1) feasible if there exist states s0 � s1 ����� ��� sn � v such that s j ��� jA A � s j

�
1

for j � 0 ��������� n A 1, and infeasible otherwise; (2) ��� -feasible if
��� � ' (�
� � t is satisfiable, and �#� -infeasible otherwise; and (3) Π-
feasible if ����� � '�(�
� � t is satisfiable, and Π-infeasible otherwise.
The two notions (1) and (2) coincide [23].

Subclasses of programs. A program is flat if it is a single-
ton) C� ������, , and there is no edge

�
pc � pc � � in C������� such that

Op
�
pc � pc � � is a function call or a return. A program is pointer-

free if all lvalues and expressions have type � �$' . Specifically, a
pointer-free program does not have any references. In the follow-
ing, we shall consider four classes of programs: (Class ���) flat and

pointer-free, (Class �����) pointer-free (but not flat), (Class �������) flat
(but not pointer-free), and (Class ��� �) the class of all programs.
For each class, we define a syntactic predicate transformer ��� that
takes a formula ϕ � FOL and an operation ��� � Ops and returns the
strongest postcondition �#� � ϕ � ��� . We also define the predicate ab-
straction �#� � of ��� . Finally, we present an algorithm ��� �� �!#"�� that
takes a trace t and returns a mapping Π from PC to sets of atomic
predicates in FOL. The following theorem relates the different no-
tions of feasibility.

THEOREM 1. Let t be a trace of a program P of class PI, PII, PIII,
or PIV. The following are equivalent:

1. t is infeasible (or equivalently, t is ��� -infeasible).

2. t is ����� -infeasible for Π �$�%� �& �!#"�� � t.

In particular, Theorem 1 states that our predicate discovery proce-
dure �%� �& �!#"�� is complete for each class: for an infeasible trace t, the
predicate map ��� �& �!'"�� � t is precise enough to make the trace �#�(� -
infeasible (i.e., the infeasible trace t is not a trace of the abstraction).
If all integer variables are initialized to some default integer value,
say 0, then all satisfying assignments of the ��� of a trace will be
integral even if the �#� is interpreted over the rationals. Thus, if the
trace is infeasible, our proof system can derive the unsatisfiability
of the strongest postcondition.

In the next two sections, we describe in detail how we mine pred-
icates from proofs of unsatisfiability of spurious error traces. First
we consider programs in the classes PI and PII. We then generalize
our results to the classes PIII and PIV. For a given trace t of each
class of program, we define the following operators. First, we de-
fine the concrete and abstract strongest postcondition operators ���
and �#� � , which take a formula and an operation and return a for-
mula, and we extend them to the entire trace t. Next, we define an
operator)#�+* , which returns a constraint map. This is a function
that maps each point i of the trace t to a constraint that corresponds
to the ith operation of the trace. The conjunction of the constraints
that are generated at all points of t is the trace formula (TF) for t,
which is satisfiable iff the trace is feasible. Finally, we define the
procedure ��� �� �!#"�� , which uses a proof of unsatisfiability of the TF
to compute a function Π that maps each program location to a set
of atomic predicates such that the trace t is Π-infeasible.

t ��� � ϕ � t ����� � ϕ � t ����� � 	 θ � Γ � � t
	 x : � e : pci � 	 x � ��	 ϕ � x ��
 x ��� x � e � x ��
 x � � α � 	 Π � pc � � 	��� � ϕ � t � 	 θ � � Γ � i ��@	����� � θ � � x ������� � θ � e ��� �

where x � is a fresh variable where θ � ��������� θ � 	 x �
	
���������$	 p � : pci � ϕ � p ” 	 θ � Γ � i �������� � θ � p � �
t1;t2 ��� � 	��� � ϕ � t1 � � t2 ��� � � 	��� � � ϕ � t1 � � t2 ����� � 	������ � 	 θ � Γ � � t1 � � t2
	 y : � f 	��e � : pci � ; 	 y � � �φ � ϕ � y ��
 y � α � 	 Π � pc j � � 	 θ � � Γ � �

t1; ��	 r� �φ ���e � y ��
 y � 	�	 y � � �φ � ϕ � y ��
 y � where
	�� �! ���!" : pc j � ��	 V #f �$��� � %� ��� � t1 �&	 r� �φ ���e � y ��
 y � θ � �'�(��� � θ � 	 y �

� y � r ��	 V #f �$������� %� ��� � t1 θI �����%� � θ � �Vf

where y � is fresh � y � r � ΓI � Γ � i ��)�*�+� � θI � �φ �,����� � θ � �e ��x are the formals of f 	 θO � ΓO ���,����� � 	 θI � ΓI � � t1
r is the return variable of f Γ � � ΓO � j �������� � θ � � y ������� � θO � r �
V #f � Vf - 	 sym f

� 	 r � � r is the return variable of f

Figure 6. Postconditions and constraints for ��� and ����� traces.

5 Programs without Pointers

5.1 Flat Pointer-free Programs: PI

Strongest postconditions and constraints. We first define the
semantics of flat pointer-free programs in terms of a syntactic
strongest postcondition operator ��� and its predicate abstraction
��� � (w.r.t. a predicate map Π). In Figure 6 the first three rows de-
fine the operators ��� and ��� � for traces of PI. Each operator takes
a formula in FOL and returns a formula in FOL. The operator �#�(�
is parameterized by a map Π from PC to sets of atomic predicates.
With this definition of ��� , we can show that Theorem 1 holds.

An lvalue map is a function θ from Lvals to . . The operator / �10 :�
Lvals � . � � 2Lvals � �

Lvals � . � takes a map θ and a set of
lvalues L, and returns a map θ � such that θ � � l � θ � l if l �� L, and
θ � � l � il for a fresh integer il if l � L. The function ��2*3 takes an
lvalue map θ and an lvalue l and returns 2 l � θ � l 5 . The function ��2*3 � θ
is extended naturally to expressions and formulas. A new lvalue
map is one whose range is disjoint from all other maps. We use
lvalue maps to generate trace formulas (TF); at a point in the trace,
if the map is θ, then the the pair 2 l � θ � l 5 is a special constant that
equals the value of l at that point in the trace. Whenever some
lvalue l is updated, we update the map so that a fresh constant is
used to denote the new value of l. For every such constant c � 2 l � i 5 ,
let)54 ��!�* � c � l. The operator)64 � !%* can be naturally extended to
expressions and formulas of FOL.

The constraints are generated by the function)0�+* , which takes
a pair

�
θ � Γ

�
consisting of an lvalue map θ and a constraint map

Γ: . � FOL, and a command
�
pc : ��� � � Cmd, and returns a

pair
�
θ � � Γ � � consisting of a new lvalue map and constraint map.

We generate one constraint per command. For a trace t � � ��� 1 :
pc1

�
; ����� ; � ��� n : pcn

�
, if

�
θ � � Γ � � �)#�+* � � θ � Γ � � t for some initial Γ � θ,

then Γ � i is the constraint for ��� i, and it can be shown by induction
on the length of the trace, that the TF 7 1 8 i 8 n Γ � i is satisfiable iff
��� � ' (�
� � t is satisfiable. The generated constraints are a skolem-
ized version of the strongest postcondition. The function)#�+* is
defined in the first three rows of Figure 6. If the ith operation in the
trace is the assignment x : � e, we first update the map so that a new
constant denotes the value of x, and then we have the ith constraint
specify that the new constant for x has the same value as the ex-
pression e (with appropriate constants plugged in). For an assume
operation �$��������� � p � , the constraint stipulates that the constants at
that point satisfy the formula p. The constants enable us to encode

Algorithm 1 �%� �& �!#"��
Input: an infeasible trace t � 	���� 1 : pc1 � ; ����� ; 	���� n : pcn � .
Output: a map Π from the locations of t to sets of atomic predicates.
Π � pci : � /0 for 1 i n
	 � � Γ � : ������� � 	 θ0 � Γ0 �
P : � derivation of 9 1 : i : n Γ � i �<;
�= � �
for i : � 1 to n do

ϕ # : ��9 1 : j : i Γ � j
ϕ > : � 9 i > 1 : j : n Γ � j
ψ : � ITP � 	 ϕ # � ϕ > � � 	 P �
Π � pci : � Π � pci

�@?BA ��CED � 	��(F GIH�� � ψ �
return Π.

	
���������$	 b � 0 � : pc1 � ; �
b � 0 � � 0

	 c : � 2 J b : pc2 � ; �
c � 1 ��� 2 J � b � 0 �

	 a : � b : pc3 � ; �
a � 2 ��� � b � 0 �

	 a : � a � 1 : pc4 � ; �
a � 3 ��� � a � 2 ��� 1 ϕ #

	
���������$	 a � b � : pc5 � ; �
a � 3 � � � b � 0 � ϕ >

	
����������	 a � c � : pc6 � �
a � 3 ��� � c � 1 �

Figure 7. Cutting a ��� trace.

the entire history of the trace in the constraint map. The following
proposition states the correctness of constraint generation.

PROPOSITION 1. [Equisatisfiability] For a trace t let
�
θ � Γ

� �
)#� * � � θ0 � Γ0

�
� t and let ϕ � 7 1 8 i 8 n Γ � i. The trace t is feasible iff

the ϕ is satisfiable. Moreover, the size of ϕ is linear in the size of t.

Predicates from cuts. Given an infeasible trace t, we want to learn
a set of predicates that exhibit the infeasibility of the trace. Our
method has been described in Section 2 and is made precise in Al-
gorithm 1. Algorithm 1 first sets the map Π to be the empty map.
It then generates the constraint map Γ for the entire trace and con-
structs the TF by conjoining all constraints in the range of Γ. Let
P be a proof of unsatisfiability of the TF. Then for each point i
in the trace, we cut the constraints into those from the first i com-
mands (ϕ �) and those from the remaining commands (ϕ

�
). Using

the proof P we compute the interpolant ψ for
�
ϕ � � ϕ

� �
and add the

atomic predicates that occur in ψ after cleaning to the predicate map
for pci. The correctness of this procedure is stated in Theorem 1.

EXAMPLE 1: Consider the infeasible trace from [3] shown on
the left in Figure 7. On the right, the figure shows the result of
)#� * � � θ0 � Γ0

�
� t, where the initial lvalue map θ0 maps a, b, and c

to 0. To the right of each command is the corresponding con-

	 a : � 0 : pc1 � ; �
a � 1 ��� 0

	 b : � inc 	 a � : pc2 � ; �
φx � 2 ��� � a � 1 �	
��������� 	 x � φx � : pc2 � ; �

x � 3 ��� � φx � 2 �	 x : � x � 1 : pc3 � ; �
x � 4 ��� � x � 3 ��� 1

	 r : � x : pc4 � ; �
r� 5 ��� � x � 4 �

	�� �! ���!" r : pc5 � ; �
b � 6 ��� � r� 5 �

	
����������	 a �� b � 1 � : pc6 � �
a � 1 ���� � b � 6 ��� 1

i

ϕ �

ϕ �

ϕ �C

ϕ �C

Figure 8. Cutting a ����� trace.

straint. When we cut the trace at the fourth location, the result-
ing pair

�
ϕ � � ϕ

���
consists of the conjunctions of the constraints

from above and below the line, respectively. The interpolant in this
case is 2 a � 3 5 	 2 c � 1 5�A 2, which upon cleaning yields the predicate
a 	 c A 2. Notice that the constants common to both sides of the
cut denote the values of the respective variables after the first four
operations, and ϕ � implies the interpolant.

�

5.2 Pointer-free Programs: PII

We now move on to programs with function calls, but no pointers.
We assume that there are no global variables, and that each func-
tion returns a single integer. When dealing with such programs, the
analysis of the previous section may learn predicates that are not
well-scoped, i.e., for some location, we may extract predicates that
contain variables which are out-of-scope at that location, and such
an analysis is not modular. For a modular interprocedural analy-
sis, we need to compute the effect of a function in terms of the
arguments passed to it, i.e., we wish to relate the “output” of the
function to its “input.” The way to do this is to introduce symbolic
variables that denote the values the function is called with, perform
the analysis using the symbolic variables, and then, at the call site,
plug in the actual values for the constants to see the result of the
function. This method is known as polymorphic predicate abstrac-
tion [1]. We assume that the program has been preprocessed so
that (1) for every function and every formal parameter x, the func-
tion has a new local, so-called symbolic variable φx, which holds
the value of the argument when the function is called and is never
written to (the set of symbolic variables of f is sym f), and (2) the
first statement of every function is �$�������� � � ixi � φxi

�
, where the

conjunction ranges over the set X f of formal parameters. Finally, to
avoid clutter in the definitions due to renaming, we assume that dif-
ferent functions have different names for their variables, and that no
function calls itself directly (a function f can of course call another
function which, in turn, calls f).

Strongest postconditions and constraints. Figure 6 shows the
syntactic strongest postcondition operator ��� and its predicate ab-
straction �#��� for ����� traces. The fourth row shows the case of calls
and returns (we process the entire call-return subtrace at once). The
strongest postcondition for this case is computed as follows: we re-
place y as for an assignment, we set the symbolic variables φ’s to the
arguments �e � y � y " , we then compute ��� for the body of the function
t1 w.r.t. '�(�
� (the first operation in the function will equate the for-
mal parameters �x with the φ’s), and we subsequently quantify out
all locals except the φ’s, which leaves us with a formula that relates
the return variable r to the φ’s. We then set y to r and quantify out
the φ’s and r. The abstract postcondition does the same, only it uses
the the abstract postcondition �#��� of the function body instead of
��� , and then abstracts the resulting formulas using the predicates
of pc j , the location of the caller after the function returns. The gen-
erated constraints are again a skolemized version of the strongest
postcondition. The constraint for the call command is the formula
that equates the φ’s with the corresponding actual parameters, and

the constraint for the return is the formula that equates y with the
return value r of the function. To deal with possibly recursive func-
tions, we use a different lvalue map for the constraints of the func-
tion body, because we do not want assignments to local variables of
the called function to change the values of variables in the calling
context. With these definitions, the analogue of Proposition 1 holds
for ����� programs.

EXAMPLE 2: Consider the trace in Figure 8. The function inc has
the formal parameter x and return variable r, and returns a value one
greater than its input. Assume that we start with an lvalue map θ0,
which maps a, b, x, and φx to 0. The constraints)#� * � � θ0 ��'�(�
�

�
� t

are shown on the right in Figure 8.
�

Predicates from cuts. To get well-scoped predicates, we need only
to generalize the notion of cuts. For each location i of a trace, in-
stead of partitioning the constraints into those due to commands
before i and those originating from commands after i, we use the
partition shown in Figure 8. Let iL (resp., iR) be the first (resp., last)
command in the call body to which the ith command belongs. So
iL is the first command after a function call, and the operation after
iR is a return. We consider four sets of constraints: (1) ϕ � corre-
sponds to the commands between (and including) iL and i, which
may include commands that call into and return from other func-
tions, (2) ϕ

�
corresponds to the commands from i � 1 to iR, which

may include commands that call into and return from other func-
tions between i � 1 and iR, (3) ϕ �C corresponds to the commands
in the calling context of command i which occur before the call
of the function to which i belongs, and which include the call of
the function, and (4) ϕ

�
C corresponds to the commands in the call-

ing context which occur after the return of the function to which i
belongs, and which include the return. We then construct the in-
terpolant of

�
ϕ � � ϕ

� � ϕ �C � ϕ
�
C

�
. One can check that the constants

common to ϕ � and ϕ
� � ϕ

�
C are denote the values of locals (includ-

ing the return variable) at location i, and that the constants common
to ϕ � and ϕ �C are denote the values of symbolic variables upon en-
try to the function, which are never changed by the function, and
hence also the values of the symbolic variables at location i; (these
are also locals of the called function). Hence the interpolant, and
thus the predicates we compute, are in terms of variables that are
in scope at location i, and they refer only to current values of those
variables at location i.

To see why such an interpolant suffices, consider first the parti-
tion

�
ϕ � � ϕ

�
� ϕ �C � ϕ

�
C

�
, namely, into constraints that belong to

the function body and constraints that belong to the calling con-
text. The resulting interpolant ψ contains the symbolic variables
of the function to which the cut-point belongs, as well as the re-
turn variable r, i.e., the inputs and output of the called function.
Moreover, ψ abstractly summarizes the information about the func-
tion call which renders the trace infeasible, because ψ � �

ϕ �C � ϕ
� �

is unsatisfiable. Now, at each point inside the function, we need
to know what information is required to show that ψ holds at the
end. To get this information, we could compute the interpolant of�
ϕ � � ϕ

�
� - ψ

�
, but since - ψ is implied by ϕ �C � ϕ

�
C , we can instead

directly compute the interpolant of
�
ϕ � � ϕ

�
� �

ϕ �C � ϕ
�
C

���
. The re-

sulting predicate discovery algorithm ��� �� �!#"�� for traces of ����� pro-
grams is shown in Figure 2. The correctness of this procedure is
stated in Theorem 1.

EXAMPLE 3: Recall the trace and constraints from Figure 8. The
formulas that result from cutting the trace at the fourth location
are ϕ � � �

Γ � 3 � Γ � 4
� � � 2 x � 3 5<� 2 φx � 2 5 �;2 x � 4 5<�:2 x � 3 5 � 1

�
and

Algorithm 2 ��� �& �!'"��
Input: an infeasible trace t � 	���� 1 : pc1 � ; ����� ; 	���� n : pcn � .
Output: a map Π from the locations of t to sets of atomic predicates.
Π � pci : � /0 for 1 i n
	 � � Γ � : ������� � 	 θ0 � Γ0 �
P : � derivation of 9 1 : i : n Γ � i �<;
�= � �
for i : � 1 to n do
	 iL � iR � : � 	 L � t � i � R � t � i �
ϕ # : � 9 iL > 1 : j : i Γ � j
ϕ > : �,9 i > 1 : j : iR # 1 Γ � j
ϕC : � 	 9 1 : j : iL Γ � j ���=	 9 iR : j : n Γ � j �
ψ : � ITP � 	 ϕ # � ϕ > � ϕC � � 	 P �
Π � pci : � Π � pci

�@?BA ��CED � 	 �(F GIH�� � ψ �
return Π.

	
���������/	 x �� y � : pc1 � ; �
x � 0 �#�� � y � 0 �

	�J x : � 0 : pc2 � ; � J � x � 0 �4� 3 �
� 0
	 y : � x : pc3 � ; �

y � 4 ��� � x � 0 � � � J � y� 4 �4� 5 ��� � J � x � 0 � � 3 �
	
���������$	 y � x � : pc4 � ; �

y � 4 ��� � x � 0 � � � J � y� 4 �4� 5 ��� � J � x � 0 � � 3 �
	�J y : � J y � 1 : pc5 � ; � J � y � 4 � � 6 �
� � J � y � 4 �4� 5 ��� 1 �� A G � 	 � x � 0 ��� � y � 4 � �

� 	 � J � x � 0 � � 7 ��� � J � y � 4 � � 5 ��� 1 �
� 	 � J � x � 0 � � 7 ��� 	 � J � x � 0 � � 3 � �%�

	
���������
	�J x � 0 � : pc6 �
� J � x � 0 �4� 7 �
� 0

Figure 9. Cutting a ������� trace.

ϕ
� � Γ � 5 � � 2 r� 5 5 �&2 x � 4 5 � . Furthermore, ϕ �C � �

Γ � 1 � Γ � 2
� �� 2 a � 1 5 � 0 � 2 φx � 2 5 � 2 a � 1 5 � and ϕ

�
C � �

Γ � 6 � Γ � 7
� � � 2 b � 6 5?�

2 r� 5 5 � � 2 a � 1 5 �� 2 b � 6 5<A 1
�
. The symbols common to ϕ � and

ϕ
� � �

ϕ �C � ϕ
�
C

�
are 2 x � 4 5 and 2 φx � 2 5 , which are the values of x

and φx at that point. The interpolant is 2 x � 4 57�*2 φx � 2 5 � 1, which
yields the predicate x � φx � 1. Similarly, when we cut the trace at
the fifth location, the common variables are 2 r� 5 5 and 2 φx � 2 5 , and
the cleaned interpolant which summarizes the function’s behavior
for all calling contexts is r � φx � 1. Notice that at this point, which
is the last location of the function body, the interpolant is guaran-
teed to only use the “input” and “output” variables of the function.
When cutting the trace at the sixth location, we get the predicate
b � a A 1, which is again well-scoped for pc6, where the variables
x, φx, and r are not in scope. It is easy to check that these predicates
make the trace abstractly infeasible.

�

6 Programs with Pointers

We now consider programs that deal with pointers. As before, we
first consider “flat” programs, and then move on to programs with
procedures. The only difference with the previous section is in the
constraint generation; the algorithm ��� �� �!'"�� is exactly the same
as before, only it uses a different function)#� * . In this somewhat
technical section we show how the constraint generation must be
extended to handle pointers in a sound and complete way.

Stores. The classical way to model the store is to use memory
expressions and the theory of arrays [13, 26, 27], which comes
equipped with two special functions, � ��� and ��� � . The function
� � � takes a memory M and an address a and returns the contents
of the address a; the function ��� � takes a memory M, an address
a, and a value v, and returns a new memory that agrees with M
except that the address a now has value v. The relationship be-
tween � � � and ��� � is succinctly stated by McCarthy’s axiom [21]:
� � � � ��� � � M � a � v

�
� b
� � � ��� � � a � b

�
� v� � � � � M � b

�
. For a memory vari-

able M and a variable x, define M � x � � ��� � M � x
�
, and for an lvalue

 l, define M � �
 l
� � � � � � M � M � l

�
. With some slight abuse of nota-

tion, we use M in this way to denote a map from lvalues to memory
expressions over M. We naturally extend the map M to expressions
and formulas of FOL. Expressions and formulas appearing in the
program do not contain memory variables, � � � , or ��� � .

Symbolic variables. We must generalize the notion of symbolic
variables, which freeze the formal parameters of a function, be-
cause now a pointer may be passed to a function and the func-
tion may change the value of some cell that is reachable using
the pointer. Hence, we have to relate the values of cells at the
return of a function with the values the cells had upon the corre-
sponding function call. For a set X of variables, let � � !'"�� � X �
)
 kx � x � X and k � 0 , be the set of cells that are reachable from X
by dereferences. As we do not have recursive types, this set is finite
and syntactically computable (k is bounded by the type of x). The
set of symbolic variables of f is now sym f �) φl � l ��� � !#"�� � X f , ,
where X f is the set of formal parameters of f . As before, (1) the
symbolic variables are local variables of the function which are
never written to, and (2) the program is changed, by a syntactic
preprocessing pass, so that each lvalue that is reachable from the
formal parameters reads its value from the corresponding symbolic
variable (i.e., x from φx,
 x from φ � x and so on) in the very first
statement of the function (using �$��������� � 7 l ����	�
����� X f

l � φl
�
). As

before, for modularity we analyze the function using the symbolic
variables, and replace their values with the actual parameters at the
call sites [1, 29]. For a symbolic variable φl , define

�
φl

� � � l.

Constraints for modeling allocation. Suppose there are two vari-
ables x and y, each of type (� � � �$' . When the program begins,
and the pointers are allocated, the standard semantics is that their
values are not equal. For completeness, this must be explicitly mod-
eled by constraints. We modify the transformation, described ear-
lier, which inserts into every function as first statement an �����������
that copies the symbolic variables into the formal parameters, to
include another clause that states that every two distinct lvalues
l1 � l2 ��� � !#"�� � � V f � � X f

�
sym f

���
of reference type are not equal.

Again, as the types are nonrecursive, this clause is quadratic in the
size of the function. An example is the first �$��������� in the trace of
Figure 9.

Constraints for modeling the store with lvalue maps. Using
� ��� and ��� � it is straightforward to generate the strongest post-
conditions for programs with pointers; see Figure 10. Unfortu-
nately, the theory of arrays does not have the interpolant prop-
erty, thus we cannot get interpolants from TFs that use this the-
ory. For example, the conjunction of M � � ��� � � M � x � y

�
and

�
a ��

b
� � � � � � � M � a

� �� � � � � M � � a ��� � � � � � � M � b
� ��6� � � � M � � b ��� is un-

satisfiable, but there is no quantifier-free interpolant in the common
set of variables, namely) M � M � , . We surmount this hurdle by mod-
eling the memory axioms using (generalized) lvalue maps, and by
instantiating the array axioms on demand. Recall the definitions of
lvalue maps and / � 0 from Section 5. The set ChLval consists of
elements cl generated by the grammar cl :: �*2 x � i 5 � 2 cl � i 5 , where
i � . . The function)54 ��!�* of the previous section is extended by
)54 � !�* � 2 x � i 5#� x and)54 � !%* � 2 cl � i 5#�
 �)54 � !%* � cl

�
. Each cl � ChLval

is a special constant that denotes the value of)54 ��!�* � cl at some point
in the trace. The function �(2*3 of the previous section is extended to
all lvalues by ��2*3 � θ � �
 kx

� � 2 x � θ � x 5 if k � 0, and ��2*3 � θ � �
 kx
� �

2��(2*3 � θ �
 k � 1 x � θ � �
 kx
� 5 otherwise, and extended naturally to ex-

pressions, atomic predicates, and formulas.

Constraints for assume operations. Modeling the memory with
� ��� and ����� gives us some relations for free, e.g., from x � y

(modeled as ��� � � M � x
� � ��� � � M � y

�
) the equality
 x �
 y (mod-

eled as ��� � � M � ��� � � M � x
��� � � � � � M � � � � � M � y

���
) follows by con-

gruence. We explicitly state these implied equalities when generat-
ing constraints, by closing a predicate with the operator "�4 ��� � � '�(�
� :
FOL � FOL, where

"�4 ��� � � b � p �

������� ������
� "�4 ��� � � b � p1

� ��� � "+4 ��� � � b � p2
�

if p � �
p1 ��� p2

�
,

- � "�4 ��� � � � - b
�
� p1

�
if p � � - p1

�
,

p � 7 0 8 k 8 N
���
 kl1

� � �
 kl2
���

if p � �
l1 � l2

�
and

b � '�(�
� ,
p otherwise,

provided ���$� � l1 � ���$� � l2 � (� � N � �$' . The formula "�4 ��� � � '�(�
� � p
explicates all equalities inferred by the memory axioms from the
formula p. When generating the constraints for �$�������� � p � , we first
“close” p using "�4 ��� �

, and then generate constraints for the result.
Consider, for example, the constraint for the fourth command in
Figure 9. For any formula p that can appear in an �$��������� , we
have M � p � M � � "�4 ��� � � '�(�
� � p � in the theory of arrays. Using this
equivalence, we can show the following lemma, which tells us that
the constraints have been modeled adequately. For a program � , an
lvalue
 kx is well-typed in � if ���$� � x � (� � N � �$' for some N � k,
i.e., if x has type (� ��� �$' , then
 x is well-typed but not

 x. A
formula p is well-typed w.r.t. � if (1) it does nor contain memory
variables, � ��� , or ��� � , and (2) each lvalue that occurs in p is well-
typed in P.

LEMMA 1. For a program � , two formulas p � p � � FOL that are
well-typed w.r.t. � , and an lvalue map θ, the condition M � p implies
M � p � iff ��2*3 � θ � � "+4 ��� � � ' (�
� � p � implies ��2*3 � θ � p � .

Constraints for assignments. When assigning to
 l1 we must ex-
plicate that for all lvalues
 l2 such that l1 � l2, the value of
 l2 is
updated as well. Let �
	�2'! ��� be a function that takes a pair of lvalue
maps

�
θ1 � θ2

�
and a pair of expressions

�
l1 � l2

�
, and generates equal-

ities between the names of l1 and its transitive dereferences under
θ1, and the names of l2 and its transitive dereferences under θ2.
Formally,

�
	�2'! � � � � θ1 � θ2
�
� � l1 � l2

� � �
0 8 k 8 N

� �(2*3 � θ1 �
�
 kl1

� � ��2*3 � θ2 �
�
 kl2

� �
�

where ���$� � l1 � �	�$� � l2 � (� � N � �$' . Define the function ��	�@0*0 ,
which takes a pair of lvalues and returns a formula that is true when
the lvalues have the same address, by �
	�@0*0 � �
 k1x1 ��
 k2 x2

� �
�
����� � if k1 � 0 or k2 � 0, and �
	�@0*0 � �
 k1 x1 �	
 k2 x2

� � �
 k1 � 1x1 �

 k2 � 1x2

�
otherwise. For a function f (which is � � � � for flat pro-

grams), let Lvals � f � � � !'"�� �V f . For an lvalue l and a function
f , let 4 � !�� � f � l �) l � � l � � Lvals � f and l � may be aliased to l , . We
only require that 4 � !�� � f � l overapproximates the set of lvalues that
can actually alias l.

Finally, we define the function ����+* , which generates appropriate
constraints for an assignment l : � e. The function ����+* takes a
function name f , an lvalue map θ, and a pair

�
l � e

�
, where l is an

lvalue and e the expression that is being written into l, and returns
a pair

�
θ � � ϕ � � of an updated lvalue map θ � and a formula ϕ � . Define

θ � � / �10 � θ � S, where S �)
 kl � � l � � � 4 � !�� � l ���) l , and k � 0 , , and
define

ϕ � �$��	�2'! � � � � θ � � θ � � � l � e � �
�

l � ����� �
���� f � l
�� � � � � � �(2*3 � θ � � �
	� 0*0 � � l � l � ����� �� �
	�2'! ��� � � θ � � θ � � � l � � e ��� �� �
	�2'! ��� � � θ � � θ � � � l � � l � ���

��
�

The first conjunct of ϕ � states that l gets a new value e, and all
transitive dereferences of l and e are “equated” (i.e.,
 l gets the new
value
 e, and so on). The big second conjunct of ϕ � states how
the potential aliases l � of l are updated: if l and l � have the same
address, then the new value of l � (given by �(2*3 � θ � � l �) is equated
with e; otherwise the new value of l � is equated with the old value
of l � (given by ��2*3 � θ � l �). This generalizes Morris’ definition for the
strongest postcondition in the presence of pointers [24].

LEMMA 2. Let l : � e be an assignment in a program � , let
ϕ � ��� � '�(�
� � � l : � e

�
, and let

�
θ � � ϕ � � �)#� * � � θ0 � '�(�
�

�
� t for some

lvalue map θ0. For every formula p � FOL that is well typed w.r.t. � ,
the formula ϕ implies M � p in the theory of arrays iff ϕ � implies
�(2*3 � θ � � p.

6.1 Flat Programs: PIII

The first three rows of Figure 10 give the definition of the operator
�#� using the theory of arrays, as well as the generated constraints.
The definition of ��� � is the same as before, except that the new ���
operator is used. Notice that the “current” memory is always rep-
resented by M. For assignments, �#� states that the current memory
M is now an updated version of the old memory, which is renamed
M � . We use ���� * to generate the appropriate constraints for deal-
ing with the possible alias scenarios. For assume operations, ���
is defined as before, except that the constraint generated is on the
“closure” of the predicate using "+4 ��� �

. Constraints for sequences are
obtained by composition. The size of the constraints is quadratic in
the size of the trace. By induction over the length of the trace, split-
ting cases on the kind of the last operation, and using Lemmas 1
and 2, we can prove the following theorem.

THEOREM 2. Given a trace t of a program � , let
�
θ � � Γ � �

)#� * � � θ0 � Γ0
�
� t, let ϕr �6�#� � '�(�
� � t, and let ϕ � 7 1 8 i 8 n Γ � i. For

every formula p � FOL that is well-typed w.r.t. � , the formula ϕr
implies M � p in the theory of arrays iff ϕ implies ��2*3 � θ � � p. Hence,
the trace t is feasible iff the formula ϕ is satisfiable.

Given the new definition of)#�+* , the algorithm for predicate dis-
covery is the same as ��� �& �!'"�� (Algorithm 1), and Theorem 1 holds.

EXAMPLE 4: The right column in Figure 9 shows the constraints
for the trace on the left. For readability, we omit unsatisfiable and
uninteresting disjuncts (for the second and third commands). At the
fourth cut-point of this trace, the common variables are 2
 2 y � 4 5 � 3 5 ,
2 y � 4 5 , 2 x � 0 5 , and 2
 2 x � 0 5 � 3 5 , which denote the values of
 y, y,
x, and
 x at that point in the trace. The interpolant for this cut
is 2
 2 y � 2 5 � 3 59� 0, which gives the predicate
 y � 0 for the loca-
tion pc4.

�

6.2 General Programs: PIV

The main difficulty when dealing with functions and pointers is in
handling the semantics of calls and returns, because the callee may
be passed pointers into the local space of the caller. The complex-
ity arises when we wish to abstract functions polymorphically [1],
because then we have to summarize all effects that the callee may
have had on the caller’s store at the point of return. One way to do
this is to imagine the callee starting with a copy of the caller’s store
and, upon return, the caller refreshing his store appropriately using
the callee’s store. As we shall see, the difficulty is only in modeling
this appropriately with strongest postconditions. Following that, it

t ��� � ϕ � t ����� � 	 θ � Γ � � t
	 l : � e : pci � 	 M � � 	 ϕ �M ��
 M ��� M � ������	 M � � M � � l � M � � e �%� 	 θ � � Γ � i �� ϕ � �

where M � is a fresh store where 	 θ � � ϕ �
� ? D���� � f � θ � 	 l � e �
f is the function in which pci belongs

	
���������
	 p � : pci � ϕ � M � p 	 θ � Γ � i �� ����� � θ � 	��$F �%D	� � %� ����� p ��� �
t1;t2 � � � 	��� � ϕ � t1 � � t2 ����� � 	������ � 	 θ � Γ � � t1 � � t2
	 f 	�y � : pci � ; 	 M �!� MI � MO � sym f � 	 θ � � Γ � �

t1; ϕ �M ��
 M � where θI �'���%� � θ � 	�
 GIH��� �Vf �
	�� �! ���!" : pc j � � M � � MI � ϕld ϕld � 9 φ � sym f

��� �!H A G � 	 θI � θ � � 	 φ � 	 φ �� � y
 x � �
� ϕ � �MO
 M � ΓI � Γ � i �� ϕld �
��� G�� � 	 L � P� R � � � 	 MO � MI � 	 θO � ΓO �$������� � 	 θI � ΓI � � t1
� M ��� �����$	 M � � MO � R � L � P� R � R � as for ���

where M � � MI � M0 are fresh stores Γ � � ΓO � j ���� G�� � 	 L � P� R � � � 	 θ � θO ����� ����� � 	 θ � θ � � θO � � 	 L � R ���
ϕld �,9 φ � sym f

φ � MI � 	 φ � � � y
 x � θ � ��������� θ � L
�x are the formals of f
R � 	$J φ � φ � sym f

�
ϕ � ��	 V #f � ��� � %� ��� � t1
V #f � Vf - sym f ,
L � lvalues in scope at pc2
P � sym f and R ���
 GIH��� � P
Figure 10. Postconditions and constraints for ������� and ��� � traces.

	�J y : � 0 : pc1 � ; � J � y� 0 �4� 1 �
� 0
	 inc 	 y � : pc2 � ; �

φx � 1 ��� � y � 0 �'� � φ � x � 2 �
� � J � y� 0 � � 1 �	
��������� 	 x � φx
�
x � 4 ��� � φx � 1 �

� J x � φ � x � : pc3 � ; � � J � x � 4 �4� 5 ��� � J � φx � 1 � � 7 �
� � J � x � 4 �4� 5 ��� � φ � x � 2 �	�J x : � J x � 1 : pc4 � ; � J � x � 4 � � 6 ��� � J � x � 4 �4� 5 ��� 1� A G � 	 � x � 4 ��� � φx � 1 � �� 	 � J � φx � 1 � � 8 ��� � J � x � 4 �4� 5 ��� 1 �
� 	 � J � φx � 1 � � 8 ��� � J � φx � 1 � � 7 �	�� �! ���!" : pc5 � ; � A G � 	 � y � 0 ��� � φx � 1 �%�� 	 � J � y � 0 � � 9 ��� � J � φx � 1 � � 8 � �� 	 � J � y � 0 � � 9 ��� � J � y � 0 � � 1 �%� .

	
����������	 J y �� 1 � : pc6 � � J � y� 0 �4� 9 �0�� 1
Figure 11. Cutting a ��� � trace.

is straightforward to generate the constraints, and the method for
learning predicates is again Algorithm 2, only now using the new
definition of)#� * .
As we allow functions to pass pointers into the local store as argu-
ments, to keep the exposition simple, we can assume w.l.o.g. that
(1) there are no global variables (these can be modeled by passing
references), and (2) there is no explicit “return” variable; instead,
return values are passed by updating the contents of some cell that
is passed in as a parameter.

EXAMPLE 5: Consider the trace on the left in Figure 11. The caller
(� � � �) passes a pointer y to the store to the callee � ��� . The callee
updates the memory address
 y (which is called
 x in � ���). There
are two symbolic variables φx and φ � x in � ��� , corresponding to the
formal parameter x and its dereference. The �$�������� at location pc3
loads the symbolic variables into the formal parameters.

�

Soundness. Every cell in the caller’s store which is modified by
the callee must be reachable from a parameter passed to the callee,
e.g., the cell pointed to by y in the caller is the same as the cell
pointed to by x when the function � ��� is called, hence upon re-
turn the value of
 y should be the value of
 � φx

�
(as in the interim,

the callee may have changed x). Every cell of the caller which is
unreachable from the parameters passed to the callee remains un-

changed as a result of the call. This is modeled in the �#� seman-
tics by copying the contents of the callee’s store, at the locations
reachable from the passed parameters, into the caller’s store. The
locations that are reachable from the passed parameters are frozen
in the symbolic variables of the callee. It can be shown that this is
sound for our language. To express the copying in ��� , we use the
operator " ����� : for a destination memory Md , a source memory Ms,
and a dereferenced lvalue
 l, the expression " ����� � Md � Ms ��
 l

�
is the

result of updating Md such that all cells reachable from l have the
same value as in Ms. Formally, we define " ����� � Md � Ms �	
 l

�
as

��� � � Md � Md � l � Ms �
�
 l

���
if �	�$� �
 l � � �$' ,

" ����� � ��� � � Md � Md � l � Ms �
�
 l

���
� Ms ��

 l

�
otherwise.

We never need to copy into a variable x. The function " ����� is ex-
tended to a sequence of lvalues �l � �
 l :: �l � � by " ����� � Md � Ms � �l

� �
" ����� � " ����� � Md � Ms ��
 l

�
� Ms � �l �

�
. It can be shown that the result is

independent of the order of lvalues. Hence, we can consider the
operator " ����� to be defined over sets of lvalues. We can mimic
“copying” by lvalue maps as follows. Given three lvalue maps
θd , θ �d , and θs, an lvalue
 l, and a sequence R of lvalues, define
" ����� � � θd � θ �d � θs

�
� �
 l � R

� ������ ����
��2*3 � θ �d �
 l � �(2*3 � θd �
 l if R � 3 ,� ��� � � ��2*3 � θ �d � l � ��2*3 � θd � φ

�
�� �
	�2'! � � � � θ �d � θs

�
� �
 l ��
 φ

���
�

" ����� � � θd � θ �d � θs
�
� �
 l � R � � if R � φ :: R � .

Finally, for a set L of lvalues, define " ����� � � θd � θ �d � θs
�
� � L � R

� �
7 � l � L " ����� �

�
θd � θ �d � θs

�
� �
 l � R

�
.

When a function returns, we update all local variables of the caller.
We set θd to the lvalue map of the caller before the call, and θ �d �/ �10 � θd � L is the lvalue map of the caller after the call, where L �
� � !'"�� �)
 x � x is a local variable of the caller , is the set of lvalues
of the caller that can change (no local variable x can change as the
result of a call; only dereferences can change). We set θs to the
lvalue map of the callee upon return, and R � sym f is the set of
cells that were passed to the callee, and hence must be copied back

into the caller. It can be checked that the formulas resulting from
different permutations of R are equivalent.

Completeness. For completeness, we must ensure that we prop-
erly model the semantics of allocation. It can be shown that
it suffices to ensure that every cell that is being “returned” by
the callee (i.e., reachable from a symbolic variable of the callee)
is either a cell passed to it (i.e., equal to some symbolic vari-
able) or is brand new (i.e., different from � � !'"�� �V f , the set of
cells known to the caller). If a cell is different from those of
the caller, then transitivity of equality and the same check on all
subsequent returns ensures that the cell is different from all pre-
viously allocated ones. The check is encoded with the op-
erator � ��� . For an lvalue l of reference type, a set L of
lvalues, and two stores Ml and ML, define 0 � � � � l � L � � � Ml � ML

� �
� l � � L -

�
Ml � l � ML � l �

�
. Given three sets L, P, and R of lvalues,

and a pair MO and MI of stores, define � ��� � � L � P� R
�
� � MO � MI

� �� � r � R
� 0 � � � � r� P � � � MO � MI

� � 0 � � � � r� L � � � MO � MI
���

. Here L �
� � !'"�� �V f � is the set of local variables of the caller f � , and P � sym f
is the set of cells passed to the callee f , and R � � � !#"�� � sym f
is the set of cells returned by the callee. The store MO is
the store upon return from f , and MI was the store upon en-
try to f . The formula says that for every cell r that is returned,
if r is different from all cells passed to f , then r is different
from all local cells L of the caller f � . This is generalized to
lvalue maps as follows: 0 � � � � l � L � � � θl � θL

� � � l � � L -
� �(2*3 � θl � l �

��2*3 � θL � l �
�

and � ��� � � L � P� R
�
� � θ � θ � � � � � r � R

� 0 � � � � r� P � � � θ � θ � � � �
0 � � � r� L � � � θ � θ � ��� .

Strongest postconditions and constraints. Using these functions,
we can generate the strongest postconditions and the constraints as
shown in Figure 10. Assignments, assume operations, and sequenc-
ing is handled as before; we describe here only function calls. For
��� , we rename the caller’s store to M � as it will change as a result
of the call. We pass a memory MI equal to M � to the callee, equate
the actual parameters with the symbolic variables, and compute ���
of the callee. Then we rename the memory returned by the callee
to MO, and copy back the local store modified by the call into M �
to get the current memory M. Additionally, we add distinctness
constraints to model allocation. The definition of �#��� is similar to
the one before: before it was the predicate abstraction of ��� , using
��� � to analyze the call body; now it is the predicate abstraction
(using the predicates at the return location) of the new �#� , using
��� � recursively for the call body. The correctness of the constraint
generation is stated in Theorem 2. The size of the constraints is
cubic in the size of the trace. Given the new definition of)0�+* ,
the method for predicate discovery is Algorithm 2, and Theorem 1
holds.

EXAMPLE 6: Consider the trace in Figure 11. The right column
shows the constraints that correspond to each command. The con-
straint from the assignment
 y � 0 is 2
 2 y � 1 5 � 1 5�� 0. First, the con-
straint for the call command is the clause ϕld , which loads the actual
parameters into to the symbolic constants for � ��� . The first com-
mand in the body loads the values from the symbolic constants into
the formal parameters; notice that we take the “closure”. We then
build the constraints for the increment operation. Now L �) y �	
 y , ,
P �) φx � φ � x , , R �)
 φx , , and R � �6) φx ��
 φx � φ � x , . The constraint
� ��� � � L � P� R

�
� � θ � θO

�
simplifies to '�(�
� , because
 φx is not a ref-

erence type, and 2 φx � 1 5��82 y � 0 5 , i.e., it is a cell that was passed to
f . Let θ � be the map updating θ so that
 y is mapped to 9. Fi-
nally, the copy-back constraint " ����� � � θ � θ � � θO

�
� � L � R

�
is shown to

the right of the return. At the end, the assume operation generates
the constraint 2
 2 y � 1 5 � 3 5 �� 1. The set of generated constraints is

unsatisfiable. Consider the fourth cut-point of this trace, i.e., up
to and including the increment operation. The common variables
are 2 φx � 1 5 , 2
 2 φx � 1 5 � 8 5 , and 2 φ � x � 2 5 ; they denote the current val-
ues of φx,
 φx, and φ � x, respectively. The interpolant for this cut is
2
 2 φx � 1 5 � 8 5 �12 φ � x � 2 5�� 1, which upon cleaning gives the predicate

 φx � φ � x � 1. This predicate asserts that the present cell pointed to
by φx has a value 1 greater than the cell
 x had upon entry to f .

�

7 Experiments

We have implemented the interpolation based abstraction refine-
ment scheme in the software model checker BLAST [19]. The
algorithm for generating interpolants uses the VAMPYRE proof-
generating theorem prover.2 For efficiency, we have implemented
several optimizations of the basic procedure described in this paper.
First, we treat sequences of assignments atomically. Second, we do
not cut at every point of a spurious error trace. Instead, we perform
a preliminary analysis which identifies a subset of the constraints
that imply the infeasibility of the trace, and only consider the in-
structions that generate these constraints as cut-points. It is easy to
check that the optimized procedure is still complete. For pointers,
we only generate constraints between expressions of the same type.
With these optimizations, we find, for example, that the two pred-
icates a 	 c A 2 and b + 0 suffice to prove the trace in Example 1
infeasible. These are fewer predicates than those generated by the
heuristically optimized predicate discovery scheme of [3].

We ran interpolation based BLAST on several Windows NT de-
vice drivers, checking a property related to the handling of I/O
Request packets. The property is a finite-state automaton with 22
states [2]. The results, obtained on an IBM ThinkPad T30 laptop
with a 2.4 GHz Pentium processor and 512MB RAM, are sum-
marized in Table 1. We present three sets of numbers: ‘Previ-
ous’ gives the times for running the previous version of BLAST,
without interpolants; ‘Craig’ uses interpolants to discover pred-
icates, and drops predicates that are out of scope, but it does
not track different sets of predicates at individual program loca-
tions; ‘Craig+Locality’ uses interpolants and tracks only the rel-
evant predicates at each program location. The previous version
of BLAST timed out after several hours on the drivers parport
and parclass. We found several violations of the specification
in parclass. The numbers in the table refer to a version of
parclass where the cases that contain errors are commented out.
Both ‘Craig’ and ‘Craig+Locality’ perform better than the previ-
ous version of BLAST. When started with the empty set of ini-
tial predicates, ‘Craig’ is faster than ‘Craig+Locality’, because
‘Craig+Locality’ may rediscover the same predicate at several dif-
ferent program locations. However, since the predicates are tracked
extremely precisely (the average number of predicates at a program
location is much smaller than the total number of predicates re-
quired), ‘Craig+Locality’ uses considerably less memory, and sub-
sequent runs (for example, for verifying a modified version of the
program [18], or for generating PCC-style proofs [17]) are faster,
and the proof trees smaller.

8 References

[1] T. Ball, T. Millstein, and S.K. Rajamani. Polymorphic predicate ab-
straction. ACM Transactions on Programming Languages and Sys-
tems, 2003.

[2] T. Ball and S.K. Rajamani. Personal communication.

2VAMPYRE is available from
http://www.eecs.berkeley.edu/ � rupak/Vampyre.

Program LOC Previous Craig Craig+Locality
Disc Reach Disc Reach Preds Disc Reach Preds Avg/Max

kbfiltr 12301 1m12s 0m30s 0m52s 0m22s 49 3m48s 0m10s 72 6.5/16
floppy 17707 7m10s 3m59s 7m56s 3m21s 156 25m20s 0m46s 240 7.7/37
diskperf 14286 5m36s 3m3s 3m13s 1m18s 86 13m32s 0m27s 140 10/31
cdaudio 18209 20m18s 4m55s 17m47s 4m12s 196 23m51s 0m52s 256 7.8/27
parport 61777 - - - - - 74m58s 2m23s 753 8.1/32
parclass 138373 - - 42m24s 9m1s 251 77m40s 1m6s 382 7.2/28

Table 1. Experimental results using BLAST: ‘m’ stands for minutes, ‘s’ for seconds; ‘LOC’ is the number of lines of preprocessed code; ‘Disc’ is the
total running time of the verification starting with the empty set of predicates; ‘Reach’ is the time to perform the reachability analysis only, given all
necessary predicates; ‘Preds’ is the total number of predicates required, and Avg (Max) is the average (maximum) number of predicates tracked at a
program location; the symbol ‘-’ indicates that the tool does not finish in 6 hours.

[3] T. Ball and S.K. Rajamani. Generating abstract explanations of spu-
rious counterexamples in C programs. Technical Report MSR-TR-
2002-09, Microsoft Research, 2002.

[4] T. Ball and S.K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL 02: Principles of Programming
Languages, pages 1–3. ACM, 2002.

[5] R. Bodik, R. Gupta, and M.L. Soffa. Refining dataflow information
using infeasible paths. In FSE 97: Foundations of Software Engineer-
ing, LNCS 1301, pages 361–377. Springer, 1997.

[6] W.R. Bush, J.D. Pincus, and D.J. Sielaff. A static analyzer for find-
ing dynamic programming errors. Software Practice and Experience,
30:775–802, 2000.

[7] S. Chaki, E.M. Clarke, A. Groce, and O. Strichman. Predicate abstrac-
tion with minimum predicates. In CHARME 03: Correct Hardware
Design and Verification, LNCS 2860, pages 19–34. Springer, 2003.

[8] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In CAV 00:
Computer-Aided Verification, LNCS 1855, pages 154–169. Springer,
2000.

[9] W. Craig. Linear reasoning. J. Symbolic Logic, 22:250–268, 1957.

[10] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadek.
Efficiently computing static single assignment form and the program
dependence graph. ACM Transactions on Programming Languages
and Systems, 13:451–490, 1991.

[11] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program ver-
ification in polynomial time. In PLDI 02: Programming Language
Design and Implementation, pages 57–68. ACM, 2002.

[12] C. Flanagan. Automatic software model checking using CLP. In
ESOP 03: European Symposium on Programming, LNCS 2618, pages
189–203. Springer, 2003.

[13] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and
R. Stata. Extended static checking for Java. In PLDI 02: Programming
Language Design and Implementation, pages 234–245. ACM, 2002.

[14] C. Flanagan and J.B. Saxe. Avoiding exponential explosion: gen-
erating compact verification conditions. In POPL 01: Principles of
Programming Languages, pages 193–205. ACM, 2001.

[15] J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
In PLDI 02: Programming Language Design and Implementation,
pages 1–12. ACM, 2002.

[16] D. Gries. The Science of Programming. Springer, 1981.

[17] T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and
W. Weimer. Temporal-safety proofs for systems code. In CAV 02:
Computer-Aided Verification, LNCS 2404, pages 526–538. Springer,
2002.

[18] T.A. Henzinger, R. Jhala, R. Majumdar, and M.A.A. Sanvido. Ex-
treme model checking. In International Symposium on Verification,
LNCS. Springer, 2003.

[19] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In POPL 02: Principles of Programming Languages, pages 58–

70. ACM, 2002.

[20] J. Krajicek. Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic. J. Symbolic Logic,
62:457–486, 1997.

[21] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic
expressions. In Proc. Symposia in Applied Mathematics. American
Mathematical Society, 1967.

[22] K.L. McMillan. Interpolation and SAT-based model checking. In CAV
03: Computer-Aided Verification, LNCS 2725, pages 1–13. Springer,
2003.

[23] J.C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[24] J. M. Morris. A general axiom of assignment. In Theoretical Founda-
tions of Programming Methodology, Lecture Notes of an International
Summer School, pages 25–34. D. Reidel Publishing Company, 1982.

[25] M. Musuvathi, D.Y.W. Park, A. Chou, D.R. Engler, and D.L. Dill.
CMC: A pragmatic approach to model checking real code. In OSDI
02: Operating Systems Design and Implementation. ACM, 2002.

[26] G.C. Necula. Proof carrying code. In POPL 97: Principles of Pro-
gramming Languages, pages 106–119. ACM, 1997.

[27] G. Nelson. Techniques for program verification. Technical Report
CSL81-10, Xerox Palo Alto Research Center, 1981.

[28] P. Pudlak. Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symbolic Logic, 62:981–998, 1997.

[29] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL 95: Principles of Program-
ming Languages, pages 49–61. ACM, 1995.

