
Synthesis, Analysis, and Verification
Lecture 05b

Lectures:

 Viktor Kuncak

Dynamic Allocation
Linked Structures and Their Properties

WS1S

Today we talk about something
new

Memory Allocation in Java

x = new C();

y = new C();

assert(x != y); // fresh object references-distinct

Why should this assertion hold?

How to give meaning to ‘new’ so we can prove it?

How to represent fresh objects?

assume(N > 0 && p > 0 && q > 0 && p != q);

a = new Object[N];

i = 0;

while (i < N) {

 a[i] = new Object();

 i = i + 1;

}

assert(a[p] != a[q]);

A View of the World

Everything exists, and will always exist.
(It is just waiting for its time to become allocated.)

It will never die (but may become unreachable).

alloc : Obj  Boolean i.e. alloc : Set[Obj]

x = new C(); 

 ^defult constructor

New Objects Point Nowhere

class C { int f; C next; C prev; }
this should work:

 x = new C();
 assert(x.f==0 && c.next==null && c.prev==null)

x = new C(); 

If you are new, you are known by few

class C { int f; C next; C prev; }

Assume C is the only class in the program

Lonely object: no other object points to it.

Newly allocated objects are lonely!

x = new C(); 

Remember our Model of Java Arrays

length : Array -> int

data : Array -> (Int -> Int)

 or simply: Array x Int -> Int

 assert
 assert

 data= data((a,i):= x)



class Array {
 int length;
 data : int[]
}
a[i] = x

y = a[i]

Allocating New Array of Objects

class oArray {
 int length;
 data : Object[]
}
x = new oArray[100] 

Procedure Contracts

Suppose there are fields and variables f1,f2,f3 (denoted f)

 procedure foo(x):
 requires P(x,f)
 modifies f3

 ensures Q(x,old(f),f)
foo(E) 
 assert(P(E,f));
 old_f = f;
 havoc(f3);
 assume Q(E,old_f, f)

Modification of Objects

Suppose there are fields and variables f1,f2,f3 (denoted f)

 procedure foo(x):
 requires P(x,f)
 modifies x.f3

 ensures Q(x,f,f’)
foo(E) 
 assert(P(E,f));
 old_f = f;
 havoc(x.f3);  havoc(f3); assume
 assume Q(E,old_f, f)

Example

class Pair { Object first; Object second; }

void printPair(p : Pair) { ... }

void printBoth(x : Object, y : Object)

modifies first, second // ?
{
 Pair p = new Pair();
 p.first = x;
 p.second = y;
 printPair(p);
}

Allowing Modification of Fresh Objects

Suppose there are fields and variables f1,f2,f3 (denoted f)

 procedure foo(x):
 requires P(x,f)
 modifies x.f3

 ensures Q(x,f,f’)
foo(E) 
 assert(P(E,f));
 old_f = f;
 havoc
 assume
 assume Q(E,old_f, f)

Data remains same if: 1) existed and 2) not listed in m.clause

Quiz will be this Tuesday!
(not open book)

Bring: paper, pen, EPFL Camipro card

Now we can model many programs

We can represent any body of sequential code
inside one procedure.

Our loop invariants, pre/post conditions can
become very complex

Linked List Implementation
class List {

 private List next;

 private Object data;

 private static List root;

 public static void addNew(Object x) {

 List n1 = new List();

 n1.next = root;

 n1.data = x;

 root = n1;

 }

}

next next next

root

data data data data

x

Doubly Linked

assume P;

if (first == null) {

 first = n;

 n.next = null;

 n.prev = null;

} else {

 n.next = first;

 first.prev = n;

 n.prev = null;

 first = n;

}

assert Q;

assume P;

if (first == null) {

 first = n;

 n.next = null;

 n.prev = null;

} else {

 n.next = first;

 first.prev = n;

 n.prev = null;

 first = n;

}

assert Q;

Reachability

assume P;

if (first == null) {

 first = n;

 n.next = null;

 n.prev = null;

} else {

 n.next = first;

 first.prev = n;

 n.prev = null;

 first = n;

}

assert Q;

How to prove such verification
conditions automatically?

