Synthesis, Analysis, and Verification Lecture 03b

More Hoare Logic. Building Formulas
Substitutions

Lectures:

Viktor Kuncak

Programs, Relations, Formulas

Forms of Hoare Triple

```
precondition { Q } post condition
       45', s. 7 (SEPA (S, 5') ET) VS'EQ
45'. (35.5 ∈ PA (5,5) ∈ P) → 5' ∈ Q 

45'. 5' ∈ SP(P, P) → 5' ∈ Q 

45'. 5' ∈ SP(P, P) → 5' ∈ Q
                             P = wp(r,Q)
   SP (P,r) CQ
```

Transitivity Rule

$$\{P\} s_1 \{Q\}$$
 \land $\{Q\} s_2 \{R\}$
 $\forall x,y \times (P \land (X,y) \in S, \rightarrow y \in Q) \quad \forall y, \ge y \in Q \land (y,z) \in S_2 \rightarrow z \in R$

Expanding Paths

{P} Uri {Q}

ies I can be finite or infinite

$$\forall x,y \in P \land (x,y) \in Uri \rightarrow y \in Q$$
 $\forall x,y \in P \land (\exists ies), (x,y) \in ri) \rightarrow y \in Q$
 $\forall x,y \in P \land (\exists ies), (x,y) \in ri) \rightarrow y \in Q$
 $\forall ies \forall x,y, \in P \land (x,y) \in ri \rightarrow y \in Q$

Transitive Closure

More on Hoare Logic

• see wiki

Programs, Relations, Formulas

Programs to Formulas (VCG)

Three methods

- compositionally compute formulas for relations
 - then compare them to spec
- forward propagation compute sp of pre
- backward propagation compute wp of post

From Programs to Formulas (compositional way)

Given

guarded program p with set of variables V,

Compute

- formula F
- whose free variables can be x and x', for all x in V

such that F holds iff

program starting in state given by unprimed variables can end up in state given by primed variables

we should already know the answer

Construct formulas recursively

Guarded program given by tree

Leaves: x=E, assume(P)

relation was
$$\triangle_{\text{SPD}} = \{(s,s') | P(s) \land s' = s \}$$

assume(P)
$$\rightarrow$$
 P \wedge \wedge \vee '= \times

$$x=E \qquad \rightarrow \qquad x'=E \land \land \forall '= \forall$$

$$\forall \in \lor \setminus \{x\}$$

Tree nodes (recursion)

Non-deterministic choice []

$$C_1 \cap C_2 \longrightarrow F_1 \vee F_2$$

$$F_1 \cap F_2 \qquad \mathcal{F}_{\mathbf{c}}(C_1 \cap C_2) = \mathcal{F}_{\mathbf{c}}(C_1) \vee \mathcal{F}_{\mathbf{c}}(C_2)$$
Sequential composition:

Sequential composition;

$$C_{1}, C_{2} \longrightarrow \exists \times_{o}. \quad \mathcal{F}_{e}(c_{1})[x'\mapsto \times_{o}]_{x\in V} \wedge \mathcal{F}_{e}(c_{2})[x\mapsto \times_{o}]_{x\in V}$$

$$X' = x+1 \qquad x' \leq x+10$$

$$Y' = Y-2 \qquad Y' = Y-100$$

$$\{((x,y),(x',y')) \mid F_{1}\} \circ \{((x,y),(x',y')) \mid F_{2}\} =$$

Consequences

$$\frac{f}{c}(assume(P); c) = P \wedge \mathcal{F}_{c}(c)$$

$$\exists \vec{x}_{o} . \quad (P \wedge \wedge x' = x) [x' \mapsto x_{o}]_{x \in V} \wedge \mathcal{F}_{c}(c) [x \mapsto x_{o}]_{x \in V}$$

$$\exists x_{o} . \quad P \wedge \wedge x_{o} = x \wedge \mathcal{F}_{c}(c) [x \mapsto x_{o}]_{x \in V} \quad use \quad one-point rule$$

$$c; assume(P) = \mathcal{F}_{c}(c) \wedge P [x \mapsto x']_{x \in V}$$

$$\exists x_{o} . \quad \mathcal{F}_{c}(c) [x' \mapsto x_{o}]_{x \in V} \wedge (P \wedge \wedge x' = x) [x \mapsto x_{o}]_{x \in V}$$

$$\exists x_{o} . \quad \mathcal{F}_{c}(c) [x' \mapsto x_{o}]_{x \in V} \wedge P [x \mapsto x_{o}]_{x \in V} \wedge \wedge x' = x_{o}$$

$$x_{e} \vee x_{e} \vee x_{$$

About One-Point Rules

Which formula simplifications are correct?

For each either

- find counterexample, or
- prove equivalence (how?)

7 one-point rule implies the + version \equiv F[x:=t] $\forall x. x=t \rightarrow F$ 7 3x,7 (x=+->F) 7 3x. X=t 17F, by one-point rule for 3 7 (7F)[x +t] 7 7 F[xHt]

F[xmt]

Bounded Quantification

¥x ∈ S. F ⇔ +x. (x ∈ S → F)

AXES, F => AX. (XES NF)

Definition of Formulas

$$F ::= F \land F \mid F \lor F \mid \neg F \mid \exists y, F \mid \forall y, F \mid A(t_1, ..., t_m)$$

$$t ::= c \mid y \mid f(t_1, ..., t_m)$$

Definition of Substitution

$$(F_1 \wedge F_2)[x:=t] = F_1[x:=t] \wedge F_2[x:=t]$$

Semantics: Formula \rightarrow Set of states

formula semantics

Formula(') >> Set of Pairs of States

Formulas with primed and unprimed variables

Pairs of Disjoint Functions

Let f_1 , f_2 - partial functions with disjoint domain Then (f_1, f_2) can be represented with $(f_1 \cup f_2)$

Given semantics for sets of partial functions, we also know how to give semantics for relations on such states

Programs, Relations, Formulas

Lemma for One-Point Rule

One Point Rule Proved

Programs to Formulas (VCG)

Further Reading

 C A R Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall, 1998

 Semantics-based Program Analysis via Symbolic Composition of Transfer Relations, PhD dissertation by Christopher Colby, 1996