Exercises 3

March 11, 2011

Relations, wp, sp

Recall the definitions of
Hoare triple $\{P\} r\{Q\}$ is

$$
\forall s, s^{\prime} \in S . s \in P \wedge\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q
$$

strongest postcondition

$$
s p(P, r)=\left\{s^{\prime} \mid \exists s . s \in P \wedge\left(s, s^{\prime}\right) \in r\right\}
$$

weakest precondition

$$
w p(r, Q)=\left\{s \mid \forall s^{\prime} .\left(s, s^{\prime}\right) \in r \rightarrow s^{\prime} \in Q\right\}
$$

Exercise 1-Relations

Prove the following or give a counterexample.

1. $(r \cup s) \circ t=(r \circ t) \cup(s \circ t)$
2. $(r \cap s) \circ t=(r \circ t) \cap(s \circ t)$

Exercise 2-Characterization of sp

Prove

1. $\operatorname{sp}(P, r)$ is the the smallest set Q such that $\{P\} r\{Q\}$, that is:

- $\{P\} r\{s p(P, r)\}$
- $\forall Q \subseteq S .\{P\} r\{Q\} \rightarrow s p(P, r) \subseteq Q$

2. If P_{0} satisfies

- $\left\{P_{0}\right\} r\{Q\}$
- $\forall P \subseteq S .\{P\} r\{Q\} \rightarrow P \subseteq P_{0}$
then $P_{0}=w p(r, Q)$.

Exercise 3-Conjunctivity of wp

Show that

1. $w p\left(r, Q_{1} \cap Q_{2}\right)=w p\left(r, Q_{1}\right) \cap w p\left(r, Q_{2}\right)$
2. $w p\left(r_{1} \cup r_{2}, Q\right)=w p\left(r_{1}, Q\right) \cap w p\left(r_{2}, Q\right)$

Exercise 4 - Postcondition of inverse versus wp

Using definitions of Hoare triple, sp, wp in Hoare logic, prove the following: If instead of good states we look at the completement set of error states, then $w p$ corresponds to doing $s p$ backwards. In other words, we have the following:

$$
S \backslash w p(r, Q)=s p\left(S \backslash Q, r^{-1}\right)
$$

1 Hoare logic syntactically

Warm-up

Use your intuition to determine which of these Hoare triples are valid. All variables are assumed to be integers.

1) $\{j=a\} j:=j+1\{a=j+1\}$
2) $\{i=j\} i:=j+i \quad\{i>j\}$
3) $\{j=a+b\} i:=b ; j:=a\{j=2 * a\}$
4) $\{i>j\} j:=i+1 ; i:=j+1$ \{i $>j\}$
5) \{i != j\} if i>j then $m:=i-j$ else $m:=j-i \quad\{m>0\}$
6) $\{i=3 * j\}$ if $i>j$ then $m:=i-j$ else $m:=j-i \quad\{m-2 * j=0\}$
7) $\{x=b\}$ while $x>a$ do $x:=x-1 \quad\{b=a\}$

Assignment axiom

$$
\begin{equation*}
\overline{\{Q[x:=e]\}(x=e)\{Q\}} \tag{1}
\end{equation*}
$$

Precondition strenghtening

$$
\begin{equation*}
\frac{\models P_{1} \rightarrow P_{2} \quad\left\{P_{2}\right\} c\{Q\}}{\left\{P_{1}\right\} c\{Q\}} \tag{2}
\end{equation*}
$$

Postcondition weakening

$$
\begin{equation*}
\frac{\{P\} c\left\{Q_{1}\right\} \quad \models Q_{1} \rightarrow Q_{2}}{\{P\} c\left\{Q_{2}\right\}} \tag{3}
\end{equation*}
$$

if-then-else

$$
\begin{equation*}
\frac{\{P \wedge B\} c_{1}\{Q\} \quad\{P \wedge \neg B\} c_{2}\{Q\}}{\{P\} \text { if }(B) c_{1} \text { else } c_{2}\{Q\}} \tag{4}
\end{equation*}
$$

loop

$$
\begin{equation*}
\frac{\{I\} c\{I\}}{\{I\} \operatorname{loop}(c)\{I\}} \tag{5}
\end{equation*}
$$

while loop Try yourself!

$$
\begin{equation*}
\frac{(\models P \rightarrow ?) ;\{?\} c\{?\} ;(\vDash ? \rightarrow Q)}{\{P\} \text { while }\{I\}(F)(c)\{Q\}} \tag{6}
\end{equation*}
$$

For a sequential program $c_{1}, c_{2}, c_{3}, \ldots, c_{n}$ we can then apply these rules by writing

```
assert(P)
c1;
assert(Q)
c2;
assert(R)
```

meaning that we expect that these Hoare triples hold
\{P\} c1 \{Q\}
\{Q\} c2 \{R\}

Easy example

Use the proof rules to show that the following holds:

```
assert( x == x0 && y == y0)
z = x
x = y
y = z
assert (y == x0 && x == y0)
```


Some more examples

Prove the following:

1. $\{a>b\} \mathrm{m}:=1 ; \mathrm{n}:=\mathrm{a}-\mathrm{b}\{m * n>0\}$
2. $\left\{s=2^{i}\right\}$ i $:=\mathrm{i}+1$; $\mathrm{s}:=\mathrm{s} * 2\left\{s=2^{i}\right\}$
3. $\{$ True $\}$ if $i<j$ then $\min :=\mathrm{i}$ else $\min :=\mathrm{j}\{(\min \leq i) \wedge(\min \leq j)\}$
4. $\{i>0 \wedge j>0\}$ if $\mathrm{i}<j$ then $\min :=\mathrm{i}$ else $\min :=\mathrm{j}\{\min >0\}$
5. $\left\{s=2^{i}\right\}$ while $\mathrm{i}<\mathrm{n}$ do $\mathrm{i}:=\mathrm{i}+1 ; \mathrm{s}:=\mathrm{s} * 2\{s=2 i\}$

Complete example

Give a complete Hoare logic proof for the following code

```
{P: x >= 0}
a = x;
y = 0;
while (a > 0) {
    y = y + 1;
    a = a - 1;
}
{Q: x = y}
```

