Starting point: counterexample-generating
decision procedures (satisfiability)

formula is unsatisfiable

formula (false for all X,y)
(bool-valued expression)

F(X,y) ‘

A

‘III

formula is true for
(x1, y1)

Example: integer linear arithmetic

formula F with integer
variables

10<y AX<B Ay <3*

No a-priori bounds on integers v

(add e.g. 0 <=y < 254 if needed) true for
x=4, y=11

Synthesis procedure for integers

formula F with integer
variables

TI0<YyAX<BAY<3*

Two kinds of variables: - -
inputs — here y v v
outputs — here x function g on integers precondition

9,(y)=(y+1) div 3 Pony
10<y<14

- P describes precisely when solution exists.
- (9,(y),y) is solution whenever P(y)

How does it work?

Quantifier elimination

Take formula of the form
3 x. F(X,y)

replace it with an equivalent formula

G(y)
without introducing new variables

Repeat this process to eliminate all variables

Algorithms for quantifier elimination (QE) exist for:
— Presburger arithmetic (integer linear arithmetic)
— set algebra
— algebraic data types (term algebras)
— polynomials over real/complex numbers
— sequences of elements from structures with QE

Example: test-set method for QE
(e.g. Weispfenning'97)

Take formula of the form
3 x. F(X,y)

replace it with an equivalent formula

\/i=1n Fi(ti(y),y)
We can use it to generate a program:

x = if F,(t,(y),y) then t.(y)
else ﬂ‘ (t2(),y) t hen t,(y)

else if F (t.(y),y) then t (y)
else throw new Exception(“No solution exists”)

Can do it more efficiently — generalizing decision procedures
and quantifier-elimination algorithms (use div, %, ...)

Example: Omega-test for Presburger arithmetic — Pugh'92

Presburger Arithmetic

Tu=k | C | T,+T, | T,-T, |CT
A=T,=T, | T,<T,

Presburger showed quantifier elimination for PA in 1929
* requires introducing divisibility predicates
« Tarski said this was not enough for a PhD thesis
Normal form for quantifier elimination step:

L U

D
Aai<znA Nz<b A NKi| (x+t)
=1

' 1=1

L= J

Parameterized Presburger arithmetic

Given a base, and number convert a number into this base

val base = read(..)

val x = read(..)

val (d2,dl,d0) = choose((x2,x1,x0) =>
x0 + base * (x1 + base * x2) == x &&
0 <= x0 < base &&
0 <= x1 < base)

This also works, using a similar algorithm
* This time essential to have ‘for’ loops
‘for’ loops are useful even for simple PA case
* reduce code size, preserve efficiency

Synthesis as Scala-compiler plugin

Given number of seconds, break it info hours, minutes, leftover

val (hours, minutes, seconds) = choose((h: Int, m: Int, s: Int) = (
Th % 3600 +7m * 60 s —= totsec

&& 0 <im &&!m < 60 pavameter - vaviable in scope

&& 0 <% &&:?s < 60))

our synthesis procedure

val (hours, minutes, seconds) = {
val locl = totsec div 3600

val num2 = totsec + ((—3600) = locl)
val loc2 = min(num2 div 60, 59)
val loc3 = totsec + ((—3600) * locl) + (—60 * loc2)
(locl, loc2, loc3)
}

Warning: solution not unique for: totsec=60

Synthesis for Pattern Matching

def pow(base : Int, p : Int) = {
def fp(m : Int, b : Int, i : Int) = i match {
case 0 = m
case 2xj = fp(m, bxb, j)
case 2xj+1 = fp(mxb, bxb, j)
b
fp(1,base,p)
;

Our Scala compiler plugin:

 generates code that does division and testing of reminder
 checks that all cases are covered

e can use any integer linear arithmetic expressions

Beyond numbers

Boolean Algebra with Presburger Arithmetic

S::=V | S,US, | § NS, | $;\S,
T:=k|C | T,+T, | T,-T, | C-T | card(S)
A:=S5,=S,| S;,CS, | T,=T, | T,<T,
F:=A| F,AF, | F,VF, | -F | 3S.F | Jk.F

Our results related to BAPA
— complexity for full BAPA (like PA, has QE)
— polynomial-time fragments
— complexity for Q.F.BAPA
— generalized to multisets
— combined with function images
— used as a glue to combine expressive logics
— synthesize sets of objects from specifications

Synthesizing sets

Partition a set into two parts of almost-equal size

val s = ..

val (al,a2) = choose((al:Set[0],a2:Set[0]) =
al union a2 == s &&
al intersect a2 == empty &é&

abs (al.size - a2.size) < 1)

http://lara.epfl.ch/dokuwiki/comfusy
Complete Functional Synthesis

Scala progrmaming language — developed
in Martin Odersky’s group at EPFL

http://www.scala-lang.org

About Scala Documentation Code Examples Software Scala Developers

m Introduction Introducing Scala
f‘ e Scala is a concise, elegant,
m e BT ._,pe._j’re pmgrar'r.nrnng.ldngmge
that integrates object-oriented

and functional fe T
m Research and functional features.
e 1

: E; Community Scala is fully interoperable with

- .
Compiler Read more

Introducing Scala

Scala is a general purpose programming language designed to express commaon programming patterns in a concise,
elegant, and type-safe way. It smoothly integrates features of object-oriented and functional languages, enabling Java
and other programmers to be more productive. Code sizes are typically reduced by a factor of two to three when

Time improvements of synthesis

Example: propositional formula F

var p = read(..); var g = read(..)
val (p0,q0) = choose((p,q) => F(p,q,u,v))

— SAT is NP-hard

— generate BDD circuit over input variables
* for leaf nodes compute one output, if exists

— running through this BDD is polynomial
Reduced NP problem to polynomial one

Also works for linear rational arithmetic
(build decision tree with comparisons)

