
F(x,y)

formula is unsatisfiable
(false for all x,y)

formula  is true for 
(x1, y1)

formula 
(bool-valued expression)

Starting point: counterexample-generating 

decision procedures (satisfiability)

Decision 

Procedure



10 < y ^ x < 6 ^ y < 3*x

true for
x=4,  y=11

formula F with integer 
variables

Example: integer linear arithmetic

Decision 

Procedure

No a-priori bounds on integers
(add e.g. 0 <= y < 264 if needed)



function g on integers
gx(y)=(y+1) div 3

formula F with integer 
variables

Synthesis procedure for integers

Synthesis

Procedure

Two kinds of variables:
inputs – here y
outputs – here x precondition

P on y
10 < y < 14

- P describes precisely when solution exists.
- (gx(y),y) is solution whenever P(y)

10 < y ^ x < 6 ^ y < 3*x



How does it work?



Quantifier elimination

Take formula of the form  
9 x. F(x,y)

replace it with an equivalent formula 

G(y)

without introducing new variables

Repeat this process to eliminate all variables

Algorithms for quantifier elimination (QE) exist for:
– Presburger arithmetic (integer linear arithmetic)

– set algebra

– algebraic data types (term algebras)

– polynomials over real/complex numbers

– sequences of elements from structures with QE



Example: test-set method for QE 

(e.g. Weispfenning’97)
Take formula of the form
9 x. F(x,y)

replace it with an equivalent formula 

_i=1
n Fi(ti(y),y)

We can use it to generate a program:

x = if F1(t1(y),y) then t1(y)
else if F2(t2(y),y) then t2(y)

…

else if Fn(tn(y),y) then tn(y)

else throw new Exception(“No solution exists”)

Can do it more efficiently – generalizing decision procedures 
and quantifier-elimination algorithms (use div, %, …)

Example: Omega-test for Presburger arithmetic – Pugh’92



Presburger Arithmetic

T ::= k  |  C  |  T1 + T2 |  T1 – T2 | C¢T 

A ::= T1 = T2 |  T1 < T2

F ::= A |  F1 ^ F2 |  F1 _ F2 | :F | 9k.F 

Presburger showed quantifier elimination for PA in 1929

• requires introducing divisibility predicates

• Tarski said this was not enough for a PhD thesis

Normal form for quantifier elimination step:



Parameterized Presburger arithmetic

Given a base, and number convert a number into this base

val base = read(…)

val x = read(…)

val (d2,d1,d0) = choose((x2,x1,x0) => 

x0 + base * (x1 + base * x2) == x &&

0 <= x0 < base &&

0 <= x1 < base)

This also works, using a similar algorithm

• This time essential to have ‘for’ loops

‘for’ loops are useful even for simple PA case

• reduce code size, preserve efficiency



Synthesis as Scala-compiler plugin

Warning: solution not unique for: totsec=60

Given number of seconds, break it into hours, minutes, leftover

our synthesis procedure



Synthesis for Pattern Matching

Our Scala compiler plugin:

• generates code that does division and testing of reminder

• checks that all cases are covered

• can use any integer linear arithmetic expressions



Beyond numbers



Boolean Algebra with Presburger Arithmetic

Our results related to BAPA
– complexity for full BAPA (like PA, has QE)

– polynomial-time fragments

– complexity for Q.F.BAPA

– generalized to multisets

– combined with function images

– used as a glue to combine expressive logics

– synthesize sets of objects from specifications

S ::= V  |  S1 [ S2 |  S1 \ S2 |  S1 n S2

T ::= k  |  C  | T1 + T2 |  T1 – T2 | C¢T | card(S)

A ::= S1 = S2 |  S1 µ S2 |  T1 = T2 |  T1 < T2

F ::= A |  F1 ^ F2 |  F1 _ F2 | :F | 9S.F | 9k.F



Synthesizing sets

val s = …

val (a1,a2) = choose((a1:Set[O],a2:Set[O]) ⇉

a1 union a2 == s && 

a1 intersect a2 == empty &&

abs(a1.size − a2.size) ≤ 1)

Partition a set into two parts of almost-equal size

http://lara.epfl.ch/dokuwiki/comfusy

Complete Functional Synthesis



Scala progrmaming language – developed 

in Martin Odersky’s group at EPFL

http://www.scala-lang.org



Time improvements of synthesis

Example: propositional formula F
var p = read(…); var q = read(…)

val (p0,q0) = choose((p,q) => F(p,q,u,v))

– SAT is NP-hard

– generate BDD circuit over input variables

• for leaf nodes compute one output, if exists

– running through this BDD is polynomial

Reduced NP problem to polynomial one

Also works for linear rational arithmetic

(build decision tree with comparisons)


