
PFesburger Arithmetic with Bounded Quantifier Alternation

C. R. Reddy and D. W, Loveland
Duke University

Durham, N.C. 27706

Presburger arithmetic has enjoyed a revival of
interest in the last few years. The well-known de-
cision procedure of Presburger [6] for a first-
order theory of integer addition was improved by
Cooper [2] who applied it within a program veri-
fier. Subsequent attention is being given subdo-
mains of Presburger arithmetic (PA) for the purpose
of program verification (e.g. Shostak [7] and
Suzuki and Jefferson [8] who concern themselves
with extending universal PA by the addition of
limited classes of funtions). On a less pragmatic
level, attention has been given to the complexity
of the decision problem for truth in PA. Fischer
and Rabin [4] give a lower bound by establishing
that every nondeterministic Turing machine that de-

cides PA requires at least 2 2cn time to decide the
truth of a PA formula of length n, for almost all
n. Oppen [5] showns that the Cooper version of the
Presburger algorithm (the Cooper-Presburger algo-
rithm) yields a deterministic time bound of

222cn lg n

for deciding the truth of PA formulas of length n,
for sufficiently large n and a suitable c > 0.
Ferrante and Rackoff [3] show that the space re-
quirements for a suitable deterministic decision
procedure for PA is one exponent lower than Oppen's
time bound. Given our present knowledge of various
complexity trade-offs these upper bounds appear
sharp.

This paper concerns both the complexity as-
pects of PA and the pragmatics of improving
algorithms for dealing with restricted subcases of
PA for uses such as program verification. We im-
prove the Cooper-Presburger decision procedure and
show that the improved version permits us to obtain
time and space upper bounds for PA classes re-
stricted to a bounded number of alternations of
quantifiers. The improvement is one exponent less
than the upper bounds for the decision problem for
full PA. The pragmatists not interested in com-
plexity bounds can read the results as substantia-
tion of the intuitive feeling that the improvement
to the Cooper-Presburger algorithm is a real,
rather than ineffectual, improvement. (It can be
easily shown that the bounds obtained here are not

This research was supported by National Science
Foundation Grant DCR75-00666

achievable using the Cooper-Presburger procedure).
The restriction of permitting only a fixed

number of quantifiers is a natural one. Mathemati-
cians have always found that statements become
significantly more difficult to understand with
each alternation of quantifiers. (Formal hierar-
chies such as the arithmetic hierarchy support
this.) Undoubtedly as a consequence of this ob-
served increase in complexity, we rarely, if ever,
deal in formulas with more than a few alternations
of quantifiers, while we are relatively casual
about the introduction of quantifiers of the same
kind. Our results reflect this: the restricted
classes limit the number of alternations but not
the total number of quantifiers.

Presburger Arithmetic

We take Presburger Arithmetic (PA) to be the
first-order theory of linear inequalities over the
integers. Specifically, the language of PA is a
first-order language over the non-logical alphabet
0,i,+,-,~, using the following atomic symbols:

b,-b; one binary
string b for each
non-negative integer

constant symbols,

xb; one binary
string b for each
non-negative integer

variables,

+ function symbol,

predicate symbol.

Terms have the form alXb I +...+anxb +
n an+l'

for ne0, where the a. are constant symbols and xb.
1 1

are variables.(We do not formalize the limited
concatenation function used here.) If an a. is of

i
the form -b, we optionally employ parentheses.
Typical terms are 0 and (-l)x0 + (101xll + (-10119.
(Had we employed decimal notation instead of bina-
ry notation, our results would change in very
minor ways only.)

Atomic formulas have the form tlSt 2 where t I

and t 2 are terms. We also include the boolean

values TRUE and FALSE as atomic formulas. The set
LpA of formulas over this language is defined in-

ductively from these atomic formulas in the usual

- 320-

way, using connectives ~, A , V and quantifiers
~and 3- (Of course, connectives ~ and z can be
added as primitives; we prefer to consider them as
definable functions.)

The intended interpretation of the formula is
as suggested by the notation, with the domain of
interpretation the set of all integers. We denote
by PA the set of true formulas in the set LpA of

formulas defined above.
The Cooper-Presburger algorithm takes two re~

lations definable in PA as primitive (in addition
to the basic ~ relation) and we do likewise, The
relations are "k divides t" and "k does not divide
t", written klt and k~t respectively, where k is a
positive integer (technically, the binary repre-
sentation for the integer) and t is a term. We
define klt as ~x(t=kx) where tl=t 2 denotes

(tl~t 2) A (t2~tl). k~t is defined as ~(klt). We

also adopt the shorthand tl-t 2 for tl+(-t2). The

use of the defined relations = and < in stating
the input formula is also possible without affect-
ing our results; we choose to exclude their use
for simplicity.

Other formulations of Peano arithmetic are
common. Often the domain of the interpretation is
the non-negative integers; this is achievable here
by adding 0~x to the input formula and forbidding
the negation function. Usually the term ax, where
a is the binary representation of an integer k and
x is a variable, is not permitted; rather the
equivlent term x+x+...+x (k times) is used. This
alternative is significantly different because ax
has length approximately log k (the log function
is of base two throughout) whereas kx denotes a
length k formula. However, it is possible to ex-
press kx by an 0(log k) formula in a language dis-
allowing terms ax. We illustrate the idea by a
formula that expresses y=llx:

3w(y=w+w+x A ~y(w=y+y+x A y=x+x))

(It is important that variable reuse occur so that
only a fixed number of variables are needed for
all kx formulas; see Fischer and Rabin [4].) Thus
our results apply to formulations of PA excluding
terms of the form ax.

The Modified Presburger Algorithm

As previously stated, the algorithm we give
here is an improvement of Cooper's version of the
Presburger algorithm, itself a definite improve-
ment over the original formulation. The algo-
rithm decides the truth of formulas in PA present-
ed in prenex normal form (all quantifiers left-
most) by the process of the elimination of quan-
tifiers, proceeding from the innermost quantifier
outward. By this we mean that an equivalent for-
mula is found that does not contain the quantified
variable being eliminated. When all quantifiers
are eliminated, the formula is variable-free and
can be checked rapidly for truth. Thus we need
give only the process to eliminate each quantifier,

We assume that the formula is of the form
3xF(x) or VxF(x) with F(x) quantifier-free, and fur-
ther assume that all "like terms" are collected in
atomic formulas, e.g. replace x-4N2x-2 by -2Nx. The
letters a,b,c and d represent terms not containing

x; ~,~ and e are positive integers and j is a non-
negative integer. The expression (b+j)/ex indi-
cates that term b+j replaces ex at every occur-
rence of ex in the formula; however, if the number
of occurrences of x in a term is not a multiple of
~, both sides of the relation are multiplied by
and the replacement is made.

We now give the modified Cooper-Presburger
algorithm.

Step i. If the given formula is VxF(x), replace
VxF(x) by ~xNF(x).

Step 2. Move all negation symbols that are to the
right of every quantifier inward as far
as possible (using de Morgan's laws) and
adjust atoms so as to have only the fol-
lowing forms as atoms (in particular, re-

place ~(tl~t2) by t2+lStl):

(i) exKa;

(ii) b_<ex;

(iii) 61(~x4c);

(iv) e ~ (ax+d).

The resultant formula is ~xF'(x).

Step 3.

(1)

Step 4.

(2)

We define F_=(x) as the formula F(x) with

all type (i) atoms of Step 2 replaced by
TRUE and all type (ii) atoms of Step 2
replace by FALSE. Replace 3xF' (x) by

~jF_o~(j) vV~j[F'((b+j) c~x) A O-<j A
b

A ~I (b+j)]

Let o be the least common multiple of all
and e in atoms ~It and e ~t containing

the variable j, Replace the formula ob-
tained at Step 3 by

owl o-i
~/ Fib(j)V V V[F'((b+j)/mx) A

j-0 b j=0

A ~I (b+j)].

End of the procedure.

In lines (i) and (2) above the disjunction V
b

is taken over all terms b in atoms of type (ii) of
Step 2.

Here, as for the Cooper-Presburger procedure,
there is a dual form

o-i o-i
(3) ~/ F'(-j) V V V [F'((a-jl/mx) A

co

j=0 a j=0

A ml (a-j)]

where F (x) is as F_=(x) with TRUE and FALSE inter-

changed. In implementation (3) should be used in
place of (2) whenever the atoms of type (i) are

321 -

fewer in number than the atoms of type (ii). For
simplicity of argument we will assume we eliminate
the quantified variable x via (2) only; it is
easily seen that a selection of (2) or (3) does
not effect our results.

The distinction between the algorithm pre-
sented in Cooper [2] and the algorithm presented
here is merely that we choose to normalize the co~
efficients of x in F(x) Only after an atom b~c~x
has been selected to generate the replacement b+j
for ~x throughout F(x). By such a postponement we
do not need to find the least common multiple @ of
all the coefficients of x in F(x), an event of ex-
plosive potential on the magnitude of ~ if there
exist many atoms of type b~x (and ~x~a) all with
relatively prime coefficients of x. We need only
demand that ~l(b+j) rather than that @ I(b+j). This
trick gains one nothing if the different e's sub-
sequently are all multiplied together as apparently
occurs at Step 4. However, in processing a se-
quence of eliminations of 3's only, the quantifiers
can be imported inside the disjunctions created by
preceding quantifier elimination, thus making it
unnecessary to multiply all the coefficients to-
gether simply because they occur also as ~'s in
61t atoms somewhere in the processed formula.
Clearly, the need to eliminate a ~ quantifier fol-
lowing a string of type~...~upsets this since
the negative symbol imported after conversion to
~ leaves the 3 facing a conjunction of formulas.

Thus the alternation of quantifiers is where we
take our lumps, with strong consequence to the size
of our constants, an undesirable situation as we
shall see.

Since the modification we make simply alters
the timing of the normalization of coefficients of
x in effect, the justification of our modification
closely follows the justification for the Cooper-
Presburger algorithm given in Cooper [2], so is
not given here. However, the consequence of this
modification is to provide results not otherwise
obtainable. We consider these results now.

Bounds on Constants Size

Let LpA(m), ma0, denote the set of all closed

formulas of LpA in prenex normal form with no more

than m alternations of quantifiers. Let PA(m) me0,
be the set of all formulas of LpA(m) true under

the intended interpretation.
Our goal is to obtain space and time bounds

on the (worst-case) computation effort to determine
of formulas of LpA(m) if they are in PA(m). The

first step in this direction is to obtain an upper
bound on the magnitude of the coefficients of vari-
ables and constant subterms that can occur in a
formula after all quantifier elimination has oc-
curred. We then follow the method of Ferrante and
Rackoff [3] and use these bounds to determine
bounds on variable substitution which leads to the
desired space bound.

If for integers j and k we have]Jl ~ k we
will say that j is limited by k.

In the theorem that follows, the m=0 case is
of little interest since better results are known;
see e.g. Borosh and Treybig [i].

Theorem If a formula of length n in PA(m), m~0, is
processed by the modified Cooper-Presburger algo-

rithm, then in the resultant formula

a)

b)

the largest coefficient is limited by

2 n
2n(2 n)

the largest least cormnon multiple o (from
Step 4) is limited by

c)

m+2
cn

2 2 ; and

the largest integer encountered is limited
by

m+3
2 2cn

for some c>O and all n>4.

Proof. Processing a formula by the algorithm
given earlier means iterative elimination of
quantifiers QlXl , ..., QpXp, in this order, from

QpXp ... QlXlF(Xl Xp), leaving a variable-free

formula. Here each Qi is either .~ or V • We ob-

tain bounds on the appropriate constants at each
iteration and then obtain our desired result. Let
~k denote the magnitude of the largest coefficient

of any variable in the formula after the elimina-
tion of k quantifiers. Coefficients are altered
as a result of Step 3 only; they are altered by
the substitution of b+j for ~x, with b and ~ de-
termined by the term bN~x. To execute the substi-
tution, the terms of the receiving inequality or
divisibility relation are multiplied by ~(or i),
the substitution for ~x made, and like elements
collected. Because receiving relations have only
one occurrence of a ~x term, at most one new oc-
currence of each variable is introduced upon sub-
stitution, so at most two like terms are combined
upon collecting terms. Thus,

~k+l ~ 2~ .

This holds regardless of alternations of quanti-
fiers. From Step 3 we observe that the ~ and e
constants also are bounded by ~k after k quanti-

fiers have been eliminated.

If ~^N2 n then we see that
u 2 n

~n~2n(2 n)

Two inequalities of form ~xNa or of form b~x
are coefficient distinct iff there is at least one
variable with different coefficients in the two
inequalities. Thus two inequalities not coeffi-
cient distinct differ only in the additive con-

stant. Let d~ denote the number of coefficient
J

distinct inequalities that exist after i alterna-
tions of eliminated quantifiers and j eliminations
of quantifiers after the last alternation. Let

q=d~, the intial number of coefficient distinct u

- 322 -

inequalities. It is the number of coefficient
distinct inequalities rather than the total number
of inequalities that determines the growth rate of
o and consequently the growth rate of the additive
constants in the linear terms. Let 4 denote the
maximum number of quantifiers between alternations.
Between alternations of quantifiers we effectively
have a string of existential quantifiers (the ne-
gations between universal quantifiers cancel out)
and no negation symbol is imported to alter the
the disjunctions introduced by successive elimina~
tion. This allows the ~x to be imported inside
all the disjunctions, so that each3x has as its
scope a formula containing no more inequalities
than the formula that exists immediately following
the previous alternation. We now determine the

d o i' i~i~4.

0
d O = q, by definition;

then

0 <q2
d I - .

This follows because Step 3 generates at most
q disjunctions of form~jG, where G contains at

2
most q inequalities. Thus q coefficient distinct
inequalities might exist at this stage. Step 4
generates no new coefficient distinct inequalitie~

Repeating this argument, we get

0 < 4+1
d 4 - q

When an alternation occurs a negation symbol
appears that must be moved inward. Since the
then cannot be imported, we must view the string
to the right of the 3 as a single entity and begin
as if at the beginning but with a larger formula.
Thus,

d~ < q4+l

1 < (dll)2 d I -

and

d41 _< (dll)4+1 q(£+l) 2 2
= , = d I .

Repeating this, we finally obtain

d 4 ~ (d~) 4+I = q(4+l) m+l
m

We now want a bound for J at each quantifier
elimination step. Our modification of the
Presburger algorithm pays off here because each
and e is bounded by ~k" We can bound the number

of distinct ~'s and e's by the suitable d~. It
J

suffices to bound o uniformly, so in the following

computation we bound q by n, ~0 by 2 n, and the

number of quantifier removals also by n, where n
is the input string length.

no. of distinct coef.ineq.
Max o ~ (max. coef. size)

m -<[~n]d4 <[2n(2n)2n] n(4+l)m+l

m+2

<22cn , for some c > 0 and all n -> 2.

To estimate the largest ~integer encountered in
the formula after k quantifiers have been removed
we must estimate the additive constant and the co-
efficients. During a substitution an existing
additive constant can be multiplied by a coeffi-
cient and added to the constant from the substitu-
tion term. If S k bounds the additive constants

after k eliminations, then

Sk+l ~2~kSk + ~k+l

bounds the additive constants after k+l elimina-
tions. If also ~k ~ Sk then S k bounds the addi-

tive constants and the coefficients after k elimi-
nation and thus bounds all integers encountered.
We note that

S k = 2 2cknm+2

satisfies the recurrence equation above, specifi-
cally

~c(k+l)n m+2 ~ ~k 22cknm+2+22cnm+2
2 z <212K(2n) z]

for all n > 4, for some c > 0.

Finally, we determine Sn, a bound on all inte-

gers encountered after the elimination of all
quantifiers. Since Sn is S k for k=n, we have

m+3
2 2cn

S ~ |
n

Space and Time Bounds

In order to get the desired space bound and
the related time bound for the determination of
PA(m) we use the bound of the previous section to
determine an upper bound on the range of the quan-
tified variables, so that the unbounded quantifiers
can be replaced by bounded quantifiers. To deter-
mine if a formula is in PA(m) it then is sufficient
to sequentially test (at worst) all possible vari-
able substitutions, in each instance checking a
variable-free formula. The space required is the
space needed to write out the longest formula, a
function of the size of the integers replacing the
variables. The time needed to execute this enu-
meration is then bounded in the traditional way.

We prove two theorems needed for our result.
We let Qx denote either 3x or Vx, and let QxSp

- 323 -

denote either 3xsp or Vxsp, where 3xNp indicates
"there exists an x limited by p" and V xNp denotes
"for all x limited by p". The two theorems are va-
riations of theorems of Ferrante and Rackoff [3].

Theorem. If QxF(x, Xl, x k) is a formula of

length n whose universal or existential closure
is in LpA(m) and if integers nl,...,n k are bounded

by w, then QxF(x,n I n k) is true iff

~(c+l)n m+3

(Qx~(k.w+l)2 =)F(x,n I n k)

is true for some c>0 and all n>4.

P~opf. We make use of the bounds established in
the previous section; in fact, the constant c may
be taken to be the value obtained there. We as-
sume first that the quantifier Qx is 3x.

If ~xF(x,n I nk) is false then

(~xNp)F(x,n I n k) is false for any p>0 we

choose.
If 3xF(x,nl,...,nk) is true then we must es-

tablish that ~x~p)F(x,n I ,n k) is true for the

value p stated in the theorem.
Let F' be the formula obtained by removal of

the quantifiers of F using the quantifier elimina-
tion procedure given earlier. Using earlier nota-
tion, we note that the largest coefficient of F' is
limited by Yk' in turn bounded by ~n" The largest

constant in F' is bounded by S . Because of the
n

truth-preservation property of the quantifier-
elimination procedure, we know for all x that
F(X,nl,...n k) iff F'(x,n I nk) , so we may seek

the bound for (3x~p)F'(x,n I nk). But

~xF'(X,nl,...,n k) implies by the validity of the

quantifier elimination process that either

F' (j,n I nk) or F'((b+j)/=, n I nk) with b

and ~ determined by some atom b~x in F' and ONjSo,
where a is the l.c.m, of certain ~'s and e's
in F'. (Recall that one purpose of variable j is
to make (b+j)/~ an integer.) Since ~i we bound
(b+j)/~ by b+j. The term b is of the form

k
~ aix i + e with coefficients a i limited by ~n

j=l
and constant e limited by S . Thus, using results

n

from the previous theorem we have

max (b+j) -< k. ~n W+Sn+°max

m+3 m+2
_< k.2n(2n) 2n w+2 2cn +2 2cn

N(kw+l)22(c+l)nm+3
=p.

For this limit p we know there is an x limited by
p such that F'(X,nl,...,nk) is true if

3xF'(X,nl,...,nk) unless the latter holds because

FJ~(J,nl,...,nk) holds. But the truth of

FJ~(j,n I nk) means that F'(x,n I nk) is true

for any x smaller than all values a/~ from atoms
~xNa and all b/~ from atoms bN~x such that appro-
priate divisibility and non-divisibility conditions
are satisfied. Such an x is limited by the same
bound as computed above because the a terms have
the same bounds as the b terms. That is,

I rain (a-j) 1 -<k- ~n" W+Sn+°max = bound [max (b+j)].

Finally, we observe that if Qx is Vx the same
bound for the quantifier holds because if
VxF(x,nl,...,nk) is false then we can show by the

above argument that there exists an x 0 limited by

p such that ~F(x0,n I nk). |

Theorem. If P is a formula QlXl...QrXrF(Xl,...,Xr)

of length n in LpA(m) where F is quantifier-free

then P is true (i.e. in PA(m))

iff
' 2 (c+l) nm+3 (c+2)n m+3

(QlXl<-2) (Q2x2<-2)...

2(c+r)nm+3

(QrXrN2) F (x I x r)

is true for some c>0 and all n>4.

Proof. By the previous theorem,

22(e+l)nm+3

IXll ~

We now determine a bound for x~+ I assuming that for

all jNi,

22(c+j)nm+3
Ixjl ~

We then have

IXi+l I N (i.w+l)22(c+l)nm+3

(i.22(c+i)nm+3+l)22(c+l)nm+3

(c+(i+l))n m+3
22 for n>4,

- 3 2 4 -

for some c>0 (indeed the constant of the pre-
vious theorems). The theorem follows. |

The algorithm to determine of a formula in
LpA(m) if it is in PA(m) is simply to try all pos~

sible instantiations of integers for variables up
to the limit known for a minimal solution if such
exists. Each proposed instantiation is quite
easily evaluated. The total space required is
clearly less than double the formula length when
instantiated because the checking computations are
local events. Because the truth evaluation of
each instantiated linear inequality, divisibility
and non-divisibility is a small polynomial in the
length of the atom, the non-deterministic time
agrees with the space bound except for an adjust-
ment in the coefficient of the exponent. The time
a deterministic machine needs to run such a com-
putation has a bound of f.2 m ~ if f is the maxi-
mum time between memory alterations. These facts,
plus the fact that at most n variables can appear
in the formula and each integer needs space the
log of its value, yields the theorem we seek.

Theorem. The membership in PA(m) (i.e. truth) of
a formula in LpA(m) of length n can be ascertained

by a deterministic machine within space

and within time

2dn m+4

m+4
22en

for appropriate d>0 and e>O for n>4.

References

i.

2.

3.

Borosh I. and Treybig, L. B. Bounds on posi-
tive integral solutions of linear diophantine
equations. Proc. AMS 55, March, 1976.

Cooper, D. C. Theorem-proving in arithmetic
without multiplication. Machine Intell. 7,
J. Wiley, 1972.

Ferrante, J. and Rackoff, C. A decision pro-
cedure for the first order theory of real
addition with order. SIAM J. Comp., March,
1975.

4. Fischer, M. and Rabin, M. O. Super-exponen-
tial complexity of Presburger arithmetic.

" Project MAC. Tech. Memo 43, MIT, Cambridge,
1974.

5}~!iOppen, D. C. Elementary bounds for Presburger
~arithmetic. 5th SIGACT, May, 1973.

6. Presburger, M. Uber die Vollstandigkeit eines
gewissen Systems der Arithmetic ganzer Zahlen,
in welchem die Addition als einzige Operation
hervortritt. Compte-Rendus dei Consres des
Math. des pays slavs, Warsaw, 1929.

7. Shostak, R. An efficient decision algorithm
for arithmetic with function symbols. Talk

8.

at Workshop on Auto. Deduction. Aug. 1977.

Suzuki, N. and Jefferson, D. Verification de-
cidability of Presburger array programs. CMU
Comp. Sci. Report~ June, 1977.

- 325 -

