
David Brumley et al.

Presentation by Paul Marinescu

� Malware is bad – economic loss made by

Conficker:$9.1 billion dollars (US)

� Manual analysis is tedious

� Certain code paths are only be executed

when certain trigger conditions are met

� MineSweep: an automatic way to identify

and reason about trigger-based behaviors

� Triggers are basically inputs that excersise

(chains of) conditional jumps – MineSweep(chains of) conditional jumps – MineSweep

tries to construct values for the triggers such

that the conditions evaluate in the right

direction

� …using mixed concrete and symbolic

execution

� System time, system events, network and

keyboard inputs and return values from

library or system calls

� Technically, they are API calls e.g.,

GetLocalTime, recv

� The symbolic execution engine treats their

output as symbolic

� Instruction is to be executed symbolically?

� No

▪ Execute it on the real CPU

Yes� Yes

▪ Retrieve concrete operands from the real machine

▪ Translate the instruction to IR

▪ Execute it symbolically

� add eax, 0x2 becomes…

tmp1 = EAX; EAX = EAX + 2;

//eflags calculation

CF:reg1_t = (EAX<tmp1);CF:reg1_t = (EAX<tmp1);

tmp2 = cast(low, EAX, reg8_t);

PF =(!cast(low,

((((tmp2>>7)ˆ(tmp2>>6))ˆ((tmp2>>5)ˆ(tmp2>>4)))ˆ

(((tmp2>>3)ˆ(tmp2>>2))ˆ((tmp2>>1)ˆtmp2)))), reg1_t);

AF = (1==(16&(EAXˆ(tmp1ˆ2))));

ZF = (EAX==0);

SF = (1==(1&(EAX>>31)));

OF = (1==(1&(((tmp1ˆ(2ˆ0xFFFFFFFF))&(tmp1ˆEAX))>>31)));

� Pure symbolic execution can produce

formulas exponential in the size of the

program

e.g., x1 = x0+x0; x2 = x1+x1; x3 = x2+x2; � e.g., x1 = x0+x0; x2 = x1+x1; x3 = x2+x2;

� x3 = x0+x0+x0+....+x0 where there are 8 x0’s.

� Solution: common sub-expressions can be

named using a let expression:

� let x1 = x0+x0 in let x2 = x1+x1 in x2+x2

� In order to speed up the analysis, well-known

(pure) functions are replaced with a summary

when executed symbolically

� strstr, strlen and other string manipulation

function

� The summary has the same `symbolic` effect

as the original

� cjmp(e, true branch, false branch)

� If current path predicate is φ

Then new path predicates are:

∧

� Then new path predicates are:

� φ ∧ e for the true branch

� φ ∧ (¬e) for the false branch

� Conceptually, the mixed symbolic execution

engine forks to explore each (feasible) path

� For each generated path predicate, the Solver

checks whether it is satisfiable i.e. whether

there is an input that can make execution

follow that pathfollow that path

� Might not always find the solution:

� if (md5(x) == y) …

� Responsible for giving the best currently

discovered path to the symbolic execution

engine

� Best = most likely to contain (or lead to)

malicious code

� Uses a BFS approach - loop bodies are

executed once

Program Total Time Total STP Time #Trigger Jumps % Sym. Instr.

MyDoom 28 min 2.2 min 11 0.00136%

NetSky 9 min 0.3 min 6 0.00040%

Perfect

Keylogger

2 min < 0.1 min 2 0.00508%

TFN 21 min 6.5 min 14 0.00052%

Unsupported� Unsupported

� System calls with symbolic arguments

� Indirect jumps to symbolic locations

� The authors also created BitBlaze – a binary

analysis framework (similar in principle to

LLVM and Phoenix) but that also directly LLVM and Phoenix) but that also directly

supporting mixed symbolic execution

� …and similar projects like BitScope,

Panorama (taint analasys), Renovo (extract

original code from packed executables),

HookFinder…

