
Better Bug Reporting With Better Privacy

Miguel Castro Manuel Costa Jean-Philippe Martin
Microsoft Research Cambridge

{mcastro,manuelc,jpmartin}@microsoft.com

Abstract
Software vendors collect bug reports from customers to improve
the quality of their software. These reports should include the in-
puts that make the software fail, to enable vendors to reproduce the
bug. However, vendors rarely include these inputs in reports be-
cause they may contain private user data. We describe a solution
to this problem that provides software vendors with new input val-
ues that satisfy the conditions required to make the software follow
the same execution path until it fails, but are otherwise unrelated
with the original inputs. These new inputs allow vendors to repro-
duce the bug while revealing less private information than existing
approaches. Additionally, we provide a mechanism to measure the
amount of information revealed in an error report. This mechanism
allows users to perform informed decisions on whether or not to
submit reports. We implemented a prototype of our solution and
evaluated it with real errors in real programs. The results show that
we can produce error reports that allow software vendors to repro-
duce bugs while revealing almost no private information.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; K.4.1 [Computers and Society]:
Public Policy Issues–Privacy; D.4.6 [Operating Systems]: Secu-
rity and Protection

General Terms Algorithms, Reliability, Security

Keywords Bug reports, Privacy, Symbolic execution, Constraint
solving

1. Introduction
Software vendors collect error reports from users to improve the
security and reliability of their software. This is important because
it allows vendors to fix bugs in a timely manner, but it raises pri-
vacy concerns because error reports may include private user data
or confidential company data. For example, Microsoft’s error re-
porting technology [28] collects bug reports automatically from
millions of Windows users and it is credited with a major improve-
ment on software quality. Microsoft’s privacy policies for this tech-
nology illustrate typical privacy concerns [26, 27]. The following
paragraph from [26] is a good example:

“Reports might unintentionally contain personal information,
but this information is not used to identify you or contact you. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/03. . . $5.00

example, a report that contains a snapshot of memory might in-
clude your name, part of a document you were working on, or data
that you recently submitted to a website. If you are concerned that
a report might contain personal or confidential information, you
should not send the report.”

When generating error reports, there is a tradeoff between the
software vendor’s ability to reproduce the bug and loss of user
privacy. To enable vendors to reproduce the bug, these reports
should include the inputs that make the software fail, for example,
the documents users were editing or the messages received by
a server. However, vendors rarely include these inputs in reports
because they may contain private user data. Instead, most error
reports include dumps of small regions of memory, for example,
the memory in the stacks of running threads. These dumps may be
insufficient to reproduce the bug and they may still reveal private
information (as discussed in the previous paragraph from [26]).

This paper proposes a solution to this problem. Our solution
provides software vendors with error reports that contain input
values to reproduce the bug while revealing less private information
than existing approaches. Additionally, we provide a mechanism to
measure the amount of information revealed in an error report. This
mechanism allows users to perform informed decisions on whether
or not to submit reports.

We generate error reports automatically when software fails by
analyzing the failed execution. We use symbolic execution along
the path followed by the failed execution to compute path condi-
tions: any input that satisfies the path conditions causes the soft-
ware to follow the same execution path until it fails. Then, we use
a Satisfiability Modulo Theories (SMT) solver (e.g., [8, 16, 18]) to
compute a different input that satisfies the path conditions, but is
otherwise unrelated with the original input. The error report con-
tains this new input and it identifies the failed program. Software
vendors can use the new input to reproduce the bug. They can an-
alyze the failed execution step-by-step in a debugger to reduce the
time and cost to fix the bug. Yet the error report only reveals the
information in the path conditions.

As illustrated by Microsoft’s recommendation at the end of the
previous paragraph from [26], it is important to help users decide
whether or not they should send an error report. Currently, it is hard
for users to perform informed decisions. Concerned users have to
look at memory dumps to decide whether or not to send reports. We
suspect that many users do not do this and, instead, conservatively
decide not to submit any report.

We developed an application-independent technique that com-
putes an upper bound on the number of bits about the original input
that are revealed by an error report. We can measure the entropy of
an error report by computing the set of byte strings with the same
size as the original input that satisfy the path conditions. If a frac-
tion α of the byte strings satisfy the conditions, the error report
reveals − log2(α) bits about the original input. Since computing
this value exactly is too expensive for large inputs, we compute an

319

upper bound. We also compute an upper bound on the number of
bits revealed about each individual byte of the original input. We
provide these values to users to help them decide whether or not to
send the error report.

We implemented a prototype of our techniques and evaluated
them with five real errors in five real programs. The results show
that we can generate error reports that allow software vendors to
reproduce the bug while revealing very little information. For ex-
ample, the report for our Microsoft Word error reveals only 0.2%
of the bits in the original input document and we were unable to
recover any text from the report using Microsoft’s text recovery
tools. Additionally, our error reports are small. For example, the re-
port for Microsoft Word compresses to 5.1KB whereas the original
input compresses to 926KB.

We believe that our techniques have other interesting applica-
tions. For example, we can use them to remove shell code from
exploit input. Attackers can supply exploit input to vulnerable pro-
grams to gain control over their execution. We can use our tech-
niques to generate new input that can be used to debug the vulner-
ability without the risk of executing attacker supplied code.

The rest of the paper is organized as follows. Section 2 presents
an overview of our error report generation technique and discusses
why it is needed. Sections 3 and 4 describe how we generate path
conditions and Section 5 how we use them to generate a new input.
Section 6 presents our technique to measure the information in an
error report. Section 7 presents our results. Related work appears in
Section 8 and we conclude in Section 9.

2. Overview and motivation
We use the example in Figure 1 to motivate the need for our
technique and to illustrate how it works. The example is a sim-
plified Web server with a buffer overflow error. Section 7.1 de-
scribes a similar error in the ghttpd Web server [1]. The function
ProcessMessage is called immediately after the message msg is
received from the network. If the message contains a GET request,
the function copies the URL to the array url, obtains the name
of the target host, and calls ProcessGet to handle the request. A
message with a long URL can overflow url and corrupt the stack.

int ProcessMessage(int sock, char *msg) {
char url[20];
char host[20];
int i=0;

if (msg[0] != ’G’ || msg[1] != ’E’
|| msg[2] != ’T’ || msg[3] != ’ ’)

return -1;

msg = msg+4;
while (*msg != ’\n’ && *msg != ’ ’) {
url[i++] = *msg++;

}
url[i] = 0;

GetHost(msg, host);
return ProcessGet(sock, url, host);

}

Figure 1. Example code: simplified Web server with a buffer over-
flow error.

We compiled our example Web server with Microsoft Visual
Studio 2005 with the option that inserts canaries to detect stack
overflows [14]. Then we sent the HTTP GET request in Figure 2,
which has a long URL, to our Web server. This caused the server
to overflow the url array and to overwrite the return address of

ProcessMessage on the stack. The compiler inserted checks de-
tected the error when ProcessMessage was about to return.

As an example of the state of the art, we used the error reporting
technology of Microsoft Windows XP to generate a report for this
buffer overflow. Figure 3 shows part of the stack dump included
in the generated report. The dump reveals all the information in
the request message. Unfortunately, a request can encode private
information, for example, the URL in this request associates a name
with a product and a credit card number.

0.@. ...\.@..>@.p.@.......@.......@.......@./checkout
?product=embarassingProduct&name=Jo....p.....@.....w.
..(.......GET /checkout?product=embarassingnDoe&credi
tcardnumber=1122334455667788.122334455667788 HTTP/1.1
.Accept: */*.Accept-Language: en-gb.UA-CPU: x86.Accep
t-Encoding: gzip, deflate.User-Agent: Mozilla/4.0 (co
mpatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322
; .NET CLR 2.0.50727).Host: www.ecommercesite.com.Con
nection: Keep-Alive.*3@..$........@......72..82..$...

Figure 3. Part of the memory dump included in the report gener-
ated by Microsoft Windows XP for our example error.

We argue that no one wants this private information in the error
report. The clients of the Web server do not want this information
disclosed because it is embarassing and it reveals their credit card
number. The company running the Web server may violate the
privacy statement in their Web site by sending this bug report to
the software vendor. The software vendor does not want to store
bug reports with private data because it must put in place special
procedures to prevent leaking the data. Additionally, the software
vendor cannot share reports with third parties, for example, with
software vendors that develop plug-ins for their Web server.

Our techniques can solve this problem. We generate an error
report for this example with a new input that also overflows url
but does not disclose any private information: it does not reveal any
bits about any character in the original URL. Figure 4 shows the
architecture of our error report generation system. Our error reports
are generated in the background like the error reports generated by
Windows XP.

To generate error reports, we must detect errors during produc-
tion runs of the software without introducing high overhead. Our
current prototype detects errors using Windows XP’s error check-
ing mechanisms, which include a combination of hardware, operat-
ing system, compiler inserted, and application specific error check-
ing. In the example in Figure 1, we also detect the error using stack
overflow checks inserted by the compiler.

We require a detailed instruction trace to compute path condi-
tions but the instrumentation to collect this trace has high overhead.
Therefore, we use low overhead input logging during production
runs. When we detect an error, we use the log to replay execution
with instrumentation to collect the trace. The log is truncated by
taking a checkpoint and the checkpoint is treated as an additional
input when computing path conditions. We can use existing tech-
niques to log inputs and take checkpoints [19, 31, 38] with low
overhead, but these are not yet implemented in the current proto-
type. This paper focuses on generating error reports given the log.

When an error is detected, we replay the log using dynamic
binary instrumentation [5] to collect a trace of x86 instructions.
We can work with unmodified x86 binaries. We may be unable
to reproduce some non-deterministic errors during replay, for ex-
ample, errors that depend on unlikely interleaving of instructions
from different threads in a multiprocessor. But we can reproduce
deterministic errors that only depend on the logged input and even
non-deterministic errors that occur with high probability given the
logged input. Additionaly, we can add more detailed instrumenta-

320

GET /checkout?product=embarassingProduct&name=JohnDoe&creditcardnumber=1122334455667788 HTTP/1.1
Accept: */*
Accept-Language: en-gb
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)
Host: www.ecommercesite.com
Connection: Keep-Alive

Figure 2. Example input: contains private information and triggers the bug.

�������

���	

��
�����

������

��������

��������	�

��
�����

������������

��������

������

��������

��

�
���

���	

��
�����

��������

�����

�
���

���

���������������
������

��������������

��������������

�
���������
�

Figure 4. Error report generation architecture.

tion during replay to detect the error earlier, for example, we can
add bounds checks [32] or data-flow integrity checks [9]. We have
used data-flow integrity checks in some of the examples described
in this paper.

We compute path conditions using the trace of x86 instructions
executed from the point where input is first received until the point
where the error is detected. These conditions are fed to an SMT
solver [16] to compute a new input. The new input causes the
software to follow the execution path in the replay but reveals
nothing more about the original input. The software vendor can
use the new input to reproduce the bug.

We can include either the path conditions or the new input
in the error report. Both alternatives reveal the same amount of
information about the original input. The first alternative saves
computation time at the user machine but we chose the second
because it makes it harder to launch denial-of-service attacks on
the error reporting servers. It also saves bandwidth because the new
input is smaller than the path conditions and it compresses better.

The path conditions are also used to compute the amount of
information about the original input that is revealed by the report.
We show the user the number of bits revealed by the report to help
the user decide whether or not to submit the report.

3. Computing path conditions
Path conditions are conditions on the input of the faulty program
such that replaying the execution with any input that satisfies them
ensures that the program follows the same execution path until it
fails (provided the program is deterministic). The execution path
followed by non-deterministic programs may not be completely
determined by the inputs we log. Therefore, the path conditions
may not be sufficient to ensure the same execution path for non-
deterministic programs, but they may still be sufficient with high
probability. For example, the experimental results in [31] describe
a data race error that can be reproduced with 60% probability.

We compute path conditions by performing forward symbolic
execution along the trace collected during replay. The trace con-
tains the sequence of x86 instructions executed by each thread and
the concrete values of source and destination operands of each in-
struction. The symbolic execution starts by replacing the concrete
values of the bytes in the logged input by symbolic values: the byte
at index i gets symbolic value bi. Then, it executes the instructions
in the trace keeping track of the symbolic value of storage loca-

tions that are data dependent on the input. The symbolic values are
expressions whose value depends on some of the bi. They are rep-
resented as trees whose interior nodes are x86 instruction opcodes
and whose leaves are constants or one of the bi.

The symbolic execution defines a total order on the instructions
in the trace that is a legal uniprocessor schedule. The instructions
are processed one at a time in this total order. If the next instruction
to be processed has at least one source operand that references a
storage location with a symbolic value, the instruction is executed
symbolically. Otherwise, any storage locations modified by the
instruction are marked as concrete, that is, we delete any symbolic
value these locations may have had because they are no longer data
dependent on the input. For example, after executing add eax,ebx
when ebx has symbolic value b0 and eax has concrete value 10,
eax gets the symbolic value (add b0 10).

Whenever the symbolic execution encounters a branch that de-
pends on the input, it adds a new path condition to ensure that inputs
that satisfy the path conditions can follow the execution path in the
trace. A branch depends on the input if the value of eflags is sym-
bolic. Path conditions are represented as a tree of the form: (Jcc f),
where f is the symbolic value of eflags. If the branch is taken in
the trace, Jcc is the opcode of the branch instruction. Otherwise,
Jcc is the opcode of the branch instruction that tests the negation
of the condition tested in the trace. Continuing the example above
if cmp eax,0;jg label is executed in the trace and the branch
is taken, symbolic execution generates the path condition (jg (cmp
(add b0 10) 0)). If the branch had not been taken in the trace, the
condition would be (jle (cmp (add b0 10) 0)). No conditions are
added for branches that do not depend on the input.

Symbolic execution also generates path conditions when an
indirect call or jump is executed and the value of the target operand
is symbolic. The condition in this case asserts that ts = tc where
ts is the symbolic value of the target and tc is the concrete value
of the target retrieved from the trace. We represent the condition
as (je (cmp ts tc)). Similar conditions are generated when a load
or store is executed and the address operand has a symbolic value.
These conditions assert that as = ac where as is the symbolic
value of the address operand and ac is its concrete value retrieved
from the trace. We represent the condition as (je (cmp as ac)).
EXE [8] describes a technique to generate weaker conditions in
this case. We could use this technique to reveal less information
but our current prototype only applies this technique to common
library functions like strtok and sscanf.

321

00401037 mov eax,dword ptr [msg]
0040103A movsx ecx,byte ptr [eax]
0040103D cmp ecx,47h
00401040 jne ProcessMessage+46h (401066h)
00401042 mov edx,dword ptr [msg]
00401045 movsx eax,byte ptr [edx+1]
00401049 cmp eax,45h
0040104C jne ProcessMessage+46h (401066h)

Figure 5. Fragment of the execution trace for our example.

We will use the execution trace obtained by sending the request
in Figure 2 to the Web server in Figure 1 to illustrate how we
compute path conditions. Figure 5 shows a fragment of this trace
that corresponds to msg[0] != ’G’ || msg[1] != ’E’ in the
source code. The first instruction loads the address of the message
from the stack to eax and the second loads the first byte of the
message (with sign extension) to ecx. Therefore, ecx has symbolic
value (movsx b0) at this point. The third instruction compares ecx
with 0x47 (’G’) and assigns the symbolic value (cmp (movsx b0)
0x47) to the zero flag. Since jne is not taken, the path condition
for the fourth instruction is (je (cmp (movsx b0) 0x47)). The last
four instructions in the figure are similar but they check the second
byte. We generate the path condition (je (cmp (movsx b1) 0x45))
for the eight instruction. While processing the rest of the trace, we
generate the additional conditions: (je (cmp (movsx b2) 0x54)),
(je (cmp (movsx b3) 0x20)), and (jne (cmp (movsx bi) 0xa))
and (jne (cmp (movsx bi) 0x20)) for the remaining bytes in the
input URL. There are also additional conditions from the execution
of GetHost and ProcessGet.

4. Removing path conditions
The path conditions computed as described in the previous section
are sufficient to generate new inputs that reproduce the bug, but
some of them may not be necessary. By removing some of the
unnecessary conditions, we can generate smaller bug reports that
reveal less private information.

We use additional error checks and analysis during replay to
remove unnecessary conditions without increasing the overhead
during normal execution. The error report includes information
about the type of analysis used during replay to allow the software
vendor to reproduce the bug using the same analysis.

We used data-flow integrity analysis (DFI) [9] to remove un-
necessary path conditions in some of the examples that we studied.
We could also use, for example, bounds checking [32] and pre-
condition slicing [12]. DFI adds checks to detect memory safety
violations. Using static program analysis, DFI associates each in-
struction that reads data from memory with a set of instructions
that are allowed to write the data. This defines the valid data-flows
in a program. DFI then enforces these data-flows at runtime: when-
ever a value is read, DFI checks that the instruction that wrote the
value is in the set of allowed writers. Thus, DFI detects a memory
safety violation when an instruction reads data produced by an out-
of-bounds write [9]. Usually, DFI checks can detect an error before
the checks that we use during normal execution. Therefore, we can
stop the replay earlier and generate less path conditions.

We also experimented with two improvements to remove ad-
ditional path conditions. First, we traverse the trace backwards to
find the instruction that wrote the data out-of-bounds and remove
path conditions that were added after that point in the trace. Sec-
ond, we analyze errors that corrupt the internal data structures in li-
braries where DFI does not check reads [9]. For example, many er-
rors corrupt the heap management data structures in the C runtime,
which can cause library code to write anywhere in memory. DFI

detects the error when it reads data produced by this write. We im-
plemented an analysis to find the instruction that first corrupts the
heap management data structures. We first traverse the trace back-
wards to find the unsafe write. If this write was performed by one
of the heap management functions (e.g., malloc), we traverse the
trace forward from the begining to find the first read inside malloc,
calloc or free of a value written outside these functions. We re-
move path conditions added after that point in the trace.

In our example from Figures 1 and 2, DFI detects the buffer
overflow when the 21st character in the URL is about to be written
to url. At this point, the value of i has been overwritten by an
out of bounds write to url. Therefore, when the program reads
the value of i, DFI detects that the value was not produced by
an instruction allowed to write to i. Since we stop replaying at
this point, we can eliminate all the conditions added by GetHost
and ProcessGet and only require conditions of the form (jne
(cmp (movsx bi) 0xa)) and (jne (cmp (movsx bi) 0x20)) for
4 ≤ i ≤ 21. None of the two improvements to DFI is useful in
this case, but in section 7 we show that they can also remove path
conditions.

5. Solving path conditions
We use a Satisfiability Modulo Theories (SMT) solver to compute
a new input that satisfies the path conditions, but is otherwise
unrelated with the original input. We include the new input in the
error report to allow software vendors to reproduce the bug.

The current prototype uses Z3 1.0 [16] to compute the new
input but we could use other SMT solvers (e.g. [8, 17]). To use
Z3, we convert the path conditions from the tree representation
described in Section 3 to the bit vector types and primitives of
the solver. For example, the path condition (je (cmp (movsx b0)
0x47)) is converted to (= (sign extend[24] b0) bv71[32]).

There are some x86 instructions that the current prototype can-
not convert to the language of the solver, for example, it cannot con-
vert floating point instructions. Any path condition C that involves
these instructions is replaced by a set of conditions stating that the
input bytes involved in computing C are equal to their concrete val-
ues in the original input. This ensures that the solution computed
by the solver can be used to reproduce the bug but may reveal more
information than necessary. Improving our prototype will reduce
the amount of information revealed in error reports.

Even though it is not possible to give an upper bound on the time
to compute a new input, modern SMT solvers are surprisingly fast.
It takes Z3 less than 14 seconds to compute a new input in all the
examples that we looked at. Others report similar performance [8].

The new inputs generated by the solver compress very well.
There are two reasons for this. It is common for many input bytes
to have no constraints, i.e., not to appear in the path conditions. We
assign the value zero to all these bytes to pad the new input to be
the same size as the original input. Additionally, the solver assigns
the same value to input bytes that have the same constraints in the
path conditions, which is common because of loops. For example,
the new input that we generate for the error in Microsoft Word
XP (described in Section 7.3) compresses from 2.5MB to 5.1KB
whereas the original input compresses to 926KB.

We used Z3 to compute a new input satisfying the path condi-
tions for the execution obtained by sending the request in Figure 2
to the Web server in Figure 1. The new input is shown in Figure 6
where ’.’ represents byte value zero. It is interesting to compare the
new input with the original message in Figure 2. This new input
reveals nothing about the URL in the original request except that it
is longer than 21 bytes. Yet it is sufficient to reproduce the bug.

It is also interesting to compare the new input with the stack
dump included in the error report generated by Windows XP for
our example. As shown in Figure 3, the stack dump reveals all the

322

GET

Figure 6. New input included in the error report for our Web server
example. The ’.’ represents byte value zero.

information in the request message. Furthermore, stack dumps may
not be sufficient to reproduce the bug.

6. Measuring privacy loss
We must ask the user for confirmation before sending an error
report that may contain private information. To help the user make
an informed decision, we developed a technique that computes an
upper bound on the number of bits about the input that are revealed
by an error report.

The reports that we generate reveal only the information in the
path conditions: all inputs that satisfy the path conditions generate
the same error report. So we can measure the entropy loss of an
error report by computing the set of byte strings with the same
size as the original input that satisfy the path conditions. If this set
contains a single byte string, the report reveals all the information
about the original input. If the set contains two byte strings of
length l, the report reveals l − 1 bits. In general, if a fraction α
of the byte strings satisfy the conditions, the error report reveals
− log2(α) bits about the original input.

This is a pure entropy measure. It does not take into account any
input structure that may be known beforehand, e.g., if some byte
strings are more likely to occur than others. However, it has the ad-
vantage of being application independent. We can add application-
specific knowledge to our prototype when it is available.

It is important to compute the entropy loss of an error report
fast because the user needs this value to decide whether or not
to send the report. Since computing α exactly is expensive for
large inputs, we have developed an efficient mechanism to compute
an upper bound on the number of bits that are revealed. We also
compute an upper bound on the number of bits revealed about
each individual byte of the original input to provide the user with
additional information.

Our mechanism has two steps that we explain next. The first step
computes the number of bits revealed by subsets of path conditions.
The second step combines these partial results to get the final result.

6.1 Computing partial results

We start by parsing and simplifying the path conditions. Then we
compute the number of bits revealed by conditions that reference a
single input byte. For each input byte bi, we compute the conjunc-
tion Ci of all the conditions that reference only bi. Conjunction Ci

reveals − log2(βi) bits about bi, where βi is the fraction of byte
values that satisfy Ci. We iterate over all possible byte values to
compute βi. We perform a similar brute-force search for conditions
that reference two input bytes.

This brute-force search is too slow for conditions that reference
more than two input bytes. So we use an approximation to compute
an upper bound on the number of bits revealed by each of these
conditions. For each condition (op f(.) g(.)), we compute a sum-
mary for f and g and use a set of rules to compute the bound given
the summaries. The summary of a function f contains:

• lower and upper bounds for the value of f (denoted f.l and f.h)

• lower and upper bounds on the cardinality of f ’s range (denoted
f.lr and f.hr)

• the homogeneous flag (f.hom), which is true only if each image
of f has the same number of preimages

• the masked-homogeneous flag (f.mh), which is true only if
f is homogeneous and there exist v, w such that the range of

f is exactly {x&v|w : for all x} (where & and | are bitwise
conjunction and disjunction)

• the input bytes referenced by f and the bit width of the output.

For example, the function f1 ≡ (bvand bi 1) has the summary:
f1.l = 0, f1.h = 1, f1.lr = f1.hr = 2, and it is both homoge-
neous (each image has 128 preimages) and masked-homogeneous
(v = 1, w = 0). The function f2 ≡ (bvadd (bvand bi 1) (bvand
bi 3)) has three images: 0, 2, and 4. Its summary is: f2.l = 0,
f2.h = 4, f2.lr = f2.hr = 3 and it is neither homogeneous nor
masked-homogeneous because 2 has 128 preimages and 0 and 4
have 64 each.

Additionally, we use the summary of a function to compute
its lower density, that is, the minimal number of preimages that
any image of the function can have. We denote the lower den-
sity of a function f by f.ld. If f is homogeneous, f.ld =
input-count(f)/f.hr, where input-count(f) is the cardinal-
ity of f ’s domain. For example, f1 has lower density f1.ld = 128.
If f is not homogeneous, it is hard to compute its lower density.
So we conservatively assume that it is one. For example, we would
assume f2.ld = 1 even though the actual lower density for f2 is
64. To get tight bounds, it is important to track which functions
are homogeneous accurately. The masked homogeneous property
allows us to identify more cases where a function is homogeneous
in the presence of bitwise operations. For example, knowing that f
is homogeneous does not guarantee that f |1 is homogeneous. But
if f is masked-homogeneous, f |1 is masked-homogeneous and,
therefore, it is also homogeneous. In some rules, we also compute
the higher density of a function, which is the maximal number of
preimages that any image of the function can have.

double UnsignedLessThan(Summary f, Summary g) {
if (f.h < g.l) { return 0 }
wcRange := g.l - (f.h+1 - f.lr)
if (wcRange >= 1) {

accepted := min(wcRange*f.ld, input-count(f))
} else if (f,g have input byte in common) {

accepted := 1
} else { accepted := f.ld }
return -log2(accepted / input-count(f)})

}

Figure 7. Number of bits revealed by “f < g”

Figure 7 shows the rule to compute an upper bound on the
number of bits revealed by an unsigned “<” condition given the
summaries of its operands f and g. If the upper bound of f is less
than the lower bound of g, we reveal zero bits because the condition
holds for any value of the input. Otherwise, we compute a lower
bound wcRange on the number of images of f that fall below g.l.
This value is minimized when f has only f.lr images and all these
images are near f.h. If wcRange is at least one, we obtain a lower
bound on the number of accepted inputs by multiplying wcRange
by f ’s lower density. Otherwise, there must be at least one input x
that is accepted because the condition is satisfiable. Additionally,
if f and g have no input bytes in common, at least f.ld inputs are
accepted because all the inputs with the same image as x are also
accepted. The last line returns the upper bound on the number of
bits revealed. We have similar rules for other operators [24].

We also have rules to compute the summary of an expression
given the summaries of its operands. We compute the summary of
each operand of a path condition by applying these rules bottom
up to its expression tree. Figure 8 shows a rule that computes a
summary m for a multiplication given summaries f and g for the
operands. The first check determines whether the multiplication
can overflow (bitwidth is the number of bits in the multiplication
result). If it cannot, the lower bound m.l and the upper bound m.h

323

Summary multiply(Summary f, Summary g) {
Summary m;
if (f.h * g.h < 2^bitwidth) {

m.l := f.l * g.l;
m.h := f.h * g.h;
if ((f, g have input byte in common)

or (f.lr==1 && f.l==0)
or (g.lr==1 && g.l==0))

then m.lr := 1;
else m.lr := max(f.lr, g.lr);
m.hr := min(f.hr * g.hr, 2^bitwidth);
m.hom := (is-constant(g) && f.hom);
m.mh := (f.mh && is-constant(g) && g.l is power of 2);
return m;

}
m.l := 0; m.h := 2^bitwidth-1; m.lr := 1;
m.hr := 2^bitwidth; m.hom := false; m.mh := false;
return m;

}

Figure 8. Summary rule for “f ∗ g”

are obtained by multiplying the corresponding bounds for f and
g. Then we compute a lower bound on the range. There are two
cases where the bound may drop to one: f and g reference an
input byte in common (e.g., f ≡ (bvand bi 1) and g ≡ (bvand
(bvneg bi) 1)), or one of the functions could be the constant zero.
In either case, we set m.lr to one. Otherwise, m.lr is the maximum
of the corresponding bounds for f and g because f ∗ g has at
least as many images as both f and g. Since there is no overflow,
m.hr is the product of f.hr and g.hr. We set the homogeneous
flag to false unless f is homogenous and g is a constant. The
masked-homogeneous property is preserved if f is multiplied by
a power of two because (x&v|w) ∗ 2c = (x ∗ 2c)&(v ∗ 2c)|(w ∗
2c). Otherwise, m.mh is set to false. In the case of overflow, we
compute the summary conservatively. We have similar rules for
other operations [24].

6.2 Combining partial results

We must combine the partial results obtained in the previous step
to compute upper bounds on the number of bits revealed by the
error report for each input byte and for the whole input. We com-
bine two groups of conditions by taking their conjunction. If the
two groups have no input bytes in common, the number of bits re-
vealed by their conjunction is the sum of the number of bits each
reveals. Otherwise, we compute the number of inputs accepted by
each group (accepted1 and accepted2), and we use these values to
compute a lower bound accepted1∧2 on the intersection of the sets
of inputs accepted by each group:

accepted1∧2=max(1, accepted1 + accepted2 - inputCount).
where inputCount is the number of byte strings with length equal
to the number of distinct input bytes in the conjunction. Then we
compute an upper bound on the number of bits revealed by the
conjunction using the formula − log2(accepted1∧2/inputCount).

To compute the upper bound on the number of bits that are
revealed about the whole input, we create an undirected graph with
a node for each condition or conjunction of a group of conditions,
and an edge between nodes that have an input byte in common.
Then we compute the connected components of this graph and
combine all the nodes in each component as described above. Once
each component is reduced to a single combined condition, we sum
the number of bits revealed by the components to determine the
number of bits revealed about the whole input. To compute the
upper bound on the number of bits that are revealed about each
individual byte, we combine the groups of conditions that refer to
that input byte as described above.

We used our algorithm to compute upper bounds on the number
of bits revealed by our example error report (in Figure 6) for each
input byte and for the whole input. We implemented a tool that
prints a leak graph showing the upper bound on the number of bits
revealed for each individual byte in the original input. The leak
graph for our example error report is:

GET
where the first four bytes are entirely revealed and we reveal be-
tween 0 and 1 bit for the next 21. The tool reports that the total
number of bits revealed for the whole input is 32.2, which is accu-
rate in this case. We reveal eight bits for the first four bytes and we
reveal − log2(254/256) bits for the next 21 bytes because all byte
values but two satisfy the conditions on each of those input bytes:
4 ∗ 8 − log2(254/256) ∗ 21 = 32.2.

7. Evaluation
We implemented a prototype of our error reporting system and we
evaluated the system by generating bug reports for real crashes
of five real programs: Ghttpd, Microsoft SQL server, Nullhttpd,
Libpng, and Microsoft Word. We measured the amount of informa-
tion revealed by each report. The results show that we can generate
bug reports that allow vendors to reproduce the bugs easily while
revealing almost no private information. We also measured the re-
port sizes: all the reports had less than 5.1KB. Finally, we measured
the time to generate each report and the contribution of each phase
to the total time. The results show that all the reports were gener-
ated in less than 100 seconds, which is unlikely to inconvenience
users because the reports are generated in the background.

All the experiments ran on a Dell Latitude D620 computer with
one 2.16 GHz Intel Core2 Duo processor and 2GB of memory.
We used the Windows Vista operating system and version 14 of
Microsoft’s C++ compiler. We used version 1.0 of the Z3 SMT
solver [16].

7.1 Programs and crashes

We start by describing the programs that we studied and the crashes
that we observed. It is hard to find a detailed description of a
bug together with inputs that reproduce the bug. The exception
are software vulnerabilities and inputs that exploit them, which are
readily available on the Internet. Therefore, most of the errors that
we studied are software vulnerabilities and we modified published
exploits to crash the programs.

Ghttpd is an HTTP server with several vulnerabilities [1]. We
crashed Ghttpd using a stack buffer overflow when processing the
target URL for GET requests. The overflow occurs when logging
the request inside a call to vsprintf. We caused the overflow by
typing a URL with 392 characters in Internet Explorer 7 (IE7). The
Web browser formats a message starting with GET and followed
by the URL and a few more HTTP protocol elements. Figure 10
shows the message sent to Ghttpd by IE7. Ghttpd crashes when
receiving this message. Any user submiting a URL with more than
150 bytes to the server would cause a similar crash.

Microsoft SQL server 2000 is a relational database that
was infected by the infamous Slammer [30] worm. We crashed SQL
Server using the buffer overflow vulnerability exploited by Slam-
mer: we sent a UDP message to port 1434 with the first byte equal
to 0x4 followed by 75 ’A’ characters. The characters following the
first byte are the name of a database instance. While copying these
bytes inside a call to sprintf, SQL Server overflows a buffer on
the stack and crashes. Any user of the management tools looking
up a database instance with a name longer than 60 characters would
cause a similar crash.

Nullhttpd is another HTTP server. This server has a heap
overflow vulnerability that an attacker can exploit by sending
HTTP POST requests with a negative content length field in the

324

��

��

��

��

��

���

���

���

���

	
��� ��� ����
��� ������ ���

�
�
��
�
�
��
	
�

�
�

�
�
�
�

�
�
�

��
�
�
�
��
�

Figure 9. Percentage of input bits revealed in bug reports.

header [2]. These requests cause the server to allocate a heap buffer
that is too small to hold the data in the POST request. While calling
recv to read the POST data into the buffer, the server overwrites
the heap management data structures maintained by the C library.
We crashed Nullhttpd with the exploit described in [10]. This is
a two message exploit. The first message exploits the vulnerability
to modify the CGI-BIN configuration string to allow the attacker
to start an arbitrary program. This first message is shown in Fig-
ure 12. It starts with POST and a URL, followed by HTTP/1.0
and a Content-Length field of -800, followed by a line with
a cookie, and followed by the POST data. The second message,
which normally starts a shell, crashes the server, because we com-
piled Nullhttpd with data-flow integrity checks [9] (as described
in Section 4).

Libpng is a library for processing images in the PNG file
format [3]. Many applications, including MSN Messenger [25],
use Libpng to display images. We built a test application dis-
tributed with Libpng and crashed it using the vulnerability de-
scribed in [29]. The PNG format is based on chunks. We created
an image file with a colour type of 0x03 in the IHDR chunk, with a
tRNS chunk with more than 256 bytes, and without a PLTE chunk.
This file causes the application to overflow a stack buffer and crash.
Similar images could be generated by buggy image manipulation
programs and they would trigger the same crash.

Microsoft Word XP is a widely used word processing appli-
cation. We crashed Word by opening a document that contains 2.48
MB of mostly text. This is a confidential document that contains the
specification of a real product. As far as we could determine, this
bug cannot be exploited to gain control of Word. Since this is not
a security vulnerability, there is little information available about
the bug that causes the crash. Our system does not require any such
information. It only uses the unmodified Word binary and the input
document that causes the crash to compute the error report.

For each of our test cases, we replayed the error, gathered
an execution trace, computed path conditions, and generated new
inputs to include in the bugs reports.

7.2 Information revealed

We used the algorithm described in Section 6 to compute an upper
bound on the number of bits about the original input revealed
by each of the bug reports. Figure 9 shows the results. For SQL
Server, Libpng, and Word, the bug reports reveal less than 2%
of the bits in the original input. The reports for Nullhttpd and
Ghttpd reveal 12.2% and 5% of the input bits, respectively. A
detailed inspection of the code and the path conditions shows that
we do not reveal any bits about user supplied data.

The report for SQL Server contains a message with the first
byte equal to 0x4 followed by 75 characters different from 0x0.

POST / HTTP/1.0
Content-Length: -800
Cookie: TTTTTTTTTT

NN
NN

Figure 12. Message that causes Nullhttpd to crash. POST data is
truncated.

POST1.0
Content-Length: -800
Cookie:

..

..

Figure 13. Leak graph for the Nullhttpd bug report. Bytes marked
with ’.’ leak 0 to 1 bits; other bytes leak at least 5 bits.

The report reveals no information about the name of the database
instance that caused the crash, except its size.

The report for Libpng contains a PNG image with a colour type
of 0x03 in the IHDR chunk and with a tRNS chunk with more than
256 bytes. Since all the bytes in the image chunk are set to zero, the
report does not reveal anything about the image except its size.

We only reveal 0.19% of the bits in the original Word docu-
ment. It is harder to analyze the contents of the report for Word in
detail because the Word file format is complex. We used Word’s “re-
cover text from any file” tool on both the original document and the
document that we generated. The tool recovers 28,295 words from
the original document. These words include a large amount of text
and the names of the authors and their affiliation. Even though the
document that we generated triggers the same error, the tool only
recovers the following words from our document: WordDocument,
1Table, and @. These words are associated with formatting ele-
ments and reveal no private user data.

We also computed an upper bound on the number of bits re-
vealed about each individual byte of the original input. We show
this information in the form of leak graphs for Ghttpd and
Nullhttpd in Figures 11 and 13, respectively. For each byte in
the original input, a leak graph contains the original byte value if
the report reveals at least 5 bits about that byte or ’.’ when the re-
port reveals 0 to 1 bits about the original byte. We generated these
leak graphs using the algorithm in Section 6 but we corrected im-
precisions of our approximation by carefully examining the path
conditions. The leak graphs generated by our algorithm were very
precise. They only differed from the ones we show on two byte
positions for each crash, for example, our algorithm conservatively
estimated that the report for Nullhttpd revealed the last two bytes
in the cookie, which is not the case.

The graphs for Ghttpd and Nullhttpd can be compared with
the corresponding original inputs in Figures 10 and 12. The graph
for Ghttpd shows that the byte strings “GET ”, and “HOST:” are
leaked in the report, as well as the first character of “HTTP”. So
we only reveal protocol bytes. We do not reveal anything about the
URL or the virtual host name except their sizes.

The leak graph for Nullhttpd shows that the strings “POST ”,
“Content-Length: ”, and “Cookie: ” are leaked in the report.
These are protocol tokens that contain no private information. The
report also leaks that the Content-Length: is “-800”. The values
of the POST data, URL, and Cookie are not revealed.

It is harder to read leak graphs for binary formats like those
of Word and libpng. Software vendors could provide application-
specific tools to visualize leak graphs, for example, we effectively
used Word’s “recover text from any file” to visualize a leak graph.

325

GET /jjhjkdshjkdshkjdshkjdhsjkdhskjdhsjkdshjdhsdsjkhdsjkhdskjhdskjhdskjdhsjkdshjkhkhjdskjhdskjhdskjhdskjhdskjdshkjdshkj
dhskjhjdskdjdjdsjhdskjhdsjkhdskjhdskjhdskjdhskjdshjkdjdsdjdskjhdskjhdskjhdskjdshkjdhskjhjdsdkjdskjhdskjhdskjdhkjddjdskj
dhskjdhskjhkjhdskjdhskjdkjdskjhdskjdshkdjjdskjdhskjdhskdjskjhdskjhdskjdhjdkjhdskjhdskjdhsjdskjhdskjdhskjhdskjdhskjdhsdk
jhdskjhdskjdhdhskjhkjhdskdhdskjdhskjddsj HTTP/1.1
Accept: */*
Accept-Language: en-gb
UA-CPU: x86
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)
Host: 127.0.0.1
Connection: Keep-Alive

Figure 10. Message that causes Ghttpd to crash.

GET ..
..
..
..................................... H.......
...........
......................
...........
..............................
...
Host:..........
......................

Figure 11. Leak graph for the Ghttpd bug report. Bytes marked with ’.’ leak 0 to 1 bits; other bytes leak at least 5 bits.

Finally, it is interesting to note that if we had embedded shell-
code in the inputs for Ghttpd, SQL Server, Nullhttpd and
Libpng, the new inputs would include none of the shellcode. This
would enable humans to analyze the bug without risk of executing
attack code. We could also use the new inputs to generate self-
certifying alerts without shellcode [13].

7.3 Report size

After generating new inputs, we compress them before sending
the bug report over the network. Figure 14 shows sizes of the
compressed inputs included in each bug report. For SQL Server,
Nullhttpd, and Libpng the bug reports have less than 200 bytes.
The bug reports for Ghttpd and Word have 0.5KB and 5.1KB,
respectively. All the reports are small, hence they can be sent over
the network efficiently.

The sizes of the reports for Libpng and Word are interesting,
because in both cases the input that causes the crash is substan-
tially larger: 2.5MB for Word and 3KB for Libpng. Even if we
compress the original PNG and Word files, the size of the com-
pressed inputs is much larger than the size of the inputs included in
the reports. Figure 15 illustrates this by showing the size of the bug
reports normalized by the size of the compressed original inputs
(the compressed original inputs are 926KB for Word and 2.4KB for
Libpng). The figure shows that the PNG image and Word docu-
ment in the reports are an order of magnitude more compressible
than the original documents. This is expected because all the image
bytes in the PNG file and many of the bytes in the Word document
are set to 0x0 because they are not referenced in the path condi-
tions. Furthermore, all the bytes that are constrained by identical
conditions will have identical values in the bug report.

For SQL Server, this effect is not noticeable because the orig-
inal input is very small. For both Ghttpd and Nullhttpd the orig-
inal inputs are compressible by a factor of 10, again making this
effect less important. The report for Ghttpd is slightly larger than
the compressed original input, because some identical input bytes
are processed by different execution paths, leading to different con-
straints and different bytes in the report.

�

����

����

����

����

����

����

	
��� ��� ����
��� ������ ���

�
�
�
��
�
�
	
�

��
�
�
��
�
�

�
��

Figure 14. Size of bug reports.

7.4 Generation time

The last experiment measured the total time it takes to generate
each of the bug reports. Figure 16 shows the results. The reports
for Ghttpd, SQL Server, Nullhttpd and Libpng are generated
in 10 seconds or less. The report for Word is generated in 90
seconds. These times are sufficiently short not to inconvenience
users because the reports are generated in the background.

Figure 17 shows how much tracing and symbolic execution
to generate path conditions, constraint solving, and estimation of
privacy loss (i.e. information leakage) contribute to the total report
generation time. In all cases, except Ghttpd, symbolic execution is
the largest contributor to the generation time. For Ghttpd, 70% of
the generation time is spent in the constraint solver.

8. Related work
Microsoft’s error reporting technology [28] represents the state
of the art in bug reporting. It collects bug reports automatically
from millions of Windows users. These reports are used not only

326

�

���

���

���

���

�

���

���

	
��� ��� ����
��� ������ ���

�
�
�
�
�
��
	

�
�
�	

���������������

 �����

Figure 15. Size of bug reports normalized by size of compressed
original input.

�

��

��

��

��

���

�	

�� �� ����	

�� ������ ����

�
��

�
��
�
�	
�

�
��
��
�
�
	
��
�
�
�
��
��
��

Figure 16. Time to generate bug reports.

��

���

���

���

���

����

	
��� ��� ����
��� ������ ���

�
�
�
��
��
	
��
�
�

�
�

�
�
�
�
�
��
�
�

�
��

�

������������ ����� !�������������"�� �# ����$��%�$�����

Figure 17. Contributions to report generation time.

to identify bugs but also to prioritize bug fixing. They include
a description of the running program, a dump of the CPU state,
and a dump of the stacks of running threads. They usually do not
include the inputs necessary to reproduce the bug. In some rare
cases, Microsoft may request additional information to fix an error,
for example, input documents [27]. Microsoft’s privacy policies
for error reporting illustrate typical privacy concerns [26, 27]. We
generate better error reports that reveal less private information
than the state of the art.

Previous work has used similar techniques to compute path
conditions but has applied these techniques to different problems.

For example, Vigilante [13], DACODA [15], and Brumley et al [7]
generate path conditions from execution traces collected during
attacks. They use these conditions to filter out attack messages that
exploit the same vulnerability.

DART [20], CUTE [35], and EXE [8] instrument C programs
to collect path conditions and use an SMT solver to generate test
inputs automatically. DART starts by computing path conditions
for an execution with a random input. Then it takes a prefix of the
conditions, negates the last one, and feeds the resulting conditions
to an SMT solver to obtain a new test input that explores a different
path. Sage [21] is similar to DART but works with x86 binaries. We
solve a different problem: we improve the collection of test cases
from a potentially very large population of users.

Our measure of privacy loss estimates the entropy loss [36] of
the information in the error reports assuming no a-priori knowledge
about the relative likelihoood of input byte strings. If for a given
application the a-priori likelihood of each byte string were known,
we could take it into account. For example, a report revealing that
the original input is one of a very rare set of inputs reveals more
information than if the input were one of a set of the same size
containing common inputs. Chirayath et al. [11] start from this
concept when they define privacy loss, which is a measure of the
amount of information about a given database that is released when
certain statistical properties of the database (e.g. the mean value)
are revealed. Our privacy loss estimate has the advantage of being
application independent.

Another way of quantifying privacy loss is the k-anonymity
measure [33, 37], where a data release is said to be k-anonymous if
“the information for each person contained in the release cannot be
distinguished from at least k−1 individuals whose information also
appears in the release” [37]. k-anonymity is particularly attractive
for databases that contain personally identifiable information but it
cannot be applied in our domain.

The algorithm we use to estimate privacy loss has been de-
signed to compute an upper bound quickly. One could also trans-
form the path conditions into the equivalent boolean satisfiability
problem and use a #SAT solver (#SAT solvers find the number
of assignments to variables that satisfy the given conditions. See
e.g. [22, 23, 34]). In the examples we investigated, our fast upper
bound was already very close to the optimal answer (as shown by
the leak graphs).

Some related work requires the private information to be
marked beforehand. In Scrash [6], variables that represent infor-
mation deemed private must be annotated by the programmer, and
the compiler determines the set of variables that may hold their
values. The content of these variables is then scrubbed from core
dumps. Our approach is different: Scrash returns core dumps rather
than bug-reproducing inputs, and we do not rely on a programmer
to add the right annotations.

Zeller and Hildebrandt [39] describe a system that searches for
a shorter input that still makes the program fail. The system stops
when it finds an input such that removing any single byte would
allow the program to succeed. Their approach requires running the
program to failure repeatedly (instead of once in our case). It may
stop at a local minimum and it does not guarantee that the new input
triggers the same bug as the original input. Additionally, it reveals
all the bits in the bytes that remain in the generated input.

There is a large body of work (see e.g. [4]) that is concerned
with how to modify a database before release so as to maintain
the statistical properties of the database (e.g. the distribution of
salaries) but prevent data about specific people from being retrieved
(e.g. the salary of an individual). A common technique to imple-
ment this privacy-preserving data mining is to add random noise to
the data but this is not useful in our case.

327

9. Conclusions
Automatic collection of bug reports is important to help software
vendors improve the quality of their products. Current bug reports
consist mostly of snapshots of small regions of memory. They may
contain private user data and they may be insufficient to reproduce
the bugs. We address both of these problems by generating bug
reports that include inputs that make the software fail, making it
easy to reproduce the bugs, while leaking less private information
than existing approaches.

We produce these bug reports by generating new inputs that
make the software follow the execution path that fails but are
otherwise unrelated with the inputs that caused the crash originally.
Moreover, we compute an upper bound on the amount of private
information leaked by a bug report and the input bytes that are
revealed, allowing users to make informed decisions on whether
to submit the report or not.

We evaluated the system by generating bug reports for real
crashes of real applications. Our results show that the reports con-
tain almost no private information and allow the crashes to be re-
produced easily. Additionally, the reports are small and we can gen-
erate them quickly.

References
[1] GHttpd Log() Function Buffer Overflow Vulnerability (Bugtraq ID:

5960). http://www.securityfocus.com/bid/5960.

[2] Null HTTPd Remote Heap Overflow Vulnerability (Bugtraq ID:
5774). http://www.securityfocus.com/bid/5774.

[3] Portable network graphics (png) specification and extensions.
http://www.libpng.org/pub/png/spec/.

[4] AGRAWAL, R., AND SRIKANT, R. Privacy-preserving data mining. In
SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international
conference on Management of data (2000), pp. 439–450.

[5] BHANSALI, S., CHEN, W.-K., DE JONG, S., EDWARDS, A., MUR-
RAY, R., DRINIC, M., MIHOCKA, D., AND CHAU, J. Framework for
instruction-level tracing and analysis of program executuions. In VEE
(June 2006).

[6] BROADWELL, P., HARREN, M., AND SASTRY, N. Scrash: a system
for generating secure crash information.

[7] BRUMLEY, D., NEWSOME, J., SONG, D., WANG, H., AND JHA, S.
Towards automatic generation of vulnerability signatures. In IEEE
Symposium on Security and Privacy (May 2006).

[8] CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L., AND

ENGLER, D. R. EXE: Automatically Generating Inputs of Death. In
13th ACM Conference on Computer and Communications Security
(2006).

[9] CASTRO, M., COSTA, M., AND HARRIS, T. Securing software by
enforcing data-flow integrity. In OSDI (Nov. 2006).

[10] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER, R. K.
Non-control-data attacks are realistic threats. In USENIX Security
Symposium (July 2005).

[11] CHIRAYATH, V., LONGPRE, L., AND KREINOVICH, V. Measuring
privacy loss in statistical databases. In Workshop on Descriptional
Complexity of Formal Systems (June 2006), pp. 16–25.

[12] COSTA, M., CASTRO, M., ZHOU, L., ZHANG, L., AND PEINADO,
M. Bouncer: Securing Software by Blocking Bad Input. In SOSP
(Oct. 2007).

[13] COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A.,
ZHOU, L., ZHANG, L., AND BARHAM, P. Vigilante: End-to-End
Containment of Internet Worms. In SOSP (Oct. 2005).

[14] COWAN, C., PU, C., MAIER, D., HINTON, H., WADPOLE, J.,
BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P., AND ZHANG,
Q. Stackguard: Automatic detection and prevention of buffer-overrun
attacks. In USENIX Security Symposium (Jan. 1998).

[15] CRANDALL, J. R., SU, Z., WU, S. F., AND CHONG, F. T. On
deriving unknown vulnerabilities from zero-day polymorphic and
metamorphic worm exploits. In ACM CCS (Nov. 2005).

[16] DE MOURA, L., AND BJORNER, N. Z3: An Efficient SMT Solver.
In Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS) (Apr. 2008).

[17] DUTERTRE, B., AND DE MOURA, L. The YICES SMT Solver.
http://yices.csl.sri.com.

[18] DUTERTRE, B., AND DE MOURA, L. A fast linear-arithemic solver
for dpll(t). In CAV06 (Aug. 2006).

[19] ELNOZAHY, E. N., ALVISI, L., WANG, Y.-M., AND JOHNSON,
D. B. A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys 34, 3 (Sept. 2002), 375–408.

[20] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Directed
Automated Random Testing. In PLDI (2005).

[21] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated
whitebox fuzz testing. Tech. Rep. MSR-TR-2007-58, Microsoft
Research Technical Report, May 2007.

[22] GOMES, C. P., HOFFMANN, J., SABHARWAL, A., AND SELMAN, B.
From sampling to model counting. In IJCAI (2007), pp. 2293–2299.

[23] GOMES, C. P., SABHARWAL, A., AND SELMAN, B. Model counting:
A new strategy for obtaining good bounds. In AAAI (2006).

[24] MARTIN, J.-P. Upper and lower bounds on the number of solutions.
Tech. Rep. MSR-TR-2007-164, Dec. 2007.

[25] MICROSOFT CORPORATION. Msn messenger. http://messenger.msn.com.

[26] MICROSOFT CORPORATION. Privacy statement for the microsoft er-
ror reporting service, Oct. 2005. http://oca.microsoft.com/en/dcp20.asp.

[27] MICROSOFT CORPORATION. Description of the end user pri-
vacy policy in application error reporting when you are us-
ing office. Microsoft Knowledge Base Q283768, Jan. 2007.
http://support.microsoft.com/kb/283768.

[28] MICROSOFT CORPORATION. Dr. watson overview, Jan. 2007.
http://www.microsoft.com/resources/documentation/windows/
xp/all/proddocs/en-us/drwatson overview.mspx?mfr=true.

[29] MITRE CORPORATION. Multiple buffer overflows in libpng
1.2.5. CVE-2004-0597, June 2004. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2004-0597.

[30] MOORE, D., PAXSON, V., SAVAGE, S., SHANNON, C., STANIFORD,
S., AND WEAVER, N. Inside the Slammer worm. IEEE Security and
Privacy 1, 4 (July 2003).

[31] QIN, F., TUCEK, J., SUNDARESAN, J., AND ZHOU, Y. Rx: Treating
bugs as allergies - a safe method to survive software failures. In SOSP
(Nov. 2005).

[32] RUWASE, O., AND LAM, M. A practical dynamic buffer overflow
detector. In NDSS (Feb. 2004).

[33] SAMARATI, P., AND SWEENEY, L. Generalizing data to provide
anonymity when disclosing information. In Proceedings of the 17th
Symposium on Principles of Database Systems (1998), p. 188.

[34] SANG, T., BEAME, P., AND KAUTZ, H. A. Heuristics for fast exact
model counting. In SAT (2005), pp. 226–240.

[35] SEN, K., MARINOV, D., AND AGHA, G. CUTE: A Concolic Unit
Testing Engine for C. In ESEC/FSE (2005).

[36] SHANNON, C. E. A mathematical theory of communication.
SIGMOBILE Mob. Comput. Commun. Rev. 5, 1 (2001), 3–55.

[37] SWEENEY, L. k-anonymity: a model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst. 10, 5 (2002), 557–570.

[38] TUCEK, J., LU, S., HUANG, C., XANTHOS, S., AND ZHOU, Y.
Triage: diagnosing production run failures at the user’s site. In SOSP
(Nov. 2007).

[39] ZELLER, A., AND HILDEBRANDT, R. Simplifying and isolating
failure-inducing input. IEEE Trans. Software Eng. 28, 2 (2002),
183–200.

328

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

