Program Synthesis - Toward mathematically generated programs

Mikaél Mayer, Viktor Kuncak

June 5, 2009

Abstract

Code synthesis is very frequently used in indus-
tries, to generate low-level languages from higher-
level ones like UML, to generate GUI, forms, and
database support. The Program Synthesis problem
is also some kind of code synthesis, where the high-
level language is expressed formally and mathemat-
ically. It aims at generating a program and its proof
of at least correctness, given a set of formal specifi-
cations.

In this paper, our approach to this problem is
to first describe the associated mathematical prob-
lem, and which subset of program synthesis based
on Hoare triples we are able to solve.

Second we will describe all the components of
our algorithm, as with the type of specifications we
worked on, namely based on integer variables, con-
stants, function and predicate symbols.

Third we will present some examples for which we
were able to give a complete solution program, like
the 2-INT-MAX, 4-INT-SORT and the 2-INT-GCD
inner-loop problem.

1 Introduction

What are the current programming methods ? They
depend on the purpose, and on the performance,
security or correctness constraints. If one concen-
trates on the correctness constraints, there are sev-
eral methods to achieve them.

e Method 1: Write the code, test it manually.

e Method 2: Write the code, write some tests,
run the tests, change the code until it works.

e Method 24;5: (Test-driven development) Write
first some failing tests, then write only the code
to make them work.

Industrially, a lot of companies use test-driven de-
velopment [10], because it proved to be quite pow-
erful, extensible, and reliable. However some rare
cases not covered by tests can happen, and this can
be a source of software bug.

Ideally, we would like to have specifications which
prevent any bugs from happening, and this can be
achieved through mathematical methods.

e Method 3: Write the code, write formal specifi-
cations, prove manually or with an automated
prover that the code meets the specifications.

e Method 3p;5: (Specification-Driven Develop-
ment) Write first failing formal specifications,
then update the code to meet specifications.

e Method 4: (Program Synthesis) Write down
formal specifications, and let the machine in-
fer the code which meets specifications [6].

This is the hard general goal of Program Synthe-
sis. It tries to reproduce human thinking when it
comes to write program, in a more basic and com-
puting way.

2 Problem statement

The problem is the following;:

We have some constrained input, and we are asked
to produce an output so that some constraints and
properties are satisfied[1].

We assume that the input is on the form of con-
stants typically named a,b,c..., and that the re-
quested output is on the form of variables named
z,y,z,a' b ...

For example, provided an integer a € Z, we could
be asked to compute its integer square root, i.e. the
integer x such that 22 <a < (z +1)%

As it, this problem formulation is too strong. In-
deed, in the previous example, the possibility that
a < 0 makes it impossible to solve; however, we
would like a way to report a solution in the case
a> 0.

2.1 Formal Problem statement

In all generality, it is about to solve the second-
order logic problem of finding a function f such that
R(f) holds, where R is a predicate over functions,
meaning for example “f computes the maximum of
its arguments” or “f returns its argument sorted”.

We use a simplified but still powerful approach
where the predicate R can be expressed with an
Hoare triple[4], and the function as a program (see
Appendix A).

2.1.1 Conventions and first approach

We decided to adapt the standard convention of the
Hoare triple to our needs.

{P}ap) C {Q}iap,z,y) means that

e P,@Q are formulas (conjunctions are coma-
separated)

P contains variables a,b (acting as constants).

@ contains variables a,b, z,y

e (' is a program only modifying = and y

“If P holds, then after the execution of C, Q
will hold”.

Ex. 1: {a=2}grv—a+1{r=3, a<2},y
is a valid Hoare triple.

Ex. 2: {a =2} v —a—1{x#1},, isnot
a valid Hoare triple.

For readability reasons, we will sometimes omit
the indices containing variables.

We are interested in the satisfiability of Hoare
triples; that is, given P and @, find a command
C such that {P} C {Q} holds; we represent this
problem by {P} C* {Q} .

This formulation is too strong for the Program
Synthesis problem. Indeed,

(g C" {z* <a< (z+1)%}
is not satisfiable, contrary to

{a>0}, C" {o® <a<(z+1)?%}

Mathematically, it corresponds to give a construc-
tive proof to the problem :

V(a,b). Pap = 3z, y). Qab), ()]

that is, to find a computable function f such that
V(a,0). Plap) = Q[ab), f(ab)]

2.1.2 Better approach

A better approach is to find R and C in the Hoare
triple {P, R'} C" {Q} such that it becomes valid.
Of course, it always satisfiable: one can choose
R = False and C = Skip and the Hoare triple is
obviously valid.

A solution {P, Ry} C; {Q} is said to be better
than another solution {P, Rs} Cy {Q} if Ry is
weaker than Ry !.

One can quickly remark that there cannot
be two independent best solutions. Indeed, if
{P, Rl} Cl {Q} and {P, RQ} CQ {Q} both hOld7
then

{P, R1 V RQ} lf(Rl) then Cl else 02 {Q}

is a better solution than both of the previous
ones. Even better, if {P, R} C; {Q} and
{P,—R} Cy {Q} both hold, then using a rule similar
to propositional resolution [3, 2],

{P} if(R) then Cy else Cy {Q}

1 A is weaker than B if the implication B = A holds. true
is the weakest proposition.

holds, and this is the best solution.

This last step is the main step of our algorithm:
If we find a solution {P, R} C; {Q} , we try to
solve {(P, =Ry), R’} C" {Q} , and then recombine
the solutions.

2.2 Our approach

It is often easier to solve problems if they are in nor-
mal form. Therefore we chose the following normal
form, where repetitions are expressed with *.

PostCondition ::=
([Not] SinglePostCondition)*

SinglePostCondition ::=
F(FTerm*) = FTerm*)
F(FTerm*) = F(FTermx)
(CTerm*) = (0%)

(CTerm*) >= (0%)
(CTerm*) > (0%)
P(Var*)

Constant ’|’ Var

CTerm ::= ((K ’*’ Var)* - K)
FTerm ::= F(FTermx*) | CTerm
Var ::= QutputVar | InputVar
F ::= ’Function symbol’

P ::= ’Predicate symbol’

K ::= ’Integer’

As you can observe, we directly introduced the
tuples, so that we can easily write function symbols
which return a set of values. The “>” symbol over
tuple is interpreted as the lexicographic order over
the tuples.

If we have disjunctions, implications, equiva-
lences, we are currently distributing them during
the problem solving process.

Function symbols in affine combination like y +
F(a+z) = 1 arereplaced by OutputVars: {y+z42 =
1, Fla+z) = (z42)}.

We do not have support for universally or exis-
tentially quantified formulas in the post-conditions.
This could be added in the future.

3 The derivation process

“Derivation” has here the same meaning as “pro-
gram synthesis” or “program generation”.

3.1 Problem structures

An “abstract” problem has a list of available precon-
ditions plus axioms, and the post-condition formula.
Typically, problems have other sub-problems and
a parent which they interact with.
We are dealing here with 6 kind of problems:

e NewProblem: It is the most general problem
to solve. It will eventually have a list of sub-
problems whose solution is also a solution of the
NewProblem.

{R' o) C7{Q}

e AssignmentProblem: An assignment-based
problem. It is the base of any solution. It con-
tains assignments from Input to Output Vari-
ables.

{3|a}[a]9:%§{3zfa:0}

e AssignmentAndNewProblem: A wrapper
containing an AssignmentProblem and a New-
Problem. If the NewProblem is solved with a
certain precondition, it will replace the vari-
ables by their values in the precondition before
passing it to its parent.

{(3 | a), Rri?}[a]
{Bla}tia) (%) {3z=a}
{3z=a, R"}a,4 cy {F(x)=y}

{F(LL') =y, 3r = a‘}

e SkipProblem: A problem containing an
empty command and a weakest precondition. It
is useful for problems without solution or with
trivial ones.

{a =0}y Skip {a—b< 0}

e IfThenElseProblem: An If-Then-Else based
problem. It is the base of all problems need-
ing branching logic. It contains a computable
condition, and two sub-problems: one for the
“if-then” clause, and the other for the “else”
clause. It is solved as soon as both subproblems
are solved, and preconditions are reported.

if(a > 0)
{a >0, RE}[G] Ci’ {x>a, >0}
else
{a <0, Ri} CF {z>a, x>0}

e WhileProblem: A while-loop based problem.
It contains an loop invariant, a loop variant, a
guard condition and a subproblem whose solu-
tion would give the inner loop of the while-loop
Problem. We did not implement this kind of
problem in our algorithms, because it would re-
quire further research, like invariant generation,
etc.

However we will give afterwards an example of
inner-loop problem, that could be contained in
a WhileProblem.

3.2 Message exchange

Once a problem has a solution, if it is not the top
level problem, it reports itself plus its precondition
to its parent.

The parent decides afterwards how to deal with
this solution, if it need more solutions as in the
IfThenElseProblem, or if one solution is enough as
for the NewProblem (see after the main algorithm).

If a problem decides that it is solved, or finished,
it notifies all its children to do/be the same, even
those which are still looking for a solution.

3.3 Implementation part

We implemented the process of solution-finding in a
breadth-first search way, with a “processor” object
containing all NewProblems currently looking for a
solution, and processing them one by one.

But this is transparent; externally, everything
happens as each problem was solving itself.

3.4 Main algorithm

Let us present our complete one-pass algorithm for
deriving programs. It is working on the problems
that need to be solved, namely NewProblems. The
strength and weakness of this algorithm is to gen-
erate less complex problems from a given NewProb-
lem.

1. If the format of the post-condition is not suit-
able for computing, create and start one equiv-
alent NewProblem’s with the post-condition
transformed to make it suitable. Return.

2. If the post-condition contains disjunctions or
“self-expandable” post-conditions like “is a per-
mutation of”, expand them, and start all sub-
problems. Return.

3. If all computable post-conditions are not sat-
isfiable, set precondition as false and mark as
solved. Notify parent. Return.

...else

4. A « affine post-conditions

5. Ay « Solve A, get assignments from InputVars
to OutputVars.

6. If Ay contains assignments, generate an Assign-
mentAndNewProblem containing the assign-
ment part (already solved), and the remaining
post-conditions in a NewProblem, start it, re-
turn.

...else

7. If there are only computable post-conditions
containing InputVariables and no OutputVari-
ables, without function or predicate symbols,
mark the problem as solved with these post-
conditions as preconditions. Return.

...else

8. For each non affine equality post-condition A =
B, match the members to generate new prob-
lems.

Example: F(z+a,G(b))) = F(y —b,G(z + a))
will yield a problem where this post-condition
is replaced by {x+a =y—b, G(b) = G(z+a)}

Example: {F(a + x) = G(b)} is not processed,
neither are {F(a + z) = y}, nor {G(z,y) =
F(a)}

9. For each non affine post-condition, match it
with each available precondition, and start the
new problems resulting from such a match.
Example: With {F(a + z) = G(b)}, if we have
in the preconditions that

Vu.a=1= F(b+u)=G(u)

we will generate a new problem where F(a +
x) = G(b) is replaced by:

{a=1, a+x=b+udl, b=udl}

where u41 is an instantiation of the axiom vari-

able.

10. For each inequality post-condition A # B, A >
B, A > B, look for a neighbouring solution.
Example: From {z + a < b}, it will start the
subproblem {z + a + 1 = b}. From {x # a},
it will start the subproblems {x = a + 1} and
{x=a-1}

Now that we have the main algorithm, each prob-
lem needs to handle incoming solutions from its sub-
problems.

3.4.1 NewProblem gets a solved subprob-
lem

Let us consider the case when a NewProblem
N, with preconditions PreCond and a formula
PostCond to prove, is notified by one of its chil-
dren A that A solved PostCond, and A provides a
precondition K such that

K=K ANKy...NK,

e If K is true or PreCond = K, then N reports
itself plus precondition true to its parent.

o If K is false or PreCond = - K

— If (N 44 A and the list of sub-problems is
not empty), just return.

— Else N reports itself plus precondition
false to its parent.

...else there are no trivial preconditions.

e N stores A as a potential solution if nothing
better, with its precondition.
N generates an IfThenElseProblem as
sub-problem like the following, and starts
it.
if K; then
if K5 then

if K,, then

A
else

{Precond, Ky, ..
end if

else
{Precond, K1, ~Ks}j C3 {PostCond}
end if
else
{Precond, =K1} C| {PostCond}
end if

In practice, when we generate an If ThenElseProb-
lem, we are currently removing all other problems
that were in the N sub-problem list, in order to cut
down the complexity. This could be enhanced a lot
by having priorities and good heuristics.

3.4.2 AssignmentAndNewProblem gets its
NewProblem solved

Let us consider the case when an AssignmentAnd-
NewProblem Sy = {S, N} gets a report from one
of its children. The assignment is denoted S and the
NewProblem N.

Assuming that S is already resolved, the report
comes from N with a precondition K.

Sy computes the weakest precondition of the
command of S and the post-condition K, and re-
port it to its parent.

Example: If the assignment problem is

{Hap) ¢ a{r=a}

=Ky} CF {PostCond}

and if the NewProblemSolved is the following
{o = a}iapq Skip{zr=a, > a, x> b}

then it will report to its parent to have been solved
with the precondition R such that {R}, = «
a{xr=a, x>a, x>0b} which is solved with

R = {a=a, a>a, a>b}

3.4.3 IfThenElseProblem gets a subproblem
solved

Let us consider the case when an IfThenElseProb-
lem I gets a report from one of its children, either
the if-problem IP or the else-problem EP.

First, it stores the precondition. Then if both
IP and EP are solved, it reports to its parent to
have been solved with the conjunction of the two
preconditions.

3.4.4 Affine constraint solver

Our affine constraint solver is able to deal with spe-
cific of affine constraints. It needs that at most one
OutputVar appear in the equations, so {a — b =
1,2 + a = b} is solvable, but we did not consider
problems like {x +y = 1,2 — y = a}, which would
require an extra effort.

The affine constraint solver:

e Generates assignments commands.

{R"} oy C" {—4a+22 +2b=1}

will yield the exact solution

oy ©—2a—b+1{—da+2z+2b=1}

e Generates necessary preconditions

{R?}[a,b] c’ {r =a, z =10}

will yield the exact solution

{a:b}[mb]xHa{x:a, x = b}

e Generates (not fully yet) divisibility con-
straints

{R?}[a] C? {2$ —a = 0}
will be solved as :

{2|a}iq v+ a/2 {20 —a =0}

e Does not (yet) solve equations containing more
than two output variables: {R’} C* {z +y =
1} is such an example, not constrained enough
for our solver.

4 Examples

4.1 Presburger arithmetic support

In this formalism, we are able to produce solution
for a subset of Presburger arithmetic.

In the Presburger arithmetic, checking the valid-
ity of a formula can be reduced[5] to check the va-
lidity of many formulas like:

L U D
. Nai<yh Ny<bvn NEi| (y+t:)

i=1 j=1 i=1

In our logic, y would be an OutputVar, a; and b;
would be InputVar, and it would be about to solve
the problem:

L U D
(R} C" {Nai<y, Ny<bj, NEKil(y+t)}
i=1 j=1 i=1

Our algorithm does not deal well with divisibility
constraints, so let us consider the problem :

L U
{B ar,obo) O A\ <y \y<bj}
i=1 j=1

This would be solved by our tool with one possible
solution:

U

L
{/\ai<a1+1, /\a1+1<bj}y<—(l1+1{...}
i=1 j=1

Knowing that one of the last steps to arrive to the
first formula was to introduce y such that y = Mz,
we would need a further assignment x « ;.

This shows that there is still some work to im-
prove our algorithm to produce the best solution

from Presburger arithmetic constraints.

4.2 The 2-MAX problem

The statement of this problem is the following:

(R} ap) C" {(x=aVa=0), >0, >b} (1)

Let us go through algorithm step by step to find the
solution. First, we introduce two new subproblems
by converting to a normal form, and splitting the
disjunction:

{R"} o) C" {z—a=0,2—a>0, 2—b>0} (2)

{R Yoy C" {z=b=0, 2—a>0, 2—b>0} (3)

Solving the affine equations of problem (2) would
yield a new problem (4):

{R"}
T—a
{x = a, R'?}[a’b,x] c’ (4)
{t—a=0,2—a>0, x —b>0}

Problem (4) does not contain any more OutputVar,
so all the post-conditions should appear in the pre-
conditions.

{R"}

T —a
{r=a, (-=a>0, 2=0>0)}apq]
{r—a=0,2—a>0, z—b>0}

(5)

To compute the global precondition of (5), we
need to replace = by its value a in the generated

precondition x —a > 0,2 — b > 0. This give a pre-
condition a —a > 0,a — b > 0, which after simplifi-
cation reduces to a — b > 0 in (6).

{a—b>0}
€T <— a
{x:a, (m—CLZO, x—bzo)}[a,b,z]
{r—a=0,2—a>0, z—b>0}

(6)

So far, (6) is a solved sub-problem solution of (2)
and therefore solution of (1). From the precondition,
problem (1) will start a new if-problem (7):

{Rr}
if(a—b>0)
(6)
else (7)
{a —-b<0, R?}[a,b] c’
{x=avz=0), x>a, v>0b}

By similar means, the else-problem of (7) will be
solved by (8), and this time giving the solution = «—
b, but as we know that a < b, no more condition is
generated:

{a—b<0, R" = true}
r<—b
{z=0 (2-a>0, 2=0>0)}apa
{xr-b=0,z2—a>0, z—b>0}

(8)

Thus, the generated program, without all of its
proved formulas content would look like 9:

{true}
if(a—b>0)
T —a
else
T b
{x=aVz=>),xr>a,x>b}

5 Solved Problems

5.1 The n-SORT problem

The n-SORT problem stands for the problem of sort-
ing n integers. It can be expressed formally by this

integers ‘ # steps to find solution
1 | 2 steps
2 | 10 steps
3 | 62 steps
4 | 752 steps

Table 1: Steps needed to solve the n-Sort problem

problem, where i € [1,n]

{R Moy C7 ({aiti = {zi}s, 21 <@ <. <y}

Contrary to the general sort problem, it only ac-
cept a fixed number of integers. Although one can
observe that sorting one or two integers is very easy,
it is less trivial for 3 or 4 integers.

As our program is not specialized for this kind
of work, this is why we are not getting compelling
results compared to specialized approaches [9].

Anyway, our paradigm was strong enough to deal
with this problem, and we provide the generated
code in Appendix B .

Table 1 presents the number of steps needed to
generate n-SORT problems. A step is counted as
one pass of the main algorithm and does not include
the message exchange, which is always bounded.

We also copy-pasted the code generated for 4-
SORT into a scala[7] function to “test” it, although
it might look quite useless to test a code which has
been generated and proved.

Of course, it gave the expected results:

4-SORT: (8,3,5,4) => (3,4,5,8)
4-SORT: (8,5,2)=> (1,2,5,8)
4-SO0RT: (3,5,2,1) => (1,2,3,5)
4-SORT: (1,5,2,1) => (1,1,2,5)
4-SORT: (1,5,2,3) => (1,2,3,5)

5.2 The GCD inner loop problem

The mathematical formulation of the GCD inner
loop problem is the following. The “+” sign in the
axioms is not a typography error, the problem is
really solved like that.

{YuYv. GCD(u,v) = GCD(v,u),
Vu.Vv. GCD(u,v) = GCD(u,v + u),
¢>0,d>0, GCD(c,d) = GCD(a,b)),
c Z’é 0, R?}[c,d,a,b]

C.

{>0,d >0, GCD(d,d) =
(¢, d) < (¢, d)}

GCD(a,b),

(10)
This problem contains among others an invariant:

{c>0, d >0, GCD(c,d) = GCD(a,b)}

a decreasing variant:
(c,d)

and a guard:
c#0

If this problem is solved, it can be put in the in-
ner loop of the following algorithm to compute the
GCD:

c=a

d=>

while(c !'= 0) {
// here a solution from c,
c=c¢’; d=4d’

d to ¢’, 4’

}
// At this point, d contains gcd(a, b)

Our algorithm was able to derive such a code in
61 steps.

if(-c+d >= 0) {

d’> = —c+d; c’ = c; x49 = c; x48 = d
} else {

c’ =d; 4’ =c¢
}

One remarks that some unexpected variables ap-
pear, due to the instantiation of the axioms. They
could be easily removed by refining the rendering
process.

6 Conclusions

We were able to automatically synthesize some pro-
grams for simple and less simple specifications.

A full program synthesizer would have some ter-
rific applications. First, it would not only tell where
the errors are in a program, but also suggest correc-
tions. If we manage to have formal specifications,
then it would even not be worth to write the code,
the synthesizer might do it.

6.1 Further work

To enhance such a program synthesizer, one could:

e Add specific structures to deal with equalities,
rather than matching them.

e Set up priority on problems. More constrained
problems should have a greater priority

e Add back-jumping techniques|3] to cut-off some
research branches.

e Change the order of the conditions for the if-
then-else deployment ? (see section 3.4.1)

e Add support for object-oriented programming

e Add support for other computable functions.

Appendices

A Program commands

For our needs, a program is a command, and it is
defined as below:

Command ::=

Var = [Term]

While(Formula) { Command }

if (Formula) Command else Command
Command; Command

Skip

Term ::= Var | K
| kxVar + Term

| Var/k + Term

Var :;= [Literall

Formula ::= Formula && Formula
| Formula || Formula
| Term == Term
| Term > Term
|

K ::= [Integers]

B The 3,4-SORT programs

Here is one automatically generated 3-SORT algo-
rithm.

// Problem was solved in 62 steps
//{requires nothing else
if(c-b >= 0) {
if(b-a >= 0) {
z=c;y=b;x=a
} else {
if(c-a >= 0) {
z=c;y=a x=b
} else {
z=a; y=c¢c; x=b

3
} else {
if(cma >= 0) {
z=b;y=c;x=a
} else {
if(b-a >= 0) {

//Yensures (({x,y,z}={a,b,c}&&(y >= x))&&(z >= y))

Here is one automatically generated 4-SORT al-
gorithm.

// Problem was solved, in 752 steps
//{requires nothing else
if(d-c >= 0) {
if(c-b >= 0) {
if(b-a >= 0) {
w=d;z=c;y=b;x=a
} else {
if(c-a >= 0) {
w=d;z=c;y=a x=b
} else {
if(d-a >= 0) {
w=d;z=a y=c;x=b
} else {
w=aj;z=d;y=c;x=b
}
}

¥
} else {
if(d-b >= 0) {
if(c-a >= 0) {
w=d; z=b; y=c; x=a
} else {
if(b-a >= 0) {
w=d;z=b; y=a; x=c

} else {
if(d-a >= 0) {
w=d;z=a y=b;x=c
} else {
w=aj;z=d; y=b; x=c
¥
¥

¥
} else {
if(c-a >= 0) {
w=b;z=d;y=c; x=a
} else {
if(d-a >= 0) {
w=bjz=d;y=a; x=c¢
} else {
if(b-a >= 0) {
w=b;z=a; y=d; x=c
} else {
w=aj;z=b;y=d; x=c
¥
¥
¥
¥
¥
} else {
if(d-b >= 0) {
if(b-a >= 0) {
w=c;z=d;y=b;x=a
} else {
if(d-a >= 0) {
w=c;z=d;y=a;x=b
} else {
if(c-a >= 0) {
w=c;z=a y=d;x=b
} else {
w=a;z=c;y=d;x=b
¥
¥
}
} else {
if(c-b >= 0) {
if(d-a >= 0) {
w=c;z=b;y=d; x=a
} else {
if(b-a >= 0) {

} else {
if(d-a >= 0) {
w=bjz=c;y=d; x=a
} else {
if(c-a >= 0) {
w=bjz=c;y=a; x=d
if(b-a >= 0) {
w=bjz=a;y=c; x=d
} else {
w=a; z=b;y=c; x=d
}
}
}
¥
¥

¥
//Yensures ((({x,y,z,u}={a,b,c,d}e&(y >= x))&&(z >= y))&&(w >= z))

References

[1] R.G. Dromey and D. Billington. Stepwise pro-
gram derivation. School of Computing and In-
formation Technology, 1991.

[2] Harald Ganzinger. Logic for computer sci-
ence, 2002. http://www.mpi-inf.mpg.de/

10

~uwe/lehre/logic/.

John Harrison. Handbook of Practical Logic and
Automated Reasoning. Cambridge University
Press, New York, NY, USA, 2009.

C. A. R. Hoare. An aziomatic basis for com-
puter programming. Communications of the
ACM, 1969.

V. Kuncak and M. Rinard. The first-order the-
ory of sets with cardinality constraints is decid-
able. MIT CSAIL Technical Report, 2004.

NASA. Robust software engineering, 1994-
2008. http://ti.arc.nasa.gov/tech/rse/
publications/program-syn/.

M. Odersky and al. An Overview of the
Scala Programming Language. Technical Re-
port 1C/2004/64, EPFL Lausanne, Switzer-
land, 2004.

Wikipedia. Backjumping. http://en.
wikipedia.org/wiki/Backjumping.

Wikipedia. Comparison sort. http://en.
wikipedia.org/wiki/Comparison_sort.

Wikipedia. Test-driven development. http:
//en.wikipedia.org/wiki/Test-driven_
development.

http://www.mpi-inf.mpg.de/~uwe/lehre/logic/
http://www.mpi-inf.mpg.de/~uwe/lehre/logic/
http://ti.arc.nasa.gov/tech/rse/publications/program-syn/
http://ti.arc.nasa.gov/tech/rse/publications/program-syn/
http://en.wikipedia.org/wiki/Backjumping
http://en.wikipedia.org/wiki/Backjumping
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

	Introduction
	Problem statement
	Formal Problem statement
	Conventions and first approach
	Better approach

	Our approach

	The derivation process
	Problem structures
	Message exchange
	Implementation part
	Main algorithm
	NewProblem gets a solved subproblem
	AssignmentAndNewProblem gets its NewProblem solved
	IfThenElseProblem gets a subproblem solved
	Affine constraint solver

	Examples
	Presburger arithmetic support
	The 2-MAX problem

	Solved Problems
	The n-SORT problem
	The GCD inner loop problem

	Conclusions
	Further work

	Program commands
	The 3,4-SORT programs

