Verifying a Hotel Key Card System

Tobias Nipkow, ICTAC 2006 Presentation by: Hossein Hojjat

EPFL

April 30, 2009

Hossein Hojjat (EPFL)

Hotel Card System

Outline

1 Hotel Card System

2 Verification with Alloy

3 Verification with Isabelle

- Decentralized system
- Two key numbers in a card
 - key₁: old key of the previous occupant
 - key₂: new key of the current occupant
- One key number in a lock

$$key_{L} = key_{2}$$
: Open
 $key_{L} = key_{1}$: Open & Recode $key_{L} := key_{2}$

Hossein Hojjat (EPFL)

 April 30, 2009
 4 / 23

・ロト ・虚ト ・ モト

 $\xrightarrow{(k_1,k_2)} \overleftarrow{k_2}$ $\left[k_{1}
ight)$

・ロト ・ 四ト ・ ヨト ・ ヨト

→ Ξ →

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ∢ ⊒ →

Image: A match the second s

Correctness

- Is the system correct?
- Safety: Only the owner of a room can be in a room
- Liveness?
- Verify the correctness of the system using Alloy and Isabelle/HOL
 Alloy implementation is taken from "Software Abstractions: Logic, Language, and Analysis", Daniel Jackson

Outline

1 Hotel Card System

2 Verification with Alloy

3 Verification with Isabelle

< A → < 3

Objects

```
sig Key, Time {}

sig Card { fst, snd: Key }

sig Room { key: Key one \rightarrow Time}

one sig Desk {

issued: Key \rightarrow Time,

prev: (Room \rightarrow lone Key) \rightarrow Time}

sig Guest {

cards: Card \rightarrow Time}
```

```
pred init [t: Time] {
    Desk.prev.t = key.t
    Desk.issued.t = Room.key.t and no cards.t }
```

イロト イポト イヨト イヨト 二日

Checkin

```
pred checkin [t,t': Time, r: Room, g: Guest] {
  some c: Card {
    c.fst = r.(Desk.prev.t)
    c.snd not in Desk.issued.t
    cards.t' = cards.t + g \rightarrow c
    Desk.issued.t' = Desk.issued.t + c.snd
    Desk.prev.t' = Desk.prev.t ++ r \rightarrow c.snd
    }
    key.t = key.t'
}
```

Enter

```
pred enter [t,t': Time, r: Room, g: Guest] {
  some c: g.cards.t |
    let k = r.key.t {
      c.snd = k and key.t' = key.t
      or c.fst = k and key.t' = key.t ++ r \rightarrow c.snd
    }
   issued.t = issued.t' and prev.t = prev.t'
   cards.t = cards.t'
}
```

Demo (Allay)

Hossein Hojjat (EPFL)

3

・ロト ・ 四ト ・ ヨト ・ ヨト

Hossein Hojjat (EPFL)

Hotel Card System

April 30, 2009 14 / 23

- ∢ ⊒ →

・ロト ・日下 ・ 日下

э

Hossein Hojjat (EPFL)

Hotel Card System

April 30, 2009 14 / 23

- 4 ∃ →

Image: A match the second s

э

Check-in Check-out Check-in	G ₁ G ₁ G ₂	(k_1, k_2) (k_2, k_3)

Hossein Hojjat (EPFL)

Hotel Card System

April 30, 2009 14 / 23

E

イロト イヨト イヨト イヨト

Check-in Check-out Check-in Check-out	G1 G1 G2 G2	(k_1, k_2) (k_2, k_3)

April 30, 2009 14 / 23

(日) (四) (三) (三) (三)

э

Check-in	G1	(k_1, k_2)
Check-out	G_1	
Check-in	G ₂	(k_2, k_3)
Check-out	G_2	
Check-in	<i>G</i> ₁	(k_3, k_4)

Hossein Hojjat (EPFL)

April 30, 2009 14 / 23

3

-

・ロト ・ 日 ト ・ ヨ ト ・

Check-in	G ₁	(k_1, k_2)
Check-out	G_1	
Check-in	G ₂	(k_2, k_3)
Check-out	G ₂	
Check-in	G_1	(k_3, k_4)
Enter-room	G_1	(k_1, k_2)

Hossein Hojjat (EPFL)

April 30, 2009 14 / 23

э

-

◆□ → <□ → < □ →</p>

Check-in	G ₁	(k_1, k_2)
Check-out	G_1	
Check-in	G ₂	(k_2, k_3)
Check-out	G ₂	
Check-in	G_1	(k_3, k_4)
Enter-room	G_1	(k_1, k_2)
Enter-room	G ₂	(k_2, k_3)

3

э.

・ロト ・日下 ・ 日下

General Case

Alloy solution

- Assume everybody returns their old cards upon check-in
- cards.t' = cards.t + g \rightarrow c
- cards.t' = cards.t ++ g \rightarrow c

Theorem proving

- Alloy conjecture: No attack for 4 keys and cards, 7 time instants, two guests and one room
- Prove the conjecture in Isabelle/HOL

Outline

1 Hotel Card System

2 Verification with Alloy

3 Verification with Isabelle

э

-

< 4 → <

Record state

(* reception *)	
owns	::	$room \Rightarrow guest$
currk	::	$room \Rightarrow key$
<i>issued</i> (* guests *)	::	key set
cards	::	$guest \Rightarrow card set$
(* rooms *)		
roomk	::	$room \Rightarrow key$
isin	::	$room \Rightarrow guest \; set$

Ξ.

・ロト ・虚ト ・ モト

Initialization

-

-∢ ∃ ▶

3

Check-in

$$s \in R$$
 and $k \notin issued s$ then
 $(owns := (owns s)(r := g),$
 $cards := (cards s)(g := cards s g \cup \{(currk s r,k)\}),$
 $currk := (currk s)(r := k),$
 $issued := issued s \cup \{k\}$
 $) \in R$

Hossein Hojjat (EPFL)

April 30, 2009 19 / 23

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Enter room

$$s \in R$$
 and $(k, k') \in cards \ s \ g$ and $roomk \ s \ r \in \{k, k'\}$ then
 $(isin := (isin \ s)(r := isin \ s \ r \cup \{g\}),$
 $roomk := (roomk \ s)(r := k')$
 $) \in R$

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

Safety formalized

- Add state component safe :: room \Rightarrow bool
- Initially safe is True everywhere
- Check-in for room r sets safe r to False
- Enter for room r sets safe r to True if the owner entered an empty room with card (-, k') such that k' is currk r (at reception)
- Proof: If a room is *safe*, only its owner can be in it

Demo (Isabelle/HOL)

(日) (周) (日) (日)

3

Two approaches

3