
Verifying a Hotel Key Card System

Tobias Nipkow, ICTAC 2006
Presentation by: Hossein Hojjat

EPFL

April 30, 2009

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 1 / 23

Outline

1 Hotel Card System

2 Verification with Alloy

3 Verification with Isabelle

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 2 / 23

Hotel Key Card

Decentralized system

Two key numbers in a card
I key1: old key of the previous occupant
I key2: new key of the current occupant

One key number in a lock
I keyl = key2: Open
I keyl = key1: Open & Recode keyl := key2

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 3 / 23

Hotel Key Card

k1

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 4 / 23

Hotel Key Card

k1 k2
k 1 k2

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 5 / 23

Hotel Key Card

k1 k2
k 1 k2 k2

k 1 k2

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 6 / 23

Hotel Key Card

k1 k2
k 1 k2 k2

k 1 k2 k3
k 2 k3

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 7 / 23

Correctness

Is the system correct?

Safety: Only the owner of a room can be in a room

Liveness?

Verify the correctness of the system using Alloy and Isabelle/HOL
I Alloy implementation is taken from “Software Abstractions: Logic,

Language, and Analysis”, Daniel Jackson

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 8 / 23

Outline

1 Hotel Card System

2 Verification with Alloy

3 Verification with Isabelle

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 9 / 23

Objects

sig Key, Time {}
sig Card { fst, snd: Key }
sig Room { key: Key one → Time}
one sig Desk {

issued: Key → Time,
prev: (Room → lone Key) → Time}

sig Guest {
cards: Card → Time}

pred init [t: Time] {
Desk.prev.t = key.t
Desk.issued.t = Room.key.t and no cards.t }

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 10 / 23

Checkin

pred checkin [t,t’: Time, r: Room, g: Guest] {
some c: Card {

c.fst = r.(Desk.prev.t)
c.snd not in Desk.issued.t
cards.t’ = cards.t + g → c
Desk.issued.t’ = Desk.issued.t + c.snd
Desk.prev.t’ = Desk.prev.t ++ r → c.snd
}

key.t = key.t’
}

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 11 / 23

Enter

pred enter [t,t’: Time, r: Room, g: Guest] {
some c: g.cards.t |

let k = r.key.t {
c.snd = k and key.t’ = key.t
or c.fst = k and key.t’ = key.t ++ r → c.snd
}

issued.t = issued.t’ and prev.t = prev.t’
cards.t = cards.t’
}

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 12 / 23

Demo (Allay)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 13 / 23

Guest-in-the-middle attack

Check-in

Check-out
Check-in
Check-out
Check-in
Enter-room
Enter-room

G1

G1

G2

G2

G1

G1

G2

(k1, k2)

(k2, k3)

(k3, k4)
(k1, k2)
(k2, k3)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 14 / 23

Guest-in-the-middle attack

Check-in
Check-out

Check-in
Check-out
Check-in
Enter-room
Enter-room

G1

G1

G2

G2

G1

G1

G2

(k1, k2)

(k2, k3)

(k3, k4)
(k1, k2)
(k2, k3)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 14 / 23

Guest-in-the-middle attack

Check-in
Check-out
Check-in

Check-out
Check-in
Enter-room
Enter-room

G1

G1

G2

G2

G1

G1

G2

(k1, k2)

(k2, k3)

(k3, k4)
(k1, k2)
(k2, k3)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 14 / 23

Guest-in-the-middle attack

Check-in
Check-out
Check-in
Check-out

Check-in
Enter-room
Enter-room

G1

G1

G2

G2

G1

G1

G2

(k1, k2)

(k2, k3)

(k3, k4)
(k1, k2)
(k2, k3)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 14 / 23

Guest-in-the-middle attack

Check-in
Check-out
Check-in
Check-out
Check-in

Enter-room
Enter-room

G1

G1

G2

G2

G1

G1

G2

(k1, k2)

(k2, k3)

(k3, k4)

(k1, k2)
(k2, k3)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 14 / 23

Guest-in-the-middle attack

Check-in
Check-out
Check-in
Check-out
Check-in
Enter-room

Enter-room

G1

G1

G2

G2

G1

G1

G2

(k1, k2)

(k2, k3)

(k3, k4)
(k1, k2)

(k2, k3)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 14 / 23

Guest-in-the-middle attack

Check-in
Check-out
Check-in
Check-out
Check-in
Enter-room
Enter-room

G1

G1

G2

G2

G1

G1

G2

(k1, k2)

(k2, k3)

(k3, k4)
(k1, k2)
(k2, k3)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 14 / 23

General Case

Alloy solution

Assume everybody returns their old cards upon check-in

cards.t’ = cards.t + g → c

cards.t’ = cards.t ++ g → c

Theorem proving

Alloy conjecture: No attack for 4 keys and cards, 7 time instants, two
guests and one room

Prove the conjecture in Isabelle/HOL

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 15 / 23

Outline

1 Hotel Card System

2 Verification with Alloy

3 Verification with Isabelle

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 16 / 23

Record state

(* reception *)
owns
currk
issued

::
::
::

room ⇒ guest
room ⇒ key
key set

(* guests *)

cards :: guest ⇒ card set
(* rooms *)

roomk
isin

::
::

room ⇒ key
room ⇒ guest set

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 17 / 23

Initialization

L owns = arbitrary,
currk = initk,
issued = range initk,
cards = (λg .∅),
roomk = initk,
isin = (λr .∅),

M ∈ R

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 18 / 23

Check-in

s ∈ R and k /∈ issued s then
L owns := (owns s)(r := g),

cards := (cards s)(g := cards s g ∪ {(currk s r ,k)}),
currk := (currk s)(r := k),
issued := issued s ∪ {k}

M ∈ R

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 19 / 23

Enter room

s ∈ R and (k , k ′) ∈ cards s g and roomk s r ∈ {k, k ′} then
L isin := (isin s)(r := isin s r ∪ {g}),

roomk := (roomk s)(r := k ′)
M ∈ R

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 20 / 23

Safety formalized

Add state component safe :: room ⇒ bool

Initially safe is True everywhere

Check-in for room r sets safe r to False

Enter for room r sets safe r to True
if the owner entered an empty room
with card (−, k ′) such that k ′ is currk r (at reception)

Proof: If a room is safe, only its owner can be in it

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 21 / 23

Demo (Isabelle/HOL)

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 22 / 23

Two approaches

Alloy Isabelle/HOL

Software specs General purpose
Set theory Higher-Order Logic

Search for finite counter examples Interactive & automatic proof

Hossein Hojjat (EPFL) Hotel Card System April 30, 2009 23 / 23

	Hotel Card System
	Verification with Alloy
	Verification with Isabelle

