Verifying a Hotel Key Card System

Tobias Nipkow, ICTAC 2006
Presentation by: Hossein Hojjat

EPFL

April 30, 2009

Outline

(1) Hotel Card System

(2) Verification with Alloy

Hotel Key Card

- Decentralized system
- Two key numbers in a card
key $_{1}$: old key of the previous occupant key $_{2}$: new key of the current occupant
- One key number in a lock

$$
\begin{aligned}
& \text { key }_{\mathrm{L}}=\text { key }_{2}: \text { Open } \\
& \text { key }_{\mathrm{L}}=\text { key }_{1}: \text { Open \& Recode } \text { key }_{\mathrm{L}}:=\text { key }_{2}
\end{aligned}
$$

Hotel Key Card

k_{1}

Hotel Key Card

$k_{1} \xrightarrow{\left(k_{1}, k_{2}\right)} k_{2}$

Hotel Key Card

$$
k_{1} \xrightarrow{\left(k_{1}, k_{2}\right)} k_{2} \xrightarrow{\left(k_{1}, k_{2}\right)} k_{2}
$$

Hotel Key Card

Correctness

- Is the system correct?
- Safety: Only the owner of a room can be in a room
- Liveness?
- Verify the correctness of the system using Alloy and Isabelle/HOL Alloy implementation is taken from "Software Abstractions: Logic, Language, and Analysis", Daniel Jackson

Outline

(1) Hotel Card System

(2) Verification with Alloy

Objects

```
sig Key, Time {}
sig Card { fst, snd: Key }
sig Room { key: Key one }->\mathrm{ Time}
one sig Desk {
    issued: Key }->\mathrm{ Time,
    prev:(Room }->\mathrm{ lone Key) }->\mathrm{ Time}
sig Guest {
cards: Card }->\mathrm{ Time}
```

pred init [t : Time] \{
Desk.prev.t $=$ key.t
Desk.issued.t $=$ Room.key.t and no cards.t \}

Checkin

```
pred checkin [t,t': Time, r: Room, g: Guest] {
some c: Card {
    c.fst = r.(Desk.prev.t)
    c.snd not in Desk.issued.t
    cards.t' = cards.t + g m c
    Desk.issued.t' = Desk.issued.t + c.snd
    Desk.prev.t' = Desk.prev.t ++ r }->\mathrm{ c.snd
    }
    key.t = key.t'
}
```


Enter

```
pred enter [t,t': Time, r: Room, g: Guest] {
    some c: g.cards.t |
    let k=r.key.t {
    c.snd = k and key.t' = key.t
    or c.fst =k and key.t' = key.t ++ r cos.snd
    }
    issued.t = issued.t' and prev.t = prev.t'
    cards.t = cards.t'
    }
```


Demo (Allay)

Guest-in-the-middle attack

Check-in

G_{1}
$\left(k_{1}, k_{2}\right)$

Guest-in-the-middle attack

Check-in
G_{1}
$\left(k_{1}, k_{2}\right)$
Check-out
G_{1}

Guest-in-the-middle attack

Check-in
G_{1}
$\left(k_{1}, k_{2}\right)$
Check-out
G1
Check-in
G_{2}
$\left(k_{2}, k_{3}\right)$

Guest-in-the-middle attack

Check-in
G_{1}
Check-out
G1
Check-in
G_{2}
Check-out
G_{2}
$\left(k_{1}, k_{2}\right)$
$\left(k_{2}, k_{3}\right)$

Guest-in-the-middle attack

Check-in
G1
Check-out
G1
Check-in
Check-out
Check-in
G_{2}
G1
$\left(k_{1}, k_{2}\right)$
$\left(k_{2}, k_{3}\right)$
$\left(k_{3}, k_{4}\right)$

Guest-in-the-middle attack

Check-in
G1
Check-out
G1
Check-in
Check-out
Check-in
G_{2}
Enter-room
G_{2}
G1
G_{1}
$\left(k_{1}, k_{2}\right)$
$\left(k_{2}, k_{3}\right)$
$\left(k_{3}, k_{4}\right)$
$\left(k_{1}, k_{2}\right)$

Guest-in-the-middle attack

$\left(k_{1}, k_{2}\right)$
$\left(k_{2}, k_{3}\right)$
$\left(k_{3}, k_{4}\right)$
$\left(k_{1}, k_{2}\right)$
$\left(k_{2}, k_{3}\right)$

General Case

Alloy solution

- Assume everybody returns their old cards upon check-in
- cards.t' $=$ cards.t $+\mathrm{g} \rightarrow \mathrm{c}$
- cards.t' $=$ cards.t $++\mathrm{g} \rightarrow \mathrm{c}$

Theorem proving

- Alloy conjecture: No attack for 4 keys and cards, 7 time instants, two guests and one room
- Prove the conjecture in Isabelle/HOL

Outline

(1) Hotel Card System

(2) Verification with Alloy

(3) Verification with Isabelle

Record state

$\left(\begin{array}{c}* \\ \text { reception } \\ \text { owns }\end{array}\right)$	$::$	room \Rightarrow guest
currk issued	$::$	room \Rightarrow key
$\left(\begin{array}{c}* \text { guests }\end{array}\right)$	$:$	key set
cards $\left(\begin{array}{ll}\text { rooms }\end{array}\right)$ roomk isin	$::$	guest \Rightarrow card set
	$::$	room \Rightarrow key
	$::$	room \Rightarrow guest set

Initialization

(owns = arbitrary,
currk $=$ initk,
issued $=$ range initk,
cards $=(\lambda g . \emptyset)$,
roomk $=$ initk,
$i s i n=(\lambda r . \emptyset)$,
D $\in R$

Check-in

```
s\inR and k}\not\in\mathrm{ issued s then
| owns:= (owns s) (r:=g),
    cards := (cards s)(g:= cards s g \cup {(currk s r,k)}),
    currk := (currk s)(r:=k),
    issued := issued s \cup{k}
D }\in
```


Enter room

$s \in R$ and $\left(k, k^{\prime}\right) \in$ cards $s g$ and roomk $s r \in\left\{k, k^{\prime}\right\}$ then (isin $:=(i \sin s)(r:=i \sin s r \cup\{g\})$, roomk := (roomk $s)\left(r:=k^{\prime}\right)$
$D \in R$

Safety formalized

- Add state component safe :: room \Rightarrow bool
- Initially safe is True everywhere
- Check-in for room r sets safe r to False
- Enter for room r sets safe r to True if the owner entered an empty room with card $\left(-, k^{\prime}\right)$ such that k^{\prime} is currk r (at reception)
- Proof: If a room is safe, only its owner can be in it

Demo (Isabelle/HOL)

Two approaches

Alloy	Isabelle/HOL
Software specs	General purpose
Set theory	Higher-Order Logic
Search for finite counter examples	Interactive \& automatic proof

