The Resolution Calculus Res

Definition

- Resolution inference rule

$$\begin{align*}
C \lor A & \quad \neg A \lor D \\
\hline
C \lor D
\end{align*}$$

- (positive) factorisation

$$\begin{align*}
C \lor A \lor A & \\
\hline
C \lor A
\end{align*}$$
Refutational Completeness of Resolution

- We have to show: $N \models \bot \Rightarrow N \vdash_{\text{Res}} \bot$, or equivalently: If $N \not\vdash_{\text{Res}} \bot$, then N has a model.
We have to show: \(N \models \bot \Rightarrow N \vdash_{\text{Res}} \bot \),
or equivalently: If \(N \not\vdash_{\text{Res}} \bot \), then \(N \) has a model.

Idea: Suppose that we have computed sufficiently many inferences (and not derived \(\bot \)).

Now order the clauses in \(N \) according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
Refutational Completeness of Resolution

- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: If $N \not\models_{Res} \bot$, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived \bot).
- Now order the clauses in N according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
- The limit interpretation can be shown to be a model of N.
Clause Orderings

1. We assume that \succ is any fixed ordering on ground atoms that is \textit{total} and \textit{well-founded}. (There exist many such orderings, e.g., the length-based ordering on atoms when these are viewed as words over a suitable alphabet.)
Clause Orderings

1. We assume that \succ is any fixed ordering on ground atoms that is \textit{total} and \textit{well-founded}. (There exist many such orderings, e.g., the length-based ordering on atoms when these are viewed as words over a suitable alphabet.)

2. Extend \succ to an ordering \succ_L on ground literals:

\[
\begin{align*}
[\neg]A & \succ_L [\neg]B, \text{ if } A \succ B \\
\neg A & \succ_L A
\end{align*}
\]
Clause Orderings

1. We assume that \succ is any fixed ordering on ground atoms that is \textit{total} and \textit{well-founded}. (There exist many such orderings, e.g., the length-based ordering on atoms when these are viewed as words over a suitable alphabet.)

2. Extend \succ to an ordering \succ_L on ground literals:

 $\lnot A \succ_L \lnot B$, if $A \succ B$

 $\lnot A \succ_L A$

3. Extend \succ_L to an ordering \succ_C on ground clauses:

 $\succ_C = (\succ_L)_{mul}$, the multiset extension of \succ_L.

 \textit{Notation:} \succ also for \succ_L and \succ_C.
Multisets

Definition

Let E be a set. A multiset M over E is a mapping $M : E \rightarrow \mathbb{N}$. Hereby $M(e)$ specifies the number of occurrences of elements e of the base set E within the multiset M.

Let (M, \succ) be a partial ordering. The multiset extension of \succ to multisets over E is defined by

$$M_1 \succ_{mul} M_2 \iff M_1 \neq M_2$$

$$\land \forall e \in E : [M_2(e) > M_1(e)]$$

$$\Rightarrow \exists e' \in E : (e' \succ e \land M_1(e') > M_2(e'))$$
Clause Orderings

Example

Suppose $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$.

Order the following clauses:

\[
\neg A_1 \lor \neg A_4 \lor A_3 \\
\neg A_1 \lor A_2 \\
\neg A_1 \lor A_4 \lor A_3 \\
A_0 \lor A_1 \\
\neg A_5 \lor A_5 \\
A_1 \lor A_2
\]
Clause Orderings

Example

Suppose $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$.

Then:

\[
\begin{align*}
A_0 \lor A_1 \\
\lor \\
A_1 \lor A_2 \\
\lor \\
\neg A_1 \lor A_2 \\
\lor \\
\neg A_1 \lor \neg A_4 \lor A_3 \\
\lor \\
\neg A_1 \lor \neg A_4 \lor A_3 \\
\lor \\
\neg A_5 \lor A_5
\end{align*}
\]
Properties of the Clause Ordering

Theorem

1. The orderings on literals and clauses are total and well-founded.
2. Let C and D be clauses with $A = \max(C)$, $B = \max(D)$, where $\max(C)$ denotes the maximal atom in C.
 (i) If $A \succ B$ then $C \succ D$.
 (ii) If $A = B$, A occurs negatively in C but only positively in D, then $C \succ D$.
Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:

- All D where $\max(D) = B$
 - $\vdots \lor B$
 - $\vdots \lor B \lor B$
 - $\neg B \lor \ldots$

- All C where $\max(C) = A$
 - $\vdots \lor A$
 - $\vdots \lor A \lor A$
 - $\neg A \lor \ldots$
Closure of Clause Sets under Res

Definition

- $Res(N) = \{ C \mid C \text{ is concl. of a rule in } Res \text{ w/ premises in } N \}$
- $Res^0(N) = N$
- $Res^{n+1}(N) = Res(Res^n(N)) \cup Res^n(N)$, for $n \geq 0$
- $Res^*(N) = \bigcup_{n \geq 0} Res^n(N)$

N is called **saturated** (wrt. resolution), if $Res(N) \subseteq N$.
Construction of Interpretations

Given:

set \mathcal{N} of ground clauses, atom ordering \succ.
Construction of Interpretations

Given:
set N of ground clauses, atom ordering \succ.

Wanted:
Herbrand interpretation I such that
- “many” clauses from N are valid in I;
- $I \models N$, if N is saturated and $\bot \not\in N$.
Construction of Interpretations

Given:
set N of ground clauses, atom ordering \succ.

Wanted:
Herbrand interpretation I such that
- "many" clauses from N are valid in I;
- $I \models N$, if N is saturated and $\bot \notin N$.

Construction according to \succ, starting with the minimal clause.
Construction of Interpretations

Example

Let $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$ (max. literals in red)

<table>
<thead>
<tr>
<th></th>
<th>clauses C</th>
<th>I_C</th>
<th>Δ_C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\neg A_0$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>true in I_C</td>
</tr>
<tr>
<td>2</td>
<td>$A_0 \lor A_1$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>A_1 maximal</td>
</tr>
<tr>
<td>3</td>
<td>$A_1 \lor A_2$</td>
<td>${A_1}$</td>
<td>\emptyset</td>
<td>true in I_C</td>
</tr>
<tr>
<td>4</td>
<td>$\neg A_1 \lor A_2$</td>
<td>${A_1}$</td>
<td>\emptyset</td>
<td>A_2 maximal</td>
</tr>
<tr>
<td>5</td>
<td>$\neg A_1 \lor A_4 \lor A_3 \lor A_0$</td>
<td>${A_1, A_2}$</td>
<td>${A_4}$</td>
<td>A_4 maximal</td>
</tr>
<tr>
<td>6</td>
<td>$\neg A_1 \lor \neg A_4 \lor A_3$</td>
<td>${A_1, A_2, A_4}$</td>
<td>\emptyset</td>
<td>A_3 not maximal; min. counter-ex.</td>
</tr>
<tr>
<td>7</td>
<td>$\neg A_1 \lor A_5$</td>
<td>${A_1, A_2, A_4}$</td>
<td>${A_5}$</td>
<td></td>
</tr>
</tbody>
</table>

$I = \{A_1, A_2, A_4, A_5\}$ is not a model of the clause set
\Rightarrow there exists a counterexample.
Main Ideas of the Construction

- Clauses are considered in the order given by \prec.
- When considering C, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.
- If C is true in the partial interpretation I_C, nothing is done. ($\Delta_C = \emptyset$).
- If C is false, one would like to change I_C such that C becomes true.
Main Ideas of the Construction

- Changes should, however, be *monotone*. One never deletes anything from I_C and the truth value of clauses smaller than C should be maintained the way it was in I_C.

- Hence, one chooses $\Delta_C = \{A\}$ if, and only if, C is false in I_C, if A occurs positively in C (*adding A will make C become true*) and if this occurrence in C is strictly maximal in the ordering on literals (*changing the truth value of A has no effect on smaller clauses*).
Resolution Reduces Counterexamples

Example

\[\neg A_1 \lor A_4 \lor A_3 \lor A_0 \]
\[\neg A_1 \lor \neg A_4 \lor A_3 \]
\[\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0 \]

Construction of \(I \) for the extended clause set:

<table>
<thead>
<tr>
<th>clauses (C)</th>
<th>(I_C)</th>
<th>(\Delta_C)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg A_0)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td></td>
</tr>
<tr>
<td>(A_0 \lor A_1)</td>
<td>(\emptyset)</td>
<td>({A_1})</td>
<td></td>
</tr>
<tr>
<td>(A_1 \lor A_2)</td>
<td>{A_1}</td>
<td>(\emptyset)</td>
<td>{A_2}</td>
</tr>
<tr>
<td>(\neg A_1 \lor A_2)</td>
<td>{A_1}</td>
<td>(\emptyset)</td>
<td></td>
</tr>
<tr>
<td>(\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0)</td>
<td>{A_1, A_2}</td>
<td>(\emptyset)</td>
<td>(A_3) occurs twice minimal counter-ex.</td>
</tr>
<tr>
<td>(\neg A_1 \lor A_4 \lor A_3 \lor A_0)</td>
<td>{A_1, A_2}</td>
<td>({A_4})</td>
<td></td>
</tr>
<tr>
<td>(\neg A_1 \lor \neg A_4 \lor A_3)</td>
<td>{A_1, A_2, A_4}</td>
<td>(\emptyset)</td>
<td></td>
</tr>
<tr>
<td>(\neg A_1 \lor A_5)</td>
<td>{A_1, A_2, A_4}</td>
<td>({A_5})</td>
<td></td>
</tr>
</tbody>
</table>

The same \(I \), but smaller counterexample, hence some progress was made.
Factorization Reduces Counterexamples

Example

\[
\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0 \\
\neg A_1 \lor \neg A_1 \lor A_3 \lor A_0
\]

Construction of I for the extended clause set:

<table>
<thead>
<tr>
<th>clauses C</th>
<th>I_C</th>
<th>Δ_C</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg A_0$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>$A_0 \lor A_1$</td>
<td>\emptyset</td>
<td>${A_1}$</td>
<td></td>
</tr>
<tr>
<td>$A_1 \lor A_2$</td>
<td>${A_1}$</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>$\neg A_1 \lor A_2$</td>
<td>${A_1}$</td>
<td>${A_2}$</td>
<td></td>
</tr>
<tr>
<td>$\neg A_1 \lor \neg A_1 \lor A_3 \lor A_0$</td>
<td>${A_1, A_2}$</td>
<td>${A_3}$</td>
<td></td>
</tr>
<tr>
<td>$\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0$</td>
<td>${A_1, A_2, A_3}$</td>
<td>\emptyset</td>
<td>true in I_C</td>
</tr>
<tr>
<td>$\neg A_1 \lor A_4 \lor A_3 \lor A_0$</td>
<td>${A_1, A_2, A_3}$</td>
<td>\emptyset</td>
<td>true in I_C</td>
</tr>
<tr>
<td>$\neg A_1 \lor \neg A_4 \lor A_3$</td>
<td>${A_1, A_2, A_3}$</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>$\neg A_3 \lor A_5$</td>
<td>${A_1, A_2, A_3}$</td>
<td>${A_5}$</td>
<td></td>
</tr>
</tbody>
</table>

The resulting $I = \{A_1, A_2, A_3, A_5\}$ is a model of the clause set.
Construction of Candidate Models Formally

Definition

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ:

\[
I_C := \bigcup_{C \succ D} \Delta_D
\]

\[
\Delta_C := \begin{cases}
\{A\}, & \text{if } C \in N, C = C' \lor A, A \succ C', I_C \models C \\
\emptyset, & \text{otherwise}
\end{cases}
\]
Construction of Candidate Models Formally

Definition

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ:

\[
I_C := \bigcup_{C \succ D} \Delta_D
\]

\[
\Delta_C := \begin{cases}
\{A\}, & \text{if } C \in N, C = C' \lor A, A \succ C', I_C \not\models C \\
\emptyset, & \text{otherwise}
\end{cases}
\]

We say that C produces A, if $\Delta_C = \{A\}$.
Construction of Candidate Models Formally

Definition

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ:

\[
I_C := \bigcup_{C \succ D} \Delta_D
\]

\[
\Delta_C := \begin{cases}
\{A\}, & \text{if } C \in N, C = C' \lor A, A \succ C', I_C \not\models C \\
\emptyset, & \text{otherwise}
\end{cases}
\]

We say that C produces A, if $\Delta_C = \{A\}$.

The **candidate model** for N (wrt. \succ) is given as $I_N^\succ := \bigcup_C \Delta_C$.

We also simply write I_N, or I, for I_N^\succ if \succ is either irrelevant or known from the context.
Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.

possibly productive

all D with $\max(D) = B$

all C with $\max(C) = A$
Model Existence Theorem

Theorem

(Bachmair & Ganzinger):
Let \succ be a clause ordering, let N be saturated wrt. Res, and suppose that $\bot \notin N$. Then $I_N \models N$.
Model Existence Theorem

Theorem

(Bachmair & Ganzinger):

Let \(\succ \) be a clause ordering, let \(N \) be saturated wrt. \(Res \), and suppose that \(\bot \notin N \). Then \(I_N^\succ \models N \).

Proof

Easy exercise! :-}
