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Abstract. We present a decision procedure for quantifier-free Presburger arith-
metic that is based on a polynomial time translation of Presburger formulas to al-
ternating finite automata (AFAs). Moreover, our approach leverages the advances
in SAT solving by reducing the emptiness problem of AFAs to satisfiability prob-
lems of propositional logic. In order to obtain a complete decision procedure,
we use an inductive style of reasoning as originally proposed for proving safety
properties in bounded model checking. Besides linear arithmetic constraints, our
decision procedure can deal with bitvector operations that frequently occur in
hardware design. Thus, it is well-suited for the verification of data paths at a high
level of abstraction.

1 Introduction

Hardware verification is usually performed at the level of propositional logic which is
self-evident if the system to be verified is given as a netlist of gates. Using propositional
logic as the basic formalism allows one to perform a symbolic state space exploration of
the system by means of binary decision diagrams (BDDs), or to apply bounded model
checking procedures that make use of sophisticated SAT solvers. However, while both
approaches have been successfully used for the verification of control-flow intensive
systems, large data paths are still hardly tractable using most symbolic model checkers.
To solve this problem, various approaches have been proposed such as abstract interpre-
tation, symmetry reduction, partial order reduction, and many others that aim at fighting
the state explosion problem.

Another approach to verify data-flow intensive systems is the use of more powerful
base logics. This is particularly interesting if the system is given at a higher level of
abstraction than gate level, where more complex operations are available. Regarding
the verification of data paths, such a logic should at least contain operations for integer
arithmetic. However, due to the undecidability of full arithmetic, this either requires
the use of interactive theorem provers or to consider decidable fragments such as Pres-
burger arithmetic [1]. In recent years, decision procedures for such decidable logics
have attained increasing interest, not only as stand-alone procedures, but also as the ba-
sis for combined decision procedures. For instance, the UCLID system [2] that is based
on a combination of the theory of uninterpreted functions with equality, Presburger
arithmetic, and the theory of arrays has been successfully used for the verification of
complex micro-processors.
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In this paper, we present yet another procedure for checking satisfiability of
quantifier-free Presburger arithmetic formulas. Our method is based on the translation
of Presburger formulas to finite automata as originally proposed in [3] and enhanced
for example in [4/56]. It is sometimes argued that automata-based decision procedures
for Presburger arithmetic are in general less efficient than other approaches such as in-
teger linear programming and Fourier-Motzkin variable elimination [7]. Indeed, none
of the benchmarks used in [8] could be solved using the LASH tool [9] that is based on
the method presented in [S]]. However, such comparisons certainly depend on the type
of automata formulas are translated to and on the underlying decision procedures for
propositional logic (BDDs vs. SAT solvers).

In contrast to previous approaches, our method employs alternating finite automata
(AFAs) which can be viewed as a generalization of nondeterministic automata. As a
major advantage of AFAs, our method can benefit from sophisticated SAT solvers that
are state-of-the-art in many areas. In particular, the equational structure of AFAs allows
us to unwind their transition relations efficiently which is useful for checking emptiness
(a formula is unsatisfiable iff the language of the corresponding automaton is empty).
However, simply unwinding an AFA only yields a semi-decision procedure that can be
used to prove satisfiability of a formula, but not to prove its unsatisfiability. To solve
this problem, we use an inductive style of reasoning that has been originally proposed
for checking safety properties in bounded model checking.

As another advantage, our approach can be easily extended to deal with more pow-
erful logics. Regarding the verification of data paths, we consider an extension of Pres-
burger arithmetic by bitvector operations, since these operations frequently occur in
hardware design. For example, the ALUs of most microprocessors support arithmetic
as well as bitwise operations. While such an extension is straightforward in practice, it
has considerable impact on the complexity of the decision procedures: We show that
the satisfiability problem of Presburger arithmetic with bitvector operations cannot be
reduced to a polynomial sized satisfiability problem of propositional logic. For this rea-
son, we use an inductive approach and do not rely on a polynomial upper bound on the
size of the constructed formulas as in [8]. Finally, it should be mentioned that automata
encode all solutions of a formula which makes it easy to find the smallest one.

There has been much work on decision procedures for Presburger arithmetic. A com-
parison of different approaches can be found in [10/11J7]. The construction of deter-
ministic finite automata (DFAs) from linear arithmetic constraints is described in detail
in [5]. However, the proposed algorithms perform an explicit enumeration of the state
space. A symbolic encoding using BDDs is presented in [7/12]. From a practical point
of view, our method is most closely related to the approach presented in [8] that also
makes use of SAT solvers. The idea is to reduce the infinite domain of Presburger for-
mulas to a finite one by computing bounds on the size of the solutions. In contrast to
our approach, however, it cannot directly deal with bitvector operations as described
above. Strichman [[13]] presents another SAT based decision procedure that is based on
Fourier-Motzkin elimination. In the worst case, this approach leads to a SAT problem
that is doubly exponential in the size of the formula. Finally, Kroening et. al [[14] pro-
pose an abstraction-based procedure that combines a SAT solver with a theorem prover
in order to successively generate approximations of the original formula.
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The outline of the paper is as follows: after briefly describing AFAs and Presburger
arithmetic in the next section, we present the corresponding translation in Section 3
Then, we describe our approach for checking emptiness of AFAs and discuss the ef-
fect of introducing bitvector operations (Section H)). Experimental results are given in
Section[3 and finally, we conclude with a summary and directions for future work.

2 Foundations

2.1 Alternating Finite Automata

Alternating finite automata (AFAs) [[15/16I17/18] and also Boolean automata [[19420.21]]
are a natural generalization of nondeterministic finite automata (NFAs) in the sense that
the next state is not just chosen from a set of states, but determined by a propositional
formuld]. Recall that an NFA is a tuple (@, X, 6, qo, F'), where Q is the set of states,
X is the alphabet, 6 : @ x XY — Z(Q) is the transition function, go is the initial
state, and F' C Q is the set of final states. A word aw € X is accepted in a state
q € Q iff there exists at least one successor state ¢’ € 6(g,a) such that w is accepted
in ¢’ (the empty word is accepted in ¢ iff ¢ € F'). More formally, we recursively de-
fine acc(q, aw) :& 3¢’ € 8(q,a).acc(q’, w). Since there are only finitely many states,
the existentiald acceptance condition of NFAs can be replaced by a disjunction, i.e.,
acc(q, aw) =V ycs(q.0) 3€(¢', w). AFAs extend this idea to allow arbitrary proposi-
tional formulas in place of the disjunctions found in NFAs: Instead of a set of successor
states, each state has an associated formula that characterizes its acceptance condition.
Thus, to decide whether a word is accepted in a state, one simply evaluates the associ-
ated formula.

An AFA can be formally defined as follows, where we use Boolean variables not
only to represent the states, but also to encode the alphabet, i.e., we assume that a letter
is a vector of Boolean values:

Definition 1 (Alternating Finite Automaton (AFA)). An alternating finite automaton
is a tuple (Q,V, 6,1, F), where

Q is the set of state variables,

V' is the set of input variables,

6: Q — Prop(Q U V) is the transition function that associates with each state
variable a propositional formula over the variables QQ UV,

I € Prop(Q U V) is the initial formula over the variables Q UV, and

— F: Q — B is the final function that maps state variables to the Booleans.

In the sequel, we denote state variables by qq, . . . , ¢, and input variables by vy, . . . , vp,.
Moreover, we abbreviate 5 := B!V,

! Originally, the term alternation stems from the fact that existential and universal quantifiers
can alternate during the course of a computation, whereas in a nondeterministic computation
there are only existential quantifiers.

2 Clearly, one can also define a dual type of automata, where a word is accepted in a state iff all
of its successor states accept the remaining word. The acceptance condition of such universal
automata is a conjunction of the acceptance conditions over the successor states.
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This definition slightly differs from the ones found in the literature in that it provides an
initial formula instead of only a single initial state. As a result, an AFA as defined above
cannot accept the empty word. Moreover, we allow arbitrary propositional formulas,
i.e., a variable may occur not only in positive, but also in negative form.

Definition 2 (Acceptance and Language of an AFA). Given a propositional formula
[, let flvi/gi,w;i/ hj]géééf denote the formula obtained by simultaneously substitut-
ing the formulas g; and h; for the variables v; and wj, respectively, for 0 < i < m and
0 <j<n. Givenan AFA A = (Q,V, 6,1, F), the acceptance of a word with respect
to a formula | is defined as follows, where (bo, ..., b,) € X andw € X+

acc(f, (bo, ..., bn) w) = acc(fqi/8(q:),v; /bilo=in, w)
acc(f7 (b07 B bO)) = f[Qi/F(Qi)a v]/b]]gézggf

A word w is accepted by A iff acc(I,w) holds. The language accepted by A is defined
as L(A) == {w € X* | acc(,w)}.

AFAs have the property that they are backward deterministic which means that they are
deterministic if one considers them working on the input string from right to left. Thus,
an AFA can also be viewed as a symbolic description of a deterministic finite automaton
(DFA) accepting the reverse language. The transition relation is thereby given as an
equation system, i.e., by the conjunction A ., ¢ < 06(q), where ¢’ is the next state
variable associated with q. For this reason, it is often more convenient to consider the
reverse language when dealing with AFAs, which has lead to the notion of reversed
AFAs [2212324]). In particular, when constructing AFAs for Presburger formulas, we
will assume that the input is being read from right to left.

However, it should be emphasized that the order in which the input is read is mainly
a matter of taste. For instance, checking whether a word is accepted by an AFA can
be done in both directions with essentially the same complexity. The only difference is
that when reading from right to left, we have to deal with a vector of formulas, whereas
in the opposite direction it suffices to consider a single formula (cf. Definition 2)). The
crucial point is that AFAs have an equational structure [23], or in terms of symbolic
model checking, an explicit partitioning of the transition relation. This allows us to
unwind AFAs without introducing additional state variables and to employ efficient
SAT solvers for checking emptiness, as mentioned in the introduction.

Given two AFAs A; = (Q1,V, 61,11, F1) and Ay = (Q2,V, 62, Iz, F>), the Boole-
an operations are defined by the corresponding operations on the initial formulas:

- A = (@1, V, 61,1, Fr)
- AiANAy = (Q1UQ2,V,61Ub, I1 No, Fy U Fy)
- A VA = (Q1UQ2,V,81Ubs, Iy V Iy, F1 U Fy)

It is easy to see that the Boolean operations satisfy the following equations (e denotes
the empty word):

= L(0A) = L(A) \ {e}

- L(A1 NA2) = L(A1) N L(A2)
- L(A1VA2) = L(A1) UL(A2)
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2.2 Quantifier-Free Presburger Arithmetic with Bitvector Operations

In this subsection, we briefly describe the syntax and semantics of quantifier-free Pres-
burger arithmetic with bitvector operations (QFPAbit).

Definition 3 (Syntax of QFPADbit). Let V := Vyz U Vg be a finite set of integer and
Boolean variables, respectively, such that V7 N\ Vg = () holds. Then, the set of terms is
defined as follows with c € Z and x € Vy:

T:=clz|T+T|c-T|=ST|TAT|TVT
The set of formulas is defined as follows with p € Vg andi< € {=,#,<,<,> >}
Fi=p|T=T|-F|FAF|FVF

The semantics should be clear from the context except for the bitvector operations =,
A, and V that need some further explanation. Their semantics is based on two’s com-
plement encoding, where the value (zy . .. xq)z of a bitvector (x . .. xg) is defined as
follows:

k—1
<$k . a:())Z = —Qkxk + ZQiaxi
=0

Recall that in this encoding the most significant bit can be replicated without changing
the value (sign extension). Thus, the equation (xy, ...x0)z = (Txxk ...x0)z is valid
for all bitvectors (zy ...xo). A term =z is then interpreted as (—xy ... —x)z, pro-
vided that x = (xy ... x0)z holds. Similarly, the terms z Ay and zVy are interpreted
as (Tx A Yk ...2o Ayo)z and (zr V yi...xo V Yo)z, respectively. For example, as
—6 is represented by the bitvector (1010), and 5 by (0101), it follows that —6V/5 is
represented by (1111), which is the number —1. Moreover, we have =5=—6.

It is well-known that a set can be defined in pure Presburger arithmetic, i.e., without
extensions such as bitvector operations, iff it is ultimately periodic [26/27]]. Aset Z C Z
is ultimately periodic iff there exists a p > 1 (the period) such that the following holds:

—Int>0van>ntneZent+pec”
- InT <0vVn<<n meZesn—pe”z

However, this does not hold for Presburger arithmetic with bitvector operations as de-
fined above. Consider, for example, the formula

pow2(z) =1+ (z —1)Vaz)=22Az >0

which holds iff x is a power of two. Since the set of satisfying assignments of pow2
is not ultimately periodic, QFPAbit is strictly more expressive than pure Presburger
arithmetic. In fact, QFPADbit is as expressive as the quantifier-free fragment of the weak
monadic second order logic of linear order (WMSQO_ ). The proof is based on the fact
that for every WMSO_. formula there exists an equivalent one whose atoms express
singletons, set inclusion, and the successor function. Since these atoms are definable in
QFPADbit, every WMSO . formula can be translated to an equivalent QFPADbit formula.
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3 Translation of Quantifier-Free Presburger Arithmetic to AFAs

The relationship between QFPAbit formulas and AFAs is established via the two’s com-
plement encoding presented in the previous subsection. For that purpose, we associate
with each integer variable z € V7 and each Boolean variable p € Vg exactly one input
variable v € V of an AFA. A word w € X" with

bo,k bo,1 bo.o

b717k bn,l bn,O

is then interpreted as the assignment &, : V — ZUB, where &, (z;) := (bi k... bio)z
for x; € Vz and &, (p;) := b; i for p; € Vg. Using this encoding scheme, the i-th row
encodes the value of the i-th variable, and the j-th column is read by an automaton in
the j-th step. Hence, the number of variables is finite and fixed, whereas their bitwidth
is also finite, but arbitrarily large.

Since we have already shown how to perform the Boolean operations on AFAs, it
remains to describe the construction of automata for relations and Boolean variables.
Since the latter only depend on the most significant bits of a word, they can be easily
translated to an AFA by considering only the initial formula, i.e., a formula p with
p € Vp is translated to the automaton (0, V, 0, v,, 0) with v, € V (the third and the
fifth component are the empty set, since the domain of the corresponding functions is
empty). Hence, there is no overhead for translating the propositional part of a QFPAbit
formula to an AFA.

The translation of arbitrary relations is slightly more difficult. As a first step, we
separate the bitvector parts from the arithmetic parts. By introducing new variables, it
is straightforward to construct an equisatisfiable formula that only contains relations of
either type. In the same way, relations over more than three variables can be reduced
to relations over at most three variables. For instance, the formula (xﬁy) +2z=sIis
satisfiable iff the formula (z Ay = t) A (t + z = s) is satisfiable. Thus, it suffices to
consider the following three types of relations: =z = Y, azﬁy =z,andx +y < z.
In practice, however, this is rather inefficient, since it often requires a large number of
auxiliary variables. Moreover, equations must be expressed by a conjunction of inequal-
ities. For this reason, we consider relations of the following types, where 7% and T» are
terms containing only bitvector operations:

(A Ty =Ty (B) Zcixi =c (C) Zcixi <c
i=0 i=0

Equations of type (A) can be translated to an AFA with a single state variable. Initially,
this variable is set to true and at each step it is checked whether the inputs satisfy the
equation. If the equation is not satisfied, the state variable is set to false and keeps this
value until the last letter has been read. More precisely, let T} and T3 be the terms ob-
tained by replacing all integer variables z; with the corresponding input variables v;.
Then, the equation 77 = T5 is translated to the AFA ({q},V, 6,1, F) with 6(¢) =1 =
g N (T] < T3) and F(q) = 1 (= denotes equivalence of propositional formulas).
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The construction of DFAs from linear arithmetic constraints over natural numbers
has already been presented in [4] and extended in [5] to deal with integers. The idea is
to read the input from left to right, i.e., starting with the most significant bits, and to
keep track of the value of the left-hand side of an equation (inequality) as successive
bits are read. Thus, each state corresponds to an integer y that represents the current
value. The next state is then defined by 7' = 2v + Y. ¢;b;, where (by, ..., bo) is
the input vector. For an equation, the final state is uniquely determined by its right-
hand side, i.e., the constant c. Similarly, for an inequality, a state is final iff its value is
less than c. Moreover, it was shown in [5] that there always exists an o € N such that
|v| > o implies |y'| > ||. Thus, all states with || > |c| can be collapsed into a single
nonaccepting state. As a result, there are only finitely many states. More precisely, the
number of states is bounded by O(log, |c| - Y"1 |ei]) (3.

In contrast to [3]], our approach is based on reading the input from right to left when
considering DFAs (the corresponding AFAs still read from left to right, and thus, the
most significant bits that determine the signs can be easily encoded in the initial formu-
las). In many cases, this allows us to detect conflicts very early. For example, given an
equation Z?:o c;x; = c with ¢; even and ¢ odd, it is clear that the least significant bit of
the sum is always zero. Thus, the equation is unsatisfiable which can be detected after
reading the right-most input vector. Let us first consider the translation of equations.
Givenaterm T = (> ; c;z;) — ¢, the translation is based on the following recursion
(T =, 0 holds iff T is divisible by k):

T=0eT==0A|T/2]=0 (1)

Unwinding this equation is essentially equivalent to checking whether the bits of the
sum (first conjunct) and the carry (second conjunct) are zero. Hence, by reading the
input from right to left, we do not use the states of an AFA to store the current value of
the sum, but to store the result of the division, i.e., the carry.

Before we can construct an AFA for an equation or inequality, we must determine
the number of required state variables (since in [5] the states are represented explicitly
instead of symbolically, they can be constructed on-the-fly). For that purpose, we have
to compute the maximal (minimal) carry that can occur while reading a word.

Theorem 1. Given a relation Z:-L:O ciw; X ¢ with e {=,<}, let ¢max and cmin
denote the sum of the positive and negative coefficients, respectively. Then, the following
holds for the maximal carry kmax and the minimal carry kmin:

kmax:{cmax_l ifcmax‘+0>]- kmin:{cmin ifcminﬂ_c<0

—c otherwise —c  otherwise

Proof. Inthe worst case, either only variables with positive or with negative coefficients
contribute to the carry. Hence, the sequence of maximal (minimal) carries is ;41 =
f(z;) starting with xo := —¢, where f(z) = |(x + A)/2] for A = cmax (A = Cmin)-
Note that f is monotonic, since it is composed of the monotonic functions Ax.x + A,
Az.x/2, and Az.|z|. Thus, the sequence is monotonically increasing if zo < f(xq)
and monotonically decreasing if zo > f(xo). Moreover, f has two fixpoints, namely a
greatest fixpoint vz.f = A and a least fixpoint pz.f = A — 1. In order to determine
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Emax := max{z; | ¢ > 0}, we have to distinguish between two cases: If 2o < f(x0),
ie, —¢ < |(—¢+ cmax)/2] € Cmax + ¢ > 1, then lim; oo x; = pa.f = A —1,
and hence, kpyax = Cmax — 1. Otherwise, the sequence is monotonically decreasing and
converges to A so that ky,.x = 9 = —c. The proof for kp,;, is analog. O

Thus, the number of bits required to store the carries is m = max(||kmax||; ||kmin||),
where ||.|| : Z — N yields the number of bits required to represent an integer in two’s
complement encoding.

Definition 4 (Translating Equations to AFAs). Given a set of integer variables V7 =
{zo,...,zn}, let V := {wo,...,v,} be the set of input variables. Then, an equation
St ciw; = cis translated to an AFA (Q,V, 6,1, F) with m + 1 state variables Q =
{qo, - -, qm} such that the following holds, where d :== >_"_ c;v;:

<6(Qm)7~ . '76((]1))2 = <Qm7~ . ~,(J1>Z + I_d/QJ
- 6(q0) = (@0 Nd =2 0)
- 1= (<qm,...,ql>z— I_d/QJ :0/\(]0)
- F(Qm)aaF(QI»Z = —C
- F(g) =1

An AFA constructed according to the above definition essentially implements the suc-
cessive application of Equation (I)). Given a word with & letters, we obtain the following
formula by unwinding the equation, where g represents the conjunction of the sum bits

at positions 0 < @ < k and (g, . . ., g1)z the carry at step k:
T2 0A(T/2) 2 0N ---A(T/2" 1) 2 00 |T/2%] =0
N~ ~ - ~ ~ -~
90 (@m-q1)z
As an example, consider the equation 2z — y = 1. With ¢pax = 2 and cpin = —1 we
obtain kmax = 1 and kpmin = —1. Since m = max(||1]|, || — 1||) = max(2,1) = 2,

a total number of three state bits are required. The reachable part of the corresponding
DFA is shown in Figure[Il where dotted transitions indicate the application of the initial
formula. Note that this leads to nondeterministic behavior, since one might apply the
initial formula, but one might also unwind the AFA once more. However, the remaining
(large) part is always deterministic.

The translation of inequalities to AFAs is very similar to the translation of equations
except that we do not have to check whether all bits of the sum are zero. It suffices to
check whether the carry will eventually be negative. This can be easily done by exam-
ining the most significant bit which determines the sign in two’s complement encoding.

Definition 5 (Translating Inequalities to AFAs). Given a set of integer variables
Vi = {xo,...,xn}, let V. := {vg,...,v,} be the set of input variables. Then, an
inequality Y\, ¢;x; < cis translated to an AFA (Q,V, 6,1, F) with m state variables
Q ={q,-..,qm} such that the following holds, where d := Z;L:O Civ;:

- <6(Qm)7~'~76(Q1)>Z = <Qm7~-~aq1>Z+ I_d/QJ
- I=(gm,---,q)z — [d/2] <0)
- <F(Qm)a'~"F(Q1)>Z = —C
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Fig. 1. Automaton for the equation 2z —y = 1

4 Checking Emptiness of AFAs

Once we have constructed the AFA A, for a QFPAbit formula ¢, checking satisfiability
of ¢ amounts to checking whether the language of A, is empty. If so, there does not
exist a satisfying assignment for ¢. A straightforward way to check emptiness of an
AFA is to unwind it according to Definition [2| without assigning values to the input
variables. Hence, a formula is satisfiable iff there exists a &k > 0 such that the formula
obtained by unwinding the AFA is satisfiable. However, this only yields a semi-decision
procedure that cannot be used directly to prove that a formula is unsatisfiable, since this
would require infinitely many unwinding steps.

To solve this problem, we could make use of the fact that for finite state systems
there always exists an upper bound on the required number of unwinding steps which
is referred to as the completeness threshold in bounded model checking. In general,
however, computing the completeness threshold is a nontrivial task and does not always
yield a tight bound. On the other hand, regarding the special case of quantifier-free
Presburger formulas, it is well-known that if a formula has a satisfying solution, there
is one whose size, measured in the number of bits, is polynomially bounded in the size
of the formula. This allows one to translate every quantifier-free Presburger formula to
an equisatisfiable propositional formula of polynomial size [8] (in theory, this follows
from the fact that deciding formulas of linear integer arithmetic is NP-complete [28]]).

Unfortunately, computing an upper bound on the number of unwinding steps for
checking emptiness of an AFA is hardly feasible in practice. This is due to the fact that
QFPAbit is more expressive than quantifier-free Presburger arithmetic (cf. Section2.2).
In particular, if a formula contains bitvector operations, there may not even exist a
polynomially sized model w.r.t. to the length of the formula. To prove this, let R, be a
family of formulas defined as follows with k£ > 2:

k—1 k-2 k-1
Re:=xz>0Apow2 |1+ \/ 2z | A \ /\ 22A22=0
i=0 i=0 j=i+1

Note that a formula pow2( f(z)) can be easily translated to the equisatisfiable formula
pow2(y) Ay = f(z). The models of Ry, are characterized by the following lemma:



74 T. Schuele and K. Schneider
Lemma 1. A natural number x is a model of Ry, iff every k-th bit of © is one and all
other bits are zero.

Proof. The operands of the bitvector operations are multiples of x, each shifted by ¢
bits to the left for 0 < ¢ < k, as shown in the following diagram:

T 0 =z, ... Tk Tp_1 ... ... T1 Xp

2x 0O =z, ... Tp Tk—1 ... ... x1 x0 O

ok—1p 0O 2, ... Xp XTk—1 ... ... X1 g ... O 0 O
First, we prove that a number x = (0, Z,, ..., Zo)z is a model of Ry if x; = 1 and

xzj = 0forall 0 < ¢,j < nsuchthati = 0 and j # 4 holds. The first part of the
conjunction is obviously satisfied, since the most significant bit of x is zero. The second
part is also satisfied, since each column in the above diagram contains an x; with 7 =, 0.
Thus, the result of the bitvector disjunction is a string of 1’s and the increment of the
corresponding number is a power of two. The third part of the conjunction performs a
pairwise comparison of the rows to ensure that at most one bit is set in each column.
Since the columns consist of exactly k elements, they cannot contain an x; and an
Zi+r With ¢ 225 0. Hence, this part is also satisfied. The reverse direction of the proof
follows from the fact that this is the only assignment of the x;’s that satisfy the formula.
Given an arbitrary x, we must have g = 1 by the second part of the conjunction,
x1 =+ = xk—1 = 0 by the third part, and so on. O

Theorem 2. Given a satisfiable QFPAbit formula o, the size of its smallest model,
measured in the number of bits, is not polynomially bounded in the size of .

Proof. Let || denote the size of a formula ¢, where the size of a constant is measured
in its number of bits. Then, we have | Rx| € O(k®). Moreover, given that p : N — N is
the sequence of prime numbers, it holds that p(i) ~ i - Ini and [, p(i) ~ €™ [29].
We define S, := —2A Ai—1 Ry (the bitvector conjunction with —2 masks out the
least significant bits) and obtain |S,,| € O(Y ;" (i - In4)?). Hence, the size of S,, is
polynomially bounded by O(n*(Inn)?). Note that a number z satisfies .S,, iff every [-th
bit of x is true and all other bits are zero, where [ = [, p(7). Thus, the size of the
smallest solution is ©(e™) which is not polynomially bounded by n. O

For this reason, we use another approach which has been originally proposed for check-
ing safety properties in bounded model checking [30]. As a major advantage, this ap-
proach uses an inductive style of reasoning and terminates as soon as possible, i.e.,
it does not suffer from non-tight bounds. Given a finite set of states S, a complete
transition relation R C S x S, and a set of initial states Z C S, let path(sg ... sk)
hold iff (s;,s;41) € R forall 0 < i < k. Moreover, let loopFree(sg ... si) hold iff
path(sg...si) holdsand s; # s; forall 0 < ¢ < j < k. Then, the method presented in
[30] aims at checking whether a property P C S invariantly holds on all paths originat-
ing in 7 using the following induction scheme, where k denotes the induction depth:

base case: so € Z Apath(sg...s,) = (Vi.0<i<k—s; €P)
induction step: loopFree(sg...sk41) A (Vi0<i<k—>s,€P) > sp41 €P
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The base case checks whether P holds on a path sg . . . S, and the induction step checks
whether this path can be extended without violating P. Thus, P invariantly holds on all
paths if both conditions are validl. Note that the method is sound and complete for
sufficiently large values of k£ (completeness follows simply speaking from the fact that
every infinite path in a finite state system eventually contains a loop).

In order to prove that an AFA (Q,V, 6, I, F') is empty using induction, we show that
the initial formula I never evaluates to true for the given assignment of the final states F/,
i.e., we set P := —I. For that purpose, the AFA is iteratively unwound until the base
case fails or the induction step holds. As mentioned previously, this does not require
the introduction of new state variables due to the equational structure of AFAs. Instead,
it suffices to replace the input variables with new variables at each step, since a path
is uniquely determined by the read word. As a consequence, the size of the resulting
formulas is reduced significantly which simplifies the check for satisfiability.

The algorithm for checking emptiness of an AFA is shown in Figure[2] where a set
of paths is viewed as a tuple of propositional formulas. The current set of paths and
their prefixes are stored in the list unwind. Remembering the suffixes is necessary to
update the variable loopFree when a path is extended. The variable reject corresponds
to the formula Vi.0 < 4 < k — s; € P of the induction scheme, where P := —1.
That is, reject holds iff a path and its suffixes are nonaccepting. As the first step, the
algorithm checks whether [ is unsatisfiable. If so, the AFA is clearly empty. Otherwise,
induction is applied for increasing depths, starting with paths of length one. If the base
case fails, a counterexample has been found and the algorithm returns false. Otherwise,
the current set of paths is extended and the induction step is checked. If the induction
step also holds, it follows that the AFA is empty. If it does not hold, the procedure is
repeated for an increased induction depth.

5 Experimental Results

The approach presented in this paper has been implemented in our symbolic model
checker Beryl which is part of the Averest frameworkl. We performed two sets of ex-
periments, one with a number of benchmarks contained in Averest and one with the
quantifier-free linear integer arithmetic (QF_LIA) benchmarks of the satisfiability mod-
ulo theories library (SMT-LIB) [31]]. The former are given in our synchronous language
Quartz and were compiled to symbolically encoded transition systems. As the base
logics, our compiler supports propositional logic as well as Presburger arithmetic with
bitvector operations. The generated transition systems are essentially the same for both
logics, except that arithmetic operations on integers are translated to the corresponding
operations on fixed sized bitvectors when using propositional logic as the base logic.
The results for the Averest benchmarks are shown in Table [Tl For each benchmark
we proved a liveness property (first row) and disproved a safety property (second row).
All runtimes are given in seconds and were measured on a Xeon processor with 3GHz.

3 As described in [30]], there exists a dual type of induction scheme that can be thought of as
working in the backward direction. For the sake of simplicity, however, we restrict ourselves
to the forward case. Nevertheless, our implementation supports both approaches.

‘lhttp://www.averest.org
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function empty(Q, V, 6, I, F)
if —sat(/) then return true;

reject := —[;

unwind := cons((qo, - - -, gm), []);
loopFree := true;

loop

/I base case _
if —valid(reject[q; /F'(¢:)]°S'S™) then return false;

/] unwind

(wo, ..., wy) := createFreshVariables(n + 1);

(ro,...,rm) := head(unwind);

(50, 8m) = (8(q0)[gi/7i, v /w022 s+ 8(gm )i /ri, v /w5102 520 );
u := unwind;

repeat

(to,...,tm) := head(u);
loopFree := loopFree A \/[" ) si & Ls;

u := tail(u);
until u = [J;
unwind := cons((so, . .., Sm), unwind);

rejectNext := reject[q; /s;]"S*S™

/I induction step
if valid(loopFree A reject — rejectNext) then return true;
reject := reject A rejectNext;
end,;
end;

)

Fig. 2. Algorithm for checking emptiness of an AFA using induction

A dash indicates that a benchmark could not be solved in less than ten minutes. The
first two columns show the runtimes for bounded model checking (BMC) using AFAs
and DFAs. The latter were constructed by the method presented in 5] and use a semi-
symbolic encoding, i.e., the states are represented explicitly and the transitions sym-
bolically by means of BDDs. Moreover, we measured the runtimes for global model
checking (GMC) using DFAs (GMC is not possible for AFAs, since they do not sup-
port image computation). As can be seen, AFAs are much more efficient than DFAs for
BMC, and in many cases also more efficient than GMC/DFA. For BubbleSort, however,
BMC/AFA is significantly slower which is due to the fact that this benchmark requires
a high bound in BMC. Finally, we verified the benchmarks using Cadence SMV and
NuSMYV for integers with fixed bitwidths (dynamic variable reordering was enabled).
One might argue that such a comparison is like comparing apples and oranges, par-
ticularly since the results for AFAs are based on bounded model checking, while the
results for SMV/NuSMYV were obtained using global model checkinéﬁ. Nevertheless,

> Unfortunately, neither SMV nor NuSMV was able to check the specifications generated by our
compiler using bounded model checking, even though the specifications are simple safety and
liveness properties.
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Table 1. Runtimes for Averest benchmarks

Benchmark Beryl NuSMV SMV
BMC BMC GMC 8bit 16bit 24bit 32bit 8bit 16bit 24 bit 32 bit
AFA DFA DFA

BinarySearch 0,3 - 04 16,7 24,9 132,8 1829 23 12,1 52,3 99,8
0,2 224 1,0 18,7 148,1 - - 126 - - -

BubbleSort 117,3 - 1,3 3,1 27,7 104,7 347,0 0,1 0,1 0,1 0,1
102,6 - 195 9,6 - - - 24 776 453 933

FastMax 0,1 0,8 0,2 1,3 269 472 3989 0,0 0,0 0,1 0,1
0,3 1,8 1,8 3,6 - - - - - - -

LinearSearch 0,4 329,7 0,2 1,4 6,9 203 34,0 0,9 7,7 156 389
0,1 0,1 0,3 22 11,8 26,1 58,1 2,2 84 194 4038

MinMax 0,6 - 1,5 5,6 254,1 - - 0,0 0,0 0,1 0,1
0,3 1489 714 924 - - - 1043 - - -

ParallelPrefixSum 1,3 - 39,6 41 37,5 2359 - 0,1 0,1 0,1 0,1
7,3 - - - - - - 4537 266,5 - -

ParallelSearch 0,2 - 8,9 1,4 8,7 11,0 40,6 1,1 1,8 57 29,7
60,6 541,7 8,6 37 224 176 37,1 1,9 3,7 11,1 19,5

Partition 1,1 - 14,0 1470 - - - 39,7 208,22 - -
0,4 - 116,6 256,1 - - - 112,1 - - -

SortingNetwork4 0,2 149,7 0,3 1,0 35,5 143,1 344,8 0,0 0,0 0,0 0,1
0,1 174,7 0,9 745 - - - - 2435 - -

SortingNetwork8 3,0 - - 5342 - - - 0,0 0,1 0,1 0,1
2,1 - - - - - - - - - -

we list the results to compare our approach with sophisticated model checkers that are
frequently used in hardware verification.

The results for the SMT-LIB benchmarks are shown in Table[2] where we compared
Beryl with CVC Lite 2.5, MathSat 3.3.1], and Yices 0.28. We list only those bench-
marks that could be solved by at least one of the tools within five minutes. As can be
seen, the runtimes largely differ depending on the benchmark. For example, our ap-
proach clearly outperforms all other tools for the SIMPLEBIT_ADDER benchmarks
that could be solved up to size 10 using Beryl, whereas the other tools could only solve
them for size 5 (CVC Lite), 7 (MathSat), and 8 (Yices). For the FISCHER benchmarks,
however, the situation is converse. These benchmarks are most efficiently solved using
MathSat and Yices. For the remaining benchmarks, Beryl can in many cases compete
with the best tool and is usually much faster than the slowest tool.

To check satisfiability of a formula, our implementation currently constructs an AFA
A for the whole formula and then checks whether .4 is empty. Clearly, this is more than
necessary if the result only depends on some subformulas. A better approach is to check
subformulas lazily, i.e., by need. For that purpose, MathSat and Yices use an extension
of the DPLL procedure for propositional logic that often allows one to restrict the search
for a satisfying assignment to a small number of subformulas. As an example, given the
formulaz > 0A (pV x +y = 2), it suffices to prove that 2z > 0 is satisfiable, provided

6 http://www.cs.nyu.edu/acsys/cvcl/
"http://mathsat.itc.it/
8http://vices.csl.sri.com/
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Table 2. Runtimes for SMT-LIB benchmarks

Benchmark

ckt_PROPO_tf_15
ckt_PROPO_tf_20

FISCHERS5-2-fair

FISCHERS5-3-fair

FISCHERS5-4-fair

FISCHERS5-5-fair

FISCHERS5-6-fair

FISCHERS-7-fair

FISCHERS5-8-fair

FISCHERS5-9-fair
FISCHERS5-10-fair
MULTIPLIER_2

MULTIPLIER_3

MULTIPLIER_4

MULTIPLIER_5

MULTIPLIER_6

MULTIPLIER_7

MULTIPLIER_8

MULTIPLIER_64
MULTIPLIER_PRIME_2
MULTIPLIER_PRIME_3
MULTIPLIER_PRIME_4
MULTIPLIER_PRIME_5
MULTIPLIER_PRIME_6
MULTIPLIER_PRIME_7
MULTIPLIER_PRIME_8
MULTIPLIER_PRIME_9
MULTIPLIER_PRIME_10
MULTIPLIER_PRIME_11
MULTIPLIER_PRIME_12
MULTIPLIER_PRIME_13
MULTIPLIER_PRIME_14
MULTIPLIER_PRIME_15
MULTIPLIER_PRIME_16
MULTIPLIER_PRIME_32
MULTIPLIER_PRIME_64
SIMPLEBITADDER_COMPOSE_2
SIMPLEBITADDER_COMPOSE_3
SIMPLEBITADDER_COMPOSE_4
SIMPLEBITADDER_COMPOSE_5
SIMPLEBITADDER_COMPOSE_6
SIMPLEBITADDER_COMPOSE_7
SIMPLEBITADDER_COMPOSE_8
SIMPLEBITADDER_COMPOSE_9
SIMPLEBITADDER_COMPOSE_10
wisal

wisa2

wisa3

wisa4

wisas

Status

sat
sat
unsat
unsat
unsat
unsat
unsat
unsat
unsat
unsat
sat
unsat
unsat
unsat
unsat
unsat
unsat
unsat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
sat
unsat
unsat
unsat
unsat
unsat
unsat
unsat
unsat
unsat
sat
unsat
sat
sat
unsat

Beryl
<1
<1

20.1
2.3
4.2

96.9

25.6
30.6
16.1
2.5
43
<1
<1
<1
<1
1.2
7.2
23.7
56.2
115.0
34

6.4
4.1

CVC Lite
24.9

1.3
2.9
5.4
9.6
15.1
29.5
67.6
116.4

abort
segfault
wrong
abort

segfault

segfault

segfault
<1

3.8
51.6
70.0

MathSat

42.2
66.0
<1
<1
<1
<1
<1
<1
1.9
4.1
1.8
<1
<1
1.2
7.1
42.1
255.4
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
1.0
3.2
6.2
21.8
67.3

Yices
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
1.0
10.3
54.3
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
5.2
94.3

<1
<1
<1
1.1
6.1
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that p has already been set to true. Of course, such a lazy decision procedure can also
be used with the approach presented in this paper to check arithmetic and bitvector
formulas on demand.

6 Summary and Conclusion

We proposed a decision procedure for quantifier-free Presburger arithmetic with bitvec-
tor operations. The translation to alternating automata allows us to benefit from efficient
SAT solvers for checking emptiness of the automata using induction. This is necessary,
since formulas of the considered logic cannot always be reduced to a propositional for-
mula of polynomial size. The experimental results show that our approach can compete
with state-of-the-art decision procedures and is sometimes even more efficient. We plan
to combine the use of AFAs with quantifier elimination in order to support quantified
Presburger arithmetic. For that purpose, the translation has to be extended in order to
deal with congruences that occur during quantifier elimination.
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