
Satisfiability Modulo Software

Micha l Jan Moskal
PhD Thesis

Supervisor: Prof. Leszek Pacholski

Institute of Computer Science
University of Wroc law

ul. Joliot-Curie 15
50-383 Wroc law, Poland

Wroc law 2009

Abstract

Formal verification is the act of proving correctness of a hardware or soft-
ware system using formal methods of mathematics. In the last decade formal
hardware verification has seen an increasing usage of Satisfiability Modulo
Theories (SMT) solvers. SMT solvers check satisfiability of first-order formu-
las, where certain symbols are interpreted according to background theories
like integer or bit-vector arithmetic. Since the formulas used to encode cor-
rectness of hardware design are mostly quantifier-free, SMT solvers are built
as theory-aware extensions of propositional satisfiability solvers. As a conse-
quence, SMT solvers do not “naturally” support quantified formulas, which
are needed for verification of complex software systems. Thus, while SMT
solvers are already an industrially viable tool for formal hardware verification,
software applications are not as developed.

This thesis focuses on both the software verification specific problems
in the construction of SMT solvers, as well as SMT-specific parts of a soft-
ware verification system. On the SMT side, we present algorithms for ef-
ficient non-ground reasoning through quantifier instantiation and techniques
for proof generation and proof checking for quantifier-rich software verification
problems. On the verification tool side, we present methods for transforming
programs into formulas in a solver-friendly way, with particular emphasis on
design of annotations guiding the SMT solver through the non-ground part of
the problem.

The theoretical developments presented here were experimentally vali-
dated in implementations of state-of-the-art tools: an SMT solver and a veri-
fier for concurrent C programs.

Systemy SMT w formalnej
weryfikacji oprogramowania

Micha l Jan Moskal
Praca doktorska

Promotor: Prof. Leszek Pacholski

Instytut Informatyki
Uniwersytet Wroc lawski

ul. Joliot-Curie 15
50-383 Wroc law

Wroc law 2009

Streszczenie

Formalna weryfikacja to proces dowodzenia poprawności oprogramowania lub
projektu uk ladu scalonego (sprz ↪etu) z użyciem formalnych metod matem-
atyki. W ostatnim dziesi ↪ecioleciu w weryfikacji sprz ↪etu coraz cz ↪eściej używane
by ly systemy SMT (ang. Satisfiability Modulo Theories). Sprawdzaj ↪a one
spe lnialność formu l pierwszego rz ↪edu, gdzie pewne symbole s ↪a interpretowane
zgodnie z teoriami, np. zgodnie z arytmetyk ↪a na liczbach ca lkowitych lub
arytmetyk ↪a maszynow ↪a na ci ↪agach bitów. Ponieważ formu ly używane do
kodowania poprawności sprz ↪etu s ↪a przeważnie pozbawione kwantyfikatorów,
systemy SMT budowane s ↪a na bazie systemów sprawdzaj ↪acych spe lnialność
formu l rachunku zdań, rozszerzaj ↪ac je o procedury decyzyjne dla teorii. Z tego
powodu systemy SMT nie obs luguj ↪a formu l z kwantyfikatorami w “naturalny”
sposób, a formu ly takie s ↪a niezb ↪edne w weryfikacji skomplikowanego opro-
gramowania. Dlatego też, pomimo, że systemy SMT s ↪a szeroko używane w
przemyśle elektronicznym, zastosowania w weryfikacji oprogramowania nie s ↪a
tak rozwini ↪ete.

Niniejsza rozprawa skupia si ↪e na problemach specyficznych dla weryfikacji
w konstrukcji systemów SMT oraz na aspektach systemów weryfikuj ↪acych
oprogramowanie maj ↪acych zwi ↪azek z SMT. Od strony SMT prezentowane s ↪a
metody generowania i sprawdzania dowodów niespe lnialności formu l koduja-
cych poprawność programów oraz efektywne algorytmy używane w procesie
poszukiwania takiego dowodu z użyciem instancjonowania kwantyfikowanych
formu l. Od strony weryfikacji opisywane s ↪a metody kodowania poprawności
programów w taki sposób, by system SMT efektywnie je przetworzy l, ze
szczególnym uwzgl ↪ednieniem instrukcji specyfikuj ↪acych, jak instancjonować
kwantyfikowane formu ly.

Teoretyczne wyniki prezentowane w niniejszej rozprawie zosta ly ekspery-
mentalnie potwierdzone w zaimplementowanym systemie SMT oraz weryfika-
torze równoleg lych programów napisanych w j ↪ezyku C.

Acknowledgments

I would like to thank Nikolaj Bjørner, Radu Grigore, Mikoláš Janota, Joe
Kiniry, Rustan Leino, Kuba Lopuszański, Leonardo de Moura, Thomas San-
ten, Wolfram Schulte, and Stephan Tobies for their comments and support
during development of this thesis. Further, I would like to thank my advisor,
prof. Leszek Pacholski, for his continuous encouragement and guidance.

My PhD work was partially supported by Polish Ministry of Science and Ed-
ucation grant 3 T11C 042 30.

Contents

1 Introduction and Summary 1

1.1 History of SMT Solvers . 2

1.1.1 SMT-LIB . 3

1.2 It’s All About Quantifiers . 4

1.3 SMT vs. ATP . 5

1.4 Previous Publication of Presented Results 6

1.5 Structure of This Thesis . 6

2 Deductive Verification with SMT 7

2.1 Deductive Verification . 7

2.2 An Example . 8

2.3 E-matching . 12

2.4 DPLL(T) . 13

2.5 Modular Verification and Function Calls 14

3 Programming with Triggers 17

3.1 E-matching for Theory Building 17

3.1.1 Related Work and Contributions 18

3.1.2 Background: The Hypervisor Verification and VCC . . 19

3.2 Encoding Patterns . 20

3.2.1 The Simple: Tuples and Inverse Functions 21

3.2.2 The Common: Framing in the Heap 22

3.2.3 The Liberal: Versioning 24

3.2.4 The Restrictive: Stratified Triggering 26

3.2.5 The Weird: Distributivity, Neutral Elements and Friends 27

3.3 Performance Requirements on the SMT Solver 28

3.4 Debugging and Profiling Axiomatizations 29

3.4.1 Soundness . 29

3.4.2 Completeness . 30

3.4.3 Performance Problems 32

3.5 Conclusion . 36

4 E-matching 37

4.1 Definitions . 37

4.1.1 NP Hardness of E-Matching 38

4.2 Simplify’s Matching Algorithm 38
4.3 Subtrigger Matcher . 40

4.3.1 S-Trees . 42
4.4 Flat Matcher . 44
4.5 Implementation and Experiments 45
4.6 Conclusions and Related Work 47
4.7 Appendix: Detailed Experimental Results 48

5 Proof Checking 51
5.1 The Idea . 53
5.2 Definitions . 53
5.3 Boolean Deduction . 55
5.4 Skolemization Calculus . 57
5.5 The Checker . 60
5.6 Implementation . 63

5.6.1 Soundness Checking . 63
5.6.2 Performance Evaluation 64

5.7 Related and Future Work . 66
5.8 Conclusions . 67

6 Conclusions and Future Research 69

Chapter 1

Introduction and Summary

When we had no computers, we had no programming problem
either. When we had a few computers, we had a mild programming
problem. Confronted with machines a million times as powerful,
we are faced with a gigantic programming problem.

Edgar W. Dijkstra

Given the fact that software is nowadays used in most areas of human
life, improving reliability of software is of crucial social importance. Moreover
costs of software defects are measured in billions of dollars1, which, given the
size of the software development business (about half a trillion dollars in 2008),
is not very surprising. Improving reliability of software is thus also of crucial
economic importance.

The ultimate software reliability can, however, only come through formal
verification. To quote Edgar W. Dijkstra again, this time from his Turing
Award lecture (Dijkstra, 1972):

Program testing can be a very effective way to show the presence
of bugs, but it is hopelessly inadequate for showing their absence.

It thus seems very unfortunate that, after nearly forty years of academic devel-
opments in verification, most of the software in use, including critical aviation
or medical systems, has not undergone formal verification.

Lack of industrial acceptance of software verification can be attributed
to inadequate automation of verification tools: clearly, if detecting a bug was
as easy as pushing some button, everyone would do it. On the other hand,
if we look at the hardware world, we notice a success story for formal meth-
ods. Especially since the introduction of very efficient model checkers and
propositional satisfiability solvers, formal verification has gained much trac-
tion for chip design. The key reason seems to be that model checking and
SAT-solving are a push-button technologies: there is no need to give guidance
to an interactive theorem prover.

1This thesis uses American English, in particular a billion is understood as 109.

1

Chapter 1. Introduction and Summary 2

In recent years, in hardware verification, the usage of Satisfiability Mod-
ulo Theories (SMT) solvers was increasing. SMT solvers check satisfiability
of a first-order formula, where certain function and constant symbols are in-
terpreted according to a set of background theories. These theories typically
include integer or rational arithmetic, bit vectors, and arrays.

The formulas in hardware verification are usually quantifier-free, thus the
SMT logics are often seen as extensions of propositional logic. In fact, it is
very common to build SMT solvers on top of an existing propositional SAT
solvers.

Given SMT logics, expressible enough to encode software verification
problems, an SMT solver seems to be a good candidate for the underlaying
engine of a software verification tool: SMT is push-button technology, with a
significant development effort (both academic and industrial) behind it.

This thesis focuses on aspects of SMT solving that are specific to software
verification, in particular quantifier instantiation. We approach the topic from
two perspectives.

First, from the perspective of a user of an SMT solver: we describe how
quantifier instantiation techniques are used to build a custom theory, encod-
ing semantics of the C programming language for a software verifier called
VCC. We also report on results of applying VCC in the context of a large
operating-system verification project, in particular focusing on specific de-
mands of software verification tools placed on the SMT solver.

Second, we talk about quantifier instantiation techniques from the per-
spective of an author of an SMT solver. We talk about term indexing tech-
niques used to speed-up quantifier instantiation, as well as efficient proof check-
ing of large, quantifier-rich proofs. Both the term indexing, as well as proof
generation were implemented in an SMT solver called Fx7.

The author of this thesis is the principal author of Fx7 (Moskal, 2007)
and VCC (Cohen et al., 2009a).

This chapter gives some short overview of SMT solvers (Section 1.1),
sketches the quantifier instantiation techniques and their usage in software
verification (Section 1.2), and finally gives an outline of the thesis (Section 1.5).

1.1 History of SMT Solvers

Historically SMT solvers date back to the late 1970s and early 1980s when
Greg Nelson and Derek Oppen introduced a system called Simplify for use with
Stanford Pascal Verifier (Luckham et al., 1979). Later, during 1990s, David
Dill’s group at Stanford developed the SVC prover (Barrett et al., 1996) and
also some decision procedures have been incorporated into the higher order
PVS prover (Owre et al., 1992).

Most notably however David Detlefs, Greg Nelson, and James Saxe, in
the course of ESC/Modula-3 (Detlefs et al., 1998) and ESC/Java (Flanagan
et al., 2002) projects, developed another system confusingly also called Sim-

Chapter 1. Introduction and Summary 3

plify (Detlefs et al., 2005)2. On software verification queries the Simplify
system remained unbeaten for the following ten years.

Simultaneously, in the early 2000s new, orders of magnitude more efficient,
propositional satisfiability solvers (hereafter referred to as SAT solvers) were
introduced. The most prominent ones were Chaff (Malik et al., 2001) (for
the breakthroughs in the solving technology) and later MiniSAT (Eén and
Sörensson, 2003) (for being extremely efficient, yet having very small, readable
code base; this resulted in many derivative solvers).

Following suit several SMT solvers has been developed. The usual method
of engineering such systems was to add theory reasoning to an existing SAT
solver. These included Verifun (Flanagan et al., 2004), MathSAT (Bozzano
et al., 2005), UCLID (Bryant et al., 2002), CVC (Stump et al., 2002) and
CVC Lite (Barrett and Berezin, 2004). Also somewhere around that time
the term Satisfiability Modulo Theories was first used. Later a new wave
of systems were developed using tighter integration between the SAT solvers
and decision procedures, giving another boost to performance. These include
Barcelogic tools (Ganzinger et al., 2004) and Yices (Dutertre and de Moura,
2006). The most recent systems include also Ergo (Conchon et al., 2007),
Spear (Babić and Hutter, 2008), DPT, CVC3 (Barrett and Tinelli, 2007),
Fx7 (Moskal, 2007), and Z3 (de Moura and Bjørner, 2008). Lately the hot
topics in SMT are extending the solvers to handle not only ground queries,
but also ones with quantifiers as well as supporting various bit vector theories.

1.1.1 SMT-LIB

During recent years the development of different SMT solvers was stimulated
by both growing industrial and academic interest as well as the SMT-LIB ini-
tiative (Ranise and Tinelli, 2006). SMT-LIB is a library of publicly available
SMT problems (benchmarks), resulting mostly from industrial applications in
hardware and software verification. Each year authors can submit solvers to
the worldwide competition, the SMT-COMP. Solvers then compete on prob-
lems drawn randomly from SMT-LIB. This is similar to the TPTP (Thousands
of Problems for Theorem Provers; Sutcliffe and Suttner 1998) library and the
CADE Automated Theorem Proving System Competition (CASC), organised
for first-order automatic theorem provers (cf. Section 1.3 for an explanation
of differences between ATP and SMT systems).

The SMT-LIB is organised in different divisions, based on the theories
used in benchmarks. The ones that are of the most relevance to this thesis
is AUFLIA (containing around 6500 problems), which stands for Arithmetic,
Uninterpreted Functions and Linear Integer Arithmetic and UFNIA (Unin-
terpreted Functions and Non-Linear Integer Arithmetic; it contains around
2000 problems). They contain formulas with quantifiers (most other divisions

2From now on we will use the name Simplify to refer to this system, rather than to the
one used with Stanford Pascal Verifier.

Chapter 1. Introduction and Summary 4

contain quantifier-free formulas) resulting from software verification3, mostly
using ESC/Java, Boogie, VCC, and HAVOC tools. All UFNIA and over a half
of the AUFLIA benchmarks were translated to the SMT format and submitted
to SMT-LIB by the author of this thesis.

1.2 It’s All About Quantifiers

SMT problems stemming from software verification are quite different from the
problems resulting from hardware verification. In particular, most hardware
verification problems are ground, while in software verification quantified for-
mulas are often used to encode the custom theory describing semantics of the
programming language being verified. Efficient handling of quantified formu-
las is thus of crucial importance for software verification tools. It has however
proven difficult to go from the realm of (usually) NP-complete ground SMT
problems to the undecidable class of quantified SMT problems.

In fact it was only in 2007 when the 10-year old Simplify was decisively
beaten by Z3 on AUFLIA division of SMT-LIB. Before only a few systems
(to be precise Yices, Zap2, Fx7, CVC Lite and CVC3) supported quantified
queries with linear integer arithmetic and while some of them were able to
outperform Simplify on some of the benchmarks, they were failing on others.
In 2007 there were only four systems competing in the AUFLIA division (or-
dered by results: Z3, Fx7, CVC3 and Yices), whereas ten competed in the
quantifier-free divisions. 2008 has seen three solvers (Z3, CVC3 and Alt-Ergo)
in AUFLIA and thirteen in quantifier-free divisions, and in 2009, with Z3 not
participating, only CVC3 run in AUFLIA.

The usual method used in SMT solvers for dealing with non-ground prob-
lems is based on instantiation. The quantified formulas are instantiated, in a
way that the instantiations share subterms with ground part of the problem.
The instantiation process is guided by annotations attached to quantified for-
mulas, so called “triggers”, and the procedure, making use of triggers, is called
E-matching. Chapter 2 of this thesis provides a running example for solving a
SMT query using E-matching, while Chapter 4 contributes a formal treatment
of the problem, as well as two novel E-matching algorithms.

The triggers can be either explicitly supplied to the SMT solver, or the
solver can select them using a simple heuristic. The explicit triggering has
proven to be a powerful, if somewhat arcane, tool for building custom SMT
theories, like the one describing a particular verification methodology. The
triggering annotations can be viewed as a logic programming language used
to implement a theory to be executed by the SMT solver. Of course one could
also implement the theory inside of an SMT solver, which would likely be
much more efficient, but the implementation would be much harder. Given
how fast such a theory evolves during development of a verification tool, it

3The term software verification will refer to formal, static software verification throughout
this thesis.

Chapter 1. Introduction and Summary 5

seems counterproductive in most cases. Chapter 3 of this thesis surveys most
commonly used encoding techniques and contributes a few novel ones.

No matter how complex the triggers are, the instantiation procedure is
always logically sound. So is the initial skolemization and clausification that
SMT problems are subject to, as well as the resolution rule used in the proof
search. Still, to guard against bugs in the SMT solver and possibly provide
ground for Proof-Carrying Code scenarios for verification with SMT solvers, it
would be good to have the solver produce a proof of unsatisfiability and later
independently check such a proof. However, modern SMT solvers can produce
proofs of enormous size very quickly. Moreover, the initial skolemization,
required since the software verification queries are quantifier-rich, requires
non-local checking of the proof. Thus, such proofs require specialized proof
checking technology. We cover one solution to this problem in Chapter 5.

1.3 SMT vs. ATP

There is certain overlap between what is referred to as SMT solvers and first-
order Automated Theorem Proving (ATP) systems. Both check satisfiability
(or equivalently validity) of first-order formulas. However, unlike in SMT,
the logic considered in ATP systems is usually just plain first-order logic
with or without equality, but always without any additional theories. On the
other hand, SMT solvers usually accept only ground (quantifier-free) problems,
whereas ATP systems use reasoning methods like resolution or superposition,
which are complete also in presence of non-ground formulas. Still, there are
SMT solvers supporting quantifiers, and there are ATP solvers handling some
background theories. The crucial differences are thus in the application areas
and search methods.

SMT solvers evolved from propositional SAT solvers to support more ef-
ficient encoding of specific (hardware or software) verification problems. ATP
systems are built to move forward automated deduction, in particular of math-
ematical theorems. In fact the TPTP library contains a number of open math-
ematical problems4. Thus, as a rule of thumb, SMT solvers are good at huge,
shallow problems (usually from decidable classes), whereas ATP systems are
good at small, deep problems (where the general classes of problems are never
decidable). As a result, the constraints on search methods are different.

ATP systems usually do some sort of saturation search, where new for-
mulas are derived from the input. Such process is guaranteed to finish if the
formula is unsatisfiable but not in the opposite case.

SMT solvers try to build a model for the input formula, step by step.
This is done in hope that the model pointing a verification failure will likely
be small, and if there is no model, we will be able to quickly move through
such small models and discharge them. The user expects an answer either
pointing to a candidate model, or the information that there is none. Both

4 To be fair, there have been an influx of verification problem in the TPTP library in
recent years. This is however nowhere near the SMT-LIB.

Chapter 1. Introduction and Summary 6

answers need to be given quickly. As a consequence, when SMT solvers need
to deal with quantified formulas some heuristic is employed. This sacrifices
completeness for the “common”-case performance. From automated deduction
point of view, this does not seem very elegant. However, verification tools are
very often incomplete for several other reasons, having to do with imprecise
or restricted encoding of the verified system. Thus, one additional source of
incompleteness does not look so bad anymore, especially when one can trade
it for speeding up the interactive feedback loop.

1.4 Previous Publication of Presented Results

Chapters 3, 4, and 5 contain material previously published in the following
papers:

Programming with Triggers. Micha l Moskal. 7th International Workshop on
Satisfiability Modulo Theories (SMT 2009), ACM International Conference
Proceeding Series, to appear.

E-matching for Fun and Profit. Micha l Moskal, Jakub Lopuszański, and
Joseph R. Kiniry. 5th International Workshop on Satisfiability Modulo Theo-
ries (SMT 2007), and Electronic Notes in Theoretical Computer Science, vol.
198.2, pp. 19–35, Elsavier 2008.

Rocket-fast Proof Checking for SMT Solvers. Micha l Moskal. 14th Interna-
tional Conference Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2008). Lecture Notes in Computer Science vol. 4963, pp.
486–500, Springer 2008.

1.5 Structure of This Thesis

Chapter 2: Deductive Verification with SMT introduces deductive
verification and related concepts. We also cover the basics of an SMT solver
operation on software verification input.

Chapter 3: Programming With Triggers describes various common
techniques used for defining theory axiomatizations, in particular the theories
describing semantics of programming languages.

Chapter 4: E-matching introduces two novel algorithms used for finding
quantifier instantiations during SMT proof search, so an axiomatization like
the one developed in Chapter 3 can be efficiently used.

Chapter 5: Proof Checking introduces a technique of proof checking
using an small and efficient, yet extensible proof checker using first-order term
rewriting. Thus, if the SMT solver produces a proof that a piece of software is
correct (modulo axiomatization developed in Chapter 3, thus being large and

Chapter 1. Introduction and Summary 7

involving many quantified formulas), we can actually check the proof faster
then the SMT solver could produce it.

Chapter 6: Conclusions concludes.

Chapter 1. Introduction and Summary 8

Chapter 2

Deductive Verification with
SMT

This thesis focuses on areas of interaction between SMT solvers and software
verification tools, in particular on parts of SMT solvers that are specific for
software verification and parts of verification tools that are needed to make use
of SMT solvers. On the other hand, the general architecture of SMT solvers or
verification tools are not topics of this thesis. Nevertheless, to set up a context,
this chapter briefly discusses relevant concepts of deductive verification, and
provides a high-level overview of the search procedure in a modern SMT solver.

2.1 Deductive Verification

This section describes the deductive verification architecture commonly em-
ployed in software verification tools, which make use of SMT solvers. The
basic idea is to encode correctness of a program in a logical formula, called
the verification condition (VC), and use a theorem prover (either automatic,
like an SMT solver, or interactive) to check validity of the formula.

The meaning of “correctness” depends on design goals of a particular tool,
but usually includes absence of runtime errors (division by zero, null pointer
dereference, accessing unmapped memory, overflows, etc.), and also adherence
to some kind of specification, either supplied inline, in the program text, or
externally. The correctness is then checked modulo some assumptions, regard-
ing the semantics of the language being verified, which are not enforced by the
verification tool. When all these assumptions are thought to be guaranteed by
the compiler and runtime system of the programming language being verified,
the verification is said to be sound (with respect to the properties checked).
Otherwise the assumptions are thought to hold for some sort of “common”
executions, and problems found for such paths indicate likely bugs in the pro-
gram, and thus such activity is called bug-finding. The particular assumptions
might have to do, e.g., with pointer aliasing, type-correct access to memory,
or integer overflows.

9

Chapter 2. Deductive Verification with SMT 10

There exist multiple tools, following the deductive verifier architecture
using SMT solvers, for either sound verification or bug-finding. For example,
Java developers have Krakatoa (Marché et al., 2004) and JACK (Barthe et al.,
2006) for verification and ESC/Java (Flanagan et al., 2002) for bug-finding,
C# programmers can make use of Spec# (Barnett et al., 2005) verifier, while
C users can employ VCC (Cohen et al., 2009a) for verification, HAVOC (Lahiri
and Qadeer, 2008) for bug-finding and Frama-C (Moy, 2009) for either. Spec#,
VCC and HAVOC share an intermediate intermediate language called Boogie
(DeLine and Leino, 2005; Leino, 2009), while Krakatoa and Frama-C share
the intermediate language Why (Filliâtre, 2003).

The general architecture for all those tools, especially the ones sharing a
common intermediate language, is very similar. The input program is trans-
lated into the intermediate language. The verification condition generator
(e.g., the Boogie or Why tool) generates formulas, and sends to one or more
theorem provers for checking. The theorem provers can be either automatic
(like SMT solvers or ATP systems) or interactive (e.g., Böhme et al. 2009).
In case the formulas are invalid, the SMT solvers return some description of
a model where the negation of the formula is true. Such a model is treated
as a counterexample, a description of a program run where the program goes
wrong. In case the formula is valid, the program is assumed to be correct.
In case of Proof-Carrying Code scenarios, a proof of correctness might be ex-
tracted and checked independently (see Chapter 5 for a description of a proof
checking technology useful in such a case). Both kind of outcomes are reported
to the user of the verification tool.

2.2 An Example

We shall now go through a simple C program, see how its correctness is encoded
as an SMT formula, and how the SMT solver checks its satisfiability.

void absolute(int *x)
{

if (*x < 0)

*x = -(*x);
assert(*x >= 0);

}

The program reads an integer from the memory location pointed to by x, and
if this integer is negative, it writes its negation back at the same location.
Then, the assert(...) statement expresses programmer belief, that after
such operation the integer at x is non-negative. A condition in the assert
(...) statement is meant to be checked by the verifier. That is, when the
verifier proves correctness of the program, the programmer expects this condi-
tion to follow from the context and wants to see an error message if this is not
the case. A condition under the assume(...) statement (used later in the
text) would not be checked, but just added to the context. The operational
meaning of both statements is the same: they are supposed to hold for any

Chapter 2. Deductive Verification with SMT 11

execution of the program.
A verifier would usually generate a number of implicit assertions for a

program. In C one would expect assertions talking about validity of memory
location pointed to by x. For brevity we skip those, so by correctness of
the program we mean that the explicit assertion never fails. The first step
toward establishing correctness of this program is to make the heap encoding
explicit. We do that by introducing a global variable representing the heap,
and substituting heap accesses with applications of functions rd(...) and
wr(...), for reading and updating the heap respectively. An axiom, we are
going to use to reason about a heap update is:

∀H, p, v. rd(wr(H, p, v), p) = v

If one writes v at heap location p, then reading from the updated heap at p
will yield v. There are more axioms describing the heap, these are described in
detail further in Section 3.2.2. The program, after making the heap explicit,
looks like:

heap H;

void absolute(int *x)
{

if (rd(H, x) < 0) {
H = wr(H, x, -rd(H, x));

}
assert(rd(H, x) >= 0);

}

Next assignments are removed from the program, by introducing fresh vari-
ables:

void absolute(int *x)
{

if (rd(H0, x) < 0) {
assume(H1 == wr(H0, x, -rd(H0, x)));

} else {
assume(H1 == H0);

}
assert(rd(H1, x) >= 0);

}

Further, the conditional statements can be replaced with non-deterministic
choice:

void absolute(int *x)
{

if (*) {
assume(rd(H0, x) < 0);
assume(H1 == wr(H0, x, -rd(H0, x)));

} else {
assume(!(rd(H0, x) < 0));
assume(H1 == H0);

Chapter 2. Deductive Verification with SMT 12

}
assert(rd(H1, x) >= 0);

}

The program is correct iff for any path through non-deterministic choices, for
any model satisfying assumptions on that path, until a particular assertion,
the model also satisfies the assertion. The conjunction of the following three
formulas, is unsatisfiable iff the program is correct:

∀H, p, v. rd(wr(H, p, v), p) = v (2.1)

(rd(H0, x) < 0 ∧ H1 = wr(H0, x,− rd(H0, x))) ∨
(¬(rd(H0, x) < 0) ∧ H1 = H0)

(2.2)

¬(rd(H1, x) ≥ 0) (2.3)

Conjunct (2.1) is the axiom specifying behavior of the heap described earlier.
Conjunct (2.2) encodes the semantics of the conditional statement: either the
condition was true, and the new heap is constructed by updating the old heap
at x, or the condition was not true, and the new heap equals to the old heap.
Finally, conjunct (2.3) says that the assertion is violated. A model for the
conjunction of the three formulas corresponds to a program execution, where
the assertion is violated. If such a model does not exists (i.e., the formula is
unsatisfiable), then the program is correct.

Let us now examine how the SMT solver establishes unsatisfiability of the
conjunction. At the high level, the solver searches through different models
that might satisfy the formula. If a model satisfies the formula, it is returned
as a counterexample. Otherwise, a conflict clause, explicitly conflicting with
the current model, is created and conjoined to the input formula. The conflict
clause is a tautology modulo background theories, so adding it to the input
formula does not change the satisfiability status of the input formula, but
it does narrow down the search space, as the current model (and possibly
other models) are propositionally excluded from further search. After adding a
conflict clause a new model is considered, or if no model can be constructed, the
formula is considered to be unsatisfiable. This procedure is further explained
below.

The search for a model is first performed for a boolean abstraction of the
formula. For example, the initial view of our input formula in the SMT solver
is:

Q ∧ ((C ∧ A1) ∨ (¬C ∧ A2)) ∧ ¬A3

where Q is an abstraction of the heap axiom, C is an abstraction of the condi-
tion and Ai are abstractions of assertions and assumptions. The SMT solver
employs an embedded boolean SAT-solver to find a satisfying boolean assign-
ment to such an abstraction. Let us assume, that the satisfying assignment
found is:

Q = true, C = false, A2 = true, A3 = false

We can interpret this as the solver following the “else” branch. This assign-
ment is translated back to a monome: a set of literals true in the current

Chapter 2. Deductive Verification with SMT 13

boolean model. Our monome is:

{∀H, p, v. rd(wr(H, p, v), p) = v, ¬(rd(H0, x) < 0), H1 = H0,
¬(rd(H1, x) ≥ 0)}

The monome is then communicated to the decision procedures, to see if a
model can be built for it. The arithmetic decision procedure (DP) gets an
abstraction of the part of the monome that is relevant for it, which in our
case is: ¬(a0 < 0), ¬(a1 ≥ 0). The structure of terms rd(H0, x) and rd(H1, x)
is hidden behind variables a0 and a1 respectively. The uninterpreted func-
tion DP1 gets the literal H1 = H0, and also is told that terms rd(H0, x)
and rd(H1, x) might be of interest to other theories. By congruence it in-
fers rd(H0, x) = rd(H1, x), which is then communicated to the arithmetic DP
(as a0 = a1). At this point the arithmetic DP signals a conflict: the part of
monome communicated to it cannot have a model. The reasons for conflict are
then analysed, and the solver finds that the three literals of the initial monome
except for the heap axiom contributed to the conflict. Thus the conflict clause
is:

(rd(H0, x) < 0) ∨ ¬(H1 = H0) ∨ (rd(H1, x) ≥ 0)

Note that it is tautology under uninterpreted functions and arithmetic. The
conflict, after abstracting it to C ∨ ¬A2 ∨ A3, is conjoined to the initial input
formula abstraction and passed to the internal SAT solver which restarts the
search for a boolean model.

The only remaining boolean model is Q ∧ C ∧ A1 ∧ ¬A3. The ground
part of the monome:

{rd(H0, x) < 0, H1 = wr(H0, x,− rd(H0, x))), ¬(rd(H1, x) ≥ 0)}

has a model, therefore the ground DPs will not find a conflict. Thus, the quan-
tified formula needs to be instantiated, by adding an instantiation tautology
to the input formula. An instantiation tautology is a formula of the form:

(∀x1, . . . , xn. ψ(x1, . . . , xn)) ⇒ ψ(t1, . . . , tn)

for some t1, . . . , tn. The selection of particular t1, . . . , tn (or equivalently a
substitution mapping xi to ti) is performed heuristically, as described in the
next section. The particular instantiation tautology we need for our problem
is:

(∀H, p, v. rd(wr(H, p, v), p) = v) ⇒
rd(wr(H0, x,− rd(H0, x)), x) = − rd(H0, x)

This tautology is abstracted to Q⇒ I1, and thus the input formula abstraction
now looks like:

Q ∧ ((C ∧ A1) ∨ (¬C ∧ A2)) ∧ ¬A3 ∧
(C ∨ ¬A2 ∨ A3) ∧ (Q ⇒ I1)

1 Everything that is not pure equality and propositional connectives is treated as theory
in SMT. This includes the uninterpreted function theory, which could be axiomatized with
∀x1, ..., xn, y1, ..., yn.x1 = y1 ∧ ... ∧ xn = yn ⇒ f(x1, ..., xn) = f(y1, ..., yn) for every function
symbol f with arity n.

Chapter 2. Deductive Verification with SMT 14

The SAT solver looks for a model for the new formula, and finds: Q ∧ C ∧
A1 ∧ ¬A3 ∧ I1. Using reasoning similar to the one before, we get a conflict
clause of ¬C ∨ ¬A1 ∨ A3 ∨ ¬I1, which after conjoining to the input formula,
makes it unsatisfiable at the boolean level, and thus the SMT solver concludes
that the original input formula was also unsatisfiable.

This description of the proof search highlights the most important features
of SMT solvers:

1. Handling of the propositional structure of the formula is very much like
in the modern, extremely efficient, propositional SAT solvers.

2. Multiple DPs built into the SMT solvers need to cooperate, in our ex-
ample the uninterpreted function DP propagated equality to the linear
arithmetic DP. This is usually achieved using some variant of Nelson-
Oppen combination (Nelson and Oppen, 1979).

3. The search space is narrowed by the conflict clauses that the SMT solver
learns during the search.

4. The quantified formulas are handled by instantiation and therefore we
need some heuristic to decide how to instantiate. The most commonly
used heuristics is called E-matching and is described in the following
section.

2.3 E-matching

The E-matching instantiation heuristics is based on the idea that the instanti-
ation tautologies should have some terms in common with the current ground
monome. Therefore, particular subterms2 of the body of the quantified formu-
las are designated as triggers. The solver then looks for substitutions, which
make the triggers equal to terms in the current ground monome, modulo equal-
ity relation imposed by the current ground monome.

More precisely, a term is active in a monome, if it occurs in one of the
quantifier-free literals. For the purpose of matching, some predicates are also
treated as terms (it usually applies to uninterpreted predicates, i.e., ones not
coming from a theory built into an SMT solver, but details vary between
implementations). The equality relation imposed by the monome is the least
congruence relation, containing all equalities positively present in the monome.

A trigger is a set of non-ground terms. A trigger is said to match in the
monome M with the substitution σ, if for each term t in the trigger, σ(t) is
equal, modulo the equality relation imposed by M , to some active term in M .
A formal definitions of triggers and matching is presented in Chapter 4.

2 Explicitly supplied triggers do not necessarily need to be subterms of the body of the
formula. It is however always possible, and usually advisable, to design the axiomatization
in a way that triggers indeed are subterms of the body. This possibility is also irrelevant for
understanding of the intuition behind the triggers.

Chapter 2. Deductive Verification with SMT 15

Going back to our example, let us assume the trigger for the heap axiom
is a single-element set: {rd(wr(H, p, v), p)}, which, following Boogie, we will
from now on write as:

∀H, p, v. {rd(wr(H, p, v), p)} rd(wr(H, p, v), p) = v

In the ground monome:

{rd(H0, x) < 0, H1 = wr(H0, x,− rd(H0, x))), ¬(rd(H1, x) ≥ 0)}

the active, non-variable terms are:

rd(H0, x), wr(H0, x,− rd(H0, x))), − rd(H0, x), rd(H0, x), rd(H1, x)

If we take σ = [H := H0, p := x, v := − rd(H0, x)], then σ(rd(wr(H, p, v), p)) =
rd(H1, x) assuming that H1 = wr(H0, x,− rd(H0, x))).

A multi-trigger is a trigger with more than one element. As described
above, the trigger is said to match is all its terms match. Multi-triggers are
useful when there is no single term containing all the variables, for example,
in the following formula stating transitivity of relation P (...):

∀x, y, z. {P (x, y), P (y, z)} P (x, y) ∧ P (y, z) ⇒ P (x, z)

A quantified formula can also have more than one trigger, in such case it
is good enough if one of the triggers match. For example, if we want the
above transitivity formula, to trigger also when one of the premises and the
consequence is active we could say:

∀x, y, z. {P (x, y), P (y, z)} {P (x, y), P (x, z)} {P (y, z), P (x, z)}
P (x, y) ∧ P (y, z) ⇒ P (x, z)

Therefore, multiple terms in a trigger are akin to conjunction, while multiple
triggers are akin to disjunction.

2.4 DPLL(T)

For simplicity, Section 2.2 above describes the search for boolean satisfying
assignment as a separate step, not involving SMT theories. Most modern
SMT solvers, however, interleave these two steps, using the DPLL(T) search
algorithm. DPLL(T) (Ganzinger et al., 2004) is an extension of the propo-
sitional version of the Davis-Putnam-Logemann-Loveland procedure (Davis
and Putnam, 1960; Davis et al., 1962). The procedure operates on the as-
signment stack S, which is a sequence of literals. The propositional version of
the procedure, checking satisfiability of the formula ψ, consists of three main
steps.

1. Boolean constraint propagation (BCP). In this step, the assignment stack
is extended with literals propositionally implied by the conjunction of
the input formula ψ and the literals on the assignment stack. To be
precise, a literal l is added to S, iff l /∈ S and (

∧
l′∈S l

′) ∧ ψ ⇒ l.

Chapter 2. Deductive Verification with SMT 16

2. Decision, where an arbitrary literal l, such that (1) l /∈ S and ¬l /∈ S and
(2) l or ¬l occur in ψ, is pushed on the assignment stack. Such decision
is the followed by another BCP phase, followed by another decision, and
so on, until a conflict is reached.

3. Conflict resolution, where l results from BCP, but ¬l is already found
on the decision stack. Then the reasons for l (and possibly ¬l) are
analysed and a conflict clause is created using propositional resolution.
The conflict clause is ¬l1 ∨ ... ∨ ¬ln, such that li ∈ S and ψ ∧ l1 ∧
... ∧ ln ⇒ l ∧ ¬l. Thus, the conflict clause follows from the input
formula. Such a conflict clause will have an effect on later BCP phases,
where whenever l1, ..., lm, lm+2, ..., ln are pushed on the assignment stack,
¬lm+1 will be pushed, thus preventing this particular conflict on l. After
conflict resolution, some literals from the assignment stack are popped,
until the conflict clause can be satisfied. If the conflict clause cannot
be satisfied, even after popping all decision literals from the stack, the
problem is unsatisfiable.

The SMT version of this procedure allows theories to participate in BCP
(i.e., theories can say that the literal x > 7 is implied by x > y and y > 10,
even though there might be no propositional connection between them in ψ).
Additionally, the theories may perform some more expensive checks only from
time to time. In general, they can signal a conflict at any time during the
search. Such conflict is resolved very similarly to the propositional conflicts.

The non-ground extension of this procedure adds instantiation tautologies
to ψ.

2.5 Modular Verification and Function Calls

Deductive verification systems very often use procedure-modular reasoning,
that is each procedure is verified separately. This is due to limited capabilities
of the theorem prover: one can hardly expect it to gracefully handle a VC
for the entire program at once. The basic idea behind procedure-modular
reasoning is to use function contracts, in form of pre- and postconditions, to
desugar calls. As an example, let us consider the following C function:

int add_two(int x)
requires(0 <= x && x < 100)
ensures(2 <= result && result < 102)

{
return x + 2;

}

The function add_two(...) requires its parameter to fit the [0..99] range and
ensures that the result returned from it will be in the [2..101] range. The
function use_case(...) then tries to establish that add_two(y) will be less
than 7 provided that y was less than 5:

Chapter 2. Deductive Verification with SMT 17

void use_case(int y)
requires(0 <= y && y < 5)

{
int z;
z = add_two(y);
assert(z < 7);

}

This fails because the body of use_case(...) is verified only with respect
to the specification of add_two(...) and not its body. This is done by as-
serting the precondition, assigning arbitrary values to locations modified by
the function (this assignment is often referred to as the havoc operation), and
then assuming the postcondition. The call-desugaring of use_case(...) is:

void use_case()
{

int y, z;
// havoc the parameter
y = *;
// assuming precondition of use_case
assume(0 <= y && y < 5);
// asserting precondition of called function
assert(0 <= y && y < 100);
// call "happens": havoc the local variable,
// where the result of the call is written
z = *;
// assuming postcondition of add_two
assume(2 <= z && z <= 102);
// user-supplied assertion
assert(z < 7);

}

The specification can thus hide details of implementation.

Chapter 2. Deductive Verification with SMT 18

Chapter 3

Programming with Triggers

This chapter focuses on usage patterns of SMT solvers in software verification
scenarios. In particular, we present a case study of applying VCC (Cohen
et al., 2009a)1 program verifier, powered by the Z3 (de Moura and Bjørner,
2008) SMT solver, in a large operating system verification project (more in Sec-
tion 3.1.2). VCC is a deductive verifier for concurrent C programs. Therefore,
following the model outlined in Section 2.1, VCC takes annotated C functions
as input, and turns them, with the help of Boogie (Barnett et al., 2006), into
verification conditions (VCs). Validity of a VC implies (partial, as we do not
check for termination) correctness of a program. Therefore, if a model for a
negation of a VC can be constructed, it points to a possible problem in the
function, while unsatisfiability of negation of a VC implies correctness of the
verified function.

3.1 E-matching for Theory Building

Each verification tool depends on a verification methodology, dictating the
specification language and commonly used specification idioms, as well as
the particular modelling of the programming language semantics to be used.
Therefore, from a SMT point of view, verification conditions should be eval-
uated modulo a theory describing the verification methodology. Clearly, no
SMT solver supports such arbitrary theory out of the box. Moreover, given
the complexity of such a theory and the pace at which it tends to evolve during
development of a verification tool, it seems highly impractical to implement
such theory inside of an SMT solver. This is why usually (Detlefs et al., 1998;
Flanagan et al., 2002; Barnett et al., 2005; Lahiri and Qadeer, 2008; Filliâtre,
2003) in deductive verification a first-order axiomatization is developed, us-
ing theories available in the SMT solver (like uninterpreted functions, integer
arithmetic, bit-vector arithmetic, and arrays). The formulas presented as ax-
ioms to the SMT solver should be understood as theorems in the model of the

1 VCC, including SMT-support tools described later in the chapter, is available for aca-
demic research, with source code, at http://vcc.codeplex.com/.

19

http://vcc.codeplex.com/

Chapter 3. Programming with Triggers 20

programming language semantics and verification methodology.

Such an axiomatization consists mostly of universally quantified formulas.
The E-matching procedure (Section 2.3), controlled by triggers, is what SMT
solvers usually (Detlefs et al. 2005; de Moura and Bjørner 2008; Ge et al. 2007;
and also Fx7, as described in Chapter 4) use to deal with quantified formulas.

Quantifier instantiation with triggers is often viewed, especially in the
SMT community, as an unreliable heuristic, with no completeness guarantees,
developed for a legacy system (the SMT solver Simplify; Detlefs et al. 2005)
for solving first-order problems. On the other hand, the deductive verification
community is generally not concerned with general first-order problems, and
instead wants a way of encoding the semantics of the verified programming
language. The views of trigger/axiomatization engineering vary from “we need
even more control” to “let us pick some triggers and hope the magical SMT
solver will get it right”. This chapter strongly supports the former camp:
with unrestricted quantifier instantiation verification problems very quickly
become intractable for Z3, and the experience with Z3’s superposition calculi
was similar.

3.1.1 Related Work and Contributions

With the exception of Spec#’s treatment of comprehensions (Leino and Mon-
ahan, 2009), there has been not much publications about particulars of trig-
gering. On the other hand several tools, including ESC/Modula-3 (Detlefs
et al., 1998), ESC/Java (Flanagan et al., 2002), Spec# (Barnett et al., 2005),
Havoc (Lahiri and Qadeer, 2008), and Why (Filliâtre, 2003) use these kinds
of patterns. Only the encoding of ESC/Java’s logic is described in some more
detail (Saxe and Leino, 1999). Overall it seems that there is not enough knowl-
edge exchange between the SMT and deductive verification communities re-
garding these topics. We hope that this chapter will partially bridge that gap,
and help develop alternatives to E-matching, by clarifying its present usage
patterns.

We view the first-order logic, together with trigger annotations, as a logic
programming language used to encode the semantics of the code being verified.
This operational view is illustrated by a number of encoding patterns:

• frame clauses (Section 3.2.2) being source of a large fraction of quantified
formulas in a typical VC

• versioning (Section 3.2.3), demonstrating the automatic trigger selection
employed in Simplify and Z3 to be too restrictive

• stratified triggering (Section 3.2.4), showing the opposite situation, with
novel existential activation used to be again more liberal

• and finally rather surprising behavior of a set theory axiom (Section 3.2.5).

Chapter 3. Programming with Triggers 21

We also describe typical use cases of SMT in verification (Section 3.3), in-
cluding the particular timing and output requirements placed on the SMT
solver.

The encoding patterns presented here are the most complex among ones
we have used in VCC. We thus postulate them to be benchmark problems for
a possible E-matching alternative.

Several axiomatization patterns we present are heavily influenced by the
Spec# program verifier, due to similarities in treatment of ownership and
framing. We note in the text when this is the case.

3.1.2 Background: The Hypervisor Verification and VCC

The Hypervisor verification project2 aims at full functional verification of the
kernel of Hyper-V, an industrial virtualization platform, currently shipped
with Microsoft Windows Server 2008. It is essentially a small operating sys-
tem, with memory management, a scheduler, and essential device drivers. It
consists of about 100 000 lines of C code (excluding comments) and about
5 000 lines of assembly.

The ultimate goal of the project is a formal proof that Hyper-V simulates
the virtualized hardware for each of the guest operating systems. There are
however multiple intermediate goals, the first one being verification of mem-
ory safety in concurrent context. Even this first step relies on establishing,
e.g., functional correctness of red-black trees and complex concurrency syn-
chronization protocols.

The goal of the project is to verify the code that is shipped, not to change
it just to facilitate verification. This requires handling C in its full “glory”, a
restriction to a “safe subset” is out of question. Moreover, the entire code-base
should be verified, including concurrency control primitives (e.g., spin locks),
which are usually taken for granted by verification methodologies. Finally,
annotations are supposed to be maintained by the regular development team
once the verification is complete. Since an average programmer is usually not
an expert in interactive theorem proving, automatic methods should be used
as much as practically possible. The project involves up to 20 people working,
mostly on specification of the Hyper-V, for three years, making it one of the
largest formal verification efforts ever attempted.

These conditions make for a fairly good case-study for verification in the
“real world”.

VCC (Cohen et al., 2009a) is a tool used for Hypervisor verification. It
was developed with the needs of Hypervisor verification project in mind, but
given the scope of that project we expect it to be usable on wide spectrum of
C programs. In particular, the verification methodology (Cohen et al., 2009b),
seems applicable to a wide class of various concurrent algorithms.

2It is part of the Verisoft XT verification project, supported by BMBF under grant
01IS07008. The Verisoft’s Aviation subproject, focusing on PikeOS embedded operating
system verification (Baumann et al., 2009) also uses VCC.

Chapter 3. Programming with Triggers 22

VCC extends the C language with contracts in style of JML (Leavens
et al., 1999) and Spec# (Barnett et al., 2005). Functions are equipped with
pre- and post-conditions while types (structures and unions) are equipped with
two-state invariants, which describe valid states and possible changes of objects
of those types. Contracts are specified in a variant of the C programming
language consisting of side-effect free expressions, first-order quantification,
and lambda expressions.

The annotated C programs are translated, with help of the Boogie veri-
fication condition generator (Barnett et al., 2006) to formulas understood by
the Z3 (de Moura and Bjørner, 2008) SMT solver. Even though Boogie has
multiple theorem prover back-ends (not even restricted to first-order logic,
e.g., there exists a back-end (Böhme et al., 2009) for Isabelle/HOL), VCC
currently focuses on the SMT back-end and Z3 in particular.

Verification in VCC is function- and thread-modular: each function is
verified separately, as if executed by a single thread, where actions of other
threads are simulated at certain points.

First Order Manifesto Verification of complex, functional properties of
programs has been, to date, mostly done using interactive, higher-order pro-
vers. To leverage automation offered by modern SMT solvers, VCC restricts
the specification language not to use any higher order or specialized logics.
The specifications are expressed using first-order predicates, possibly operat-
ing on ghost state, i.e., fields and objects introduced only for the purpose of
specification. Ghost fields are used, e.g., to store a map-abstraction represent-
ing all nodes of a red-black tree in the tree object, or to capture concurrent
protocols.

We have been able to specify and verify multiple recursive data structures,
as found in the Hyper-V code, some complex synchronization primitives (spin
locks, reader-writer locks, rundowns, custom algorithms for message passing)
and specify a good deal of data structure invariants. We currently do not face
expressiveness problems with the first-order specification language.

Annotation Language Flexibility To facilitate the specification of com-
plex functional properties, VCC supports manipulation of ghost data types,
including maps (from pointers and integers into arbitrary types) as well as
entire states of execution, which can be captured and used to evaluate ex-
pressions in them. Additionally, new user-defined ghost data types can be
specified at the level of C, using function symbols and axioms.

Foremost, however, VCC supports explicit triggers in quantified formulas.
We found this ability invaluable in specification of recursive data structures
(Section 3.2.4), and helpful in a number of other situations. We intend to sur-
vey common triggering styles in specifications, toward the end of the project,
to see if and how the trigger selection can be mechanized. Currently, however,
we focus on a handful of “specification idioms”, which are “recipes” describing
how to specify a particular implementation artifact, including triggers.

Chapter 3. Programming with Triggers 23

3.2 Encoding Patterns

This section presents a few common patterns for encoding of verification
methodology with a help of E-matching.

While triggers give precise restrictions when an instance can be generated,
the exact time at which the instance will be generated is determined heuristi-
cally. Experience with Z3, VCC and Spec# suggests eager instantiation (i.e.,
the instance is generated as soon as the relevant terms appear in the monome,
before any case-splitting) to be the most efficient.

3.2.1 The Simple: Tuples and Inverse Functions

This simple example shows how triggering can make the behavior of an SMT
solver rather unpredictable. Let us consider a typical axiomatization of a pair
constructor and selector functions:

∀x, y. {pair(x, y)} fst(pair(x, y)) = x ∧ snd(pair(x, y)) = y

In other words, whenever the term pair(t, s) becomes active, the axiom will
also activate (and give value to) the selector functions. Thus, if an assump-
tion like pair(0, a) = pair(1, a) is present, the axiom will, through congruence
closure, cause 0 = 1 to be assumed. On the other hand, should we select
{fst(pair(x, y))} as the trigger, which would be natural if we thought of the
axiom being the definition for the fst(...) function, an assumption like the
above alone would not trigger the axiom. Only if the terms fst(pair(0, a)) and
fst(pair(1, a)) would happen to be active, possibly because of some other proof
obligations, would the axiom trigger and cause inconsistency to be detected.
This would generally cause unpredictable behavior of the SMT solver: a proof
of a particular assertion could be dependent on some unrelated previous proofs.
Therefore, the author of the axiomatization needs to identify the cases where
the existence of an “interface” function like fst(...) is also used to derive some
properties of the objects it is applied to, in particular distinguishing between
different instances of such objects.

Extensible Records

Consider the tuple example again, but one where we do not define the con-
structor function (or the definition axiom) at all. Instead, whenever we need
to construct a tuple object, let us say 〈1, 2〉, we would introduce a new con-
stant c, and assume fst(c) = 1 ∧ snd(c) = 2. Since there is no mention of the
constructor function, new fields can be added freely, assuming the cardinality
of the type of c is big enough. For example, VCC background axiomatization
defines several selector function on program states, including one for memory
values (statemem) and one for status (ownership etc., statest). We then define
helper functions to access different “dimensions” of state. Finally, we sub-
divide the information about ownership of a particular pointer even further,

Chapter 3. Programming with Triggers 24

using statusclosed and statusowner selector functions:

memory(S, p) ≡ rd(statemem(S), p)
status(S, p) ≡ rd(statest(S), p)
owner(S, p) ≡ statusowner(status(S, p))
closed(S, p) ≡ statusclosed(status(S, p))

The reason for such a two-stage encoding is performance. For example, ordi-
nary memory write putting value v at pointer p is going to turn a state S0
into S1, where only statemem is updated, while statest stays unchanged:

statemem(S1) = wr(statemem(S0), p, v) ∧ statest(S1) = statest(S0)

Subsequent reads from statest(S1) do not need to go through any quantifier
instantiation to be transformed into reads on statest(S0). On the other hand,
the ownership-related information tends to be updated all at once, and there-
fore there is no reason for separation of heaps. For example, closing an object
p and setting its owner to o is done with the following assumption3:

statemem(S1) = statemem(S0) ∧
(∃s. statest(S1) = wr(statest(S0), p, s))
∧ owner(S1, p) = o ∧ closed(S1, p) ∧ ...

We postulate existence of a status of p such that the owner of o is p and p is
closed. Alternatively, instead of the existential quantifier, one could say that
the new state after update is what it is:

statemem(S1) = statemem(S0)
∧ (statest(S1) = wr(statest(S0), p, status(S1, p)))
∧ owner(S1, p) = o ∧ closed(S1, p) ∧ ...

which might be trickier to understand, but is otherwise very similar. Another
example is pointers to ghost state, which we can draw freely from the set
of integers, and thus they can encode arbitrary amounts of information. In
particular, pointers to certain objects encode versions of ownership domains.

3.2.2 The Common: Framing in the Heap

Basically any reasoning in deductive verification builds on top of heap updates
and accesses. This suggests the heap encoding to be crucial for performance.
In fact the time of reasoning about the heap is dominant in VCC problems.
This section gives an overview of the heap encoding, as used in VCC and
Spec#, with some references to other systems. The VCC heap4 is axiomatized

3 The ownership information also includes time stamps, reference counts, and so on, which
tend to be updated all at once, even if closedness and ownership do not.

4The memory model designed for VCC (Cohen et al., 2009c) imposes a typed object
model on top of C flat memory. Thus, the heap axiomatization is very similar to the one
used for type-safe languages.

Chapter 3. Programming with Triggers 25

using standard select-of-store axioms:

∀H, p, v. rd(wr(H, p, v), p) = v
∀H, p, q, v. p 6= q ⇒ rd(wr(H, p, v), q) = rd(H, q)

The function wr(...) is used when a single heap location is updated. On the
other hand, upon procedure call several locations, let us say a and b, need to be
updated. This is expressed by introducing a fresh variable H1 and connecting
it with the current heap, say H0, using a frame clause, like:

∀q. rd(H0, q) = rd(H1, q) ∨ q = a ∨ q = b

Spec# and VCC use ownership to organize objects in the heap, in par-
ticular with respect to framing. Each object has a distinguished field which
stores the reference to the current owner of the object. The ownership domain
of an object o is the set of objects from which o can be reached by following
zero or more ownership links. If a procedure is allowed to write p, it can also
write everything in the ownership domain of p. Since the reachability relation,
used in the definition of the ownership domain, is not expressible in first-order
logic, we over-approximate the set of written locations to include all objects
not directly owned by the current thread (denoted me). Therefore, a frame
clause for a procedure writing a and b in VCC would be:

∀q, f.H0[q, f] = H1[q, f] ∨ q = a ∨ q = b ∨ H0[q, owner] 6= me

where H[p, f] ≡ rd(H,field(p, f))5, and the function field(p, f) gives the ad-
dress of a field f in the object pointed to by p. Consequentially, for almost
every H[p, f] access we will see, the term H[p, owner] being generated. De-
pending on the methodology, there might be more such artifacts, which to-
gether contribute a fair amount of complexity to heap reasoning.

Chaining VCC uses backward chaining on frame clauses, i.e., they trigger
on H1[q, f]. Any heap access at Hk will be back-propagated to Hk−1, Hk−2
and so on. Alternatively triggering on H0[q, f] would lead to forward chaining:
accesses at the beginning of the function will be propagated toward the end.
VCC requires backward chaining. For example let us consider a simplified
version, of a verification condition, saying that writing 7 to a field cnt of some
object preserves the invariant that all cnt fields are positive. Let I(H) ≡
(∀q.H[q, cnt] > 0).

(I(H0) ∧ (∀q, f.H0[q, f] = H1[q, f] ∨ q = a) ∧ H1[a, cnt] = 7) ⇒ I(H1)

To prove validity of that formula, the SMT solver will skolemize the universal
quantifier from I(H1), generating an assumption ¬(H1[q0, cnt] > 0). I(H0) will
only be applied on q0, when the term H0[q0, cnt] is activated, which cannot
happen, if the frame clause triggers only on H0[q, f].

5 We use the symbol ≡ to define a syntactic shortcut, which is expanded before the SMT
solver sees it. This has triggering behavior different from introducing a function symbol and
defining equivalence through an axiom. Boogie allows for easy switching between those two
styles of function definitions on per-function basis.

Chapter 3. Programming with Triggers 26

Multiple Heaps Some tools use multiple logical constants to encode the
heap. For example in ESC/Java the split is done per-field (Saxe and Leino,
1999), while in Frama-C (Moy, 2009), the heap is further split based on syn-
tactic aliasing analysis. This is clearly beneficial for the SMT solver, as no
reasoning is necessary to infer that updates on different heaps commute. How-
ever, in case of VCC or Spec#, the benefits would be minimized because the
frame clause of a procedure potentially needs to simulate write effects on all
the partial heaps, as one does not know where objects from ownership domains
might be stored.

The Good Heap

The verification methodology usually involves some protocols on accessing the
heap. For example, one might model heap locations holding machine integers
as mathematical, unbounded integers, but make sure a value outside the ap-
propriate machine integer range is never stored in such a location. However,
an axiom like:

∀H, p. 0 ≤ rd(H, p) ≤ 232 − 1

introduces an inconsistency, as in principle one could instantiate it with [H :=
wr(H0, q, 2

32), p := q]. However, the point is that we are never going to create
a heap like that. Moreover, because of triggering, the SMT solver is never
going to instantiate the axiom with such a heap, which makes the unsound-
ness of such an axiom hard to detect. On the other hand, we do not want
to rely on triggering for soundness, and therefore heaps obeying the verifica-
tion methodology protocols are distinguished from other heaps with help of
a predicate, let us call it good heap(H). It is assumed for every “approved”
heap, i.e., one introduced by the verification tool, and used as a precondition
in axioms like the range axiom above. We never supply a definition for such
a predicate, only axiomatize its consequences.

One can use several layers of such predicates (and e.g., Spec# and VCC
do), depending on which of the system invariants hold. For example, after a
heap update we know about integer ranges, but we do not know that invariants
of all objects are preserved, before we check the invariant of the object just
being updated.

3.2.3 The Liberal: Versioning

This section gives an example where the usual automatic trigger selection
heuristics (used in Simplify, Z3 and CVC3) are too restrictive, and we need to
introduce explicit triggers to make it more liberal.

In VCC, in a particular heap, an object can be either open or closed.
In closed objects, only fields marked with the volatile modifier can change.
The set of objects owned by an object is stored in a non-volatile field6, and

6This can be overridden by an explicit annotation, but for brevity we skip that possibility.

Chapter 3. Programming with Triggers 27

consequently the set of object in an ownership domain, as well as their non-
volatile fields, cannot change, as long as the root object is closed. Therefore,
if an object o is closed in each of a sequence of consecutive heaps, we can infer
that a value of some field in the domain of o is the same in all of them. To
avoid quantifying over sequences of states we use versioning: each object is
equipped with a field carrying the version, and when the object is closed, this
field is assigned a value encoding the values of all elements of the ownership
domain. We do not specify the encoding explicitly, just axiomatize some of
its properties.

Let domain(H, r) ≡ ver domain(H[r, version])7. There are no additional
axioms attached to the ver domain(...) function. Its mere existence guarantees
that the domain is part of the version encoding (cf. Section 3.2.1). The
following axiom states that the encoding of the version also includes all non-
volatile fields of objects in the domain:

∀H, p, q, f. {p ∈ domain(H, q), rd(H,field(p, f))}
¬ volatile(f) ∧ p ∈ domain(H, q) ⇒

rd(H,field(p, f)) = fetch(H[q, version], field(p, f))

Any value read from an object p known to reside in domain of q is considered
to be a function of version of q (fetch(...) is similar to ver domain(...) in that
sense), and hence if the version of q does not change, the value also does not
change8. The explicit triggers on the axiom above, will cause it to be applied
whenever a field of an object, known to reside in a domain is accessed. How-
ever, should we allow Simplify or Z3 to automatically choose the trigger, it
would go for fetch(rd(H, q),field(p, f)), as this is the only single-term trigger
possible. This is however fairly useless since the only way to activate applica-
tions of fetch(...) is to apply this very axiom. This is thus an example where
automatic trigger selection has not only performance implications, but also
makes the axiom outright useless.

Filtering Trigger

The fetch(...) axiom above, with the explicit trigger, will be instantiated for
volatile and non-volatile fields, and then the instances for volatile fields will be
discarded per the implication precondition. To limit its applicability already at
the instantiation level, we introduce a function symbol non volatile(...), assume
it for non-volatile fields and then add non volatile(f) to the trigger. If we use
the function symbol non volatile(f) in the bodies of quantified formulas only
when it is already placed in the trigger, no new instances of non volatile(...)
will be created. Thus, the formulas will trigger only for non-volatile fields,

7VCC stores the version of the object at the address of the object itself (i.e., we have
field(p, version) = p; since pointers in VCC include type information, no real field is actually
stored there), so listing an object in the frame clause really means listing its version. This
plays well with encoding of frame clauses.

8Following Spec# we use a similar trick for frame axioms of pure methods (Darvas and
Leino, 2007).

Chapter 3. Programming with Triggers 28

for which we explicitly assumed the predicate. A similar pattern is used to
supply different definitions of certain functions for primitive and non-primitive
pointers.

If for some reason we want to avoid multi-triggers (for example because
Simplify does not handle them very efficiently), one can use “the as trick” (Saxe
and Leino, 1999): in addition to P (x) = true, we would assume as P (x) = x,
thus allowing triggering on {h(as P (x))} instead of the multi-trigger {h(x),
P (x)}. We have not used it in VCC in this particular place, but Section 3.2.4
uses similar trick in the definition of the ∈′ predicate.

3.2.4 The Restrictive: Stratified Triggering

The following section demonstrates a case, where the automatic trigger selec-
tion will cause too many instantiations, i.e., we will need to restrict triggering.

Consider the following formula, being part of a simplified invariant of a
doubly-linked list:

inv(H, l) ⇔ ...
∧ (∀p. p ∈ owns(H, l) ⇒ H[p,next] ∈ owns(H, l) ∧

H[p,prev] ∈ owns(H, l) ∧ H[p,data] 6= null)

The expression owns(H, l) refers to the set of objects owned by l in the heap H.
If the trigger would be p ∈ owns(H, l) we would cause a matching loop: a term
p0 ∈ owns(H, l) will possibly activate the terms H[p0,prev] ∈ owns(H, l) and
H[p0,next] ∈ owns(H, l), each of which will in turn activate two more terms,
and so on. Even if we limit instantiation depth to n, we still get 2n quantifier
instances, and severe restrictions on n are unrealistic (see Section 3.3). Instead
we split the formula into two recursive parts, triggering on the consequent of
the implication, and a non-recursive part describing properties of a single list
node:

inv(H, l) ⇔ ...
∧ (∀p. {H[p,next] ∈ owns(H, l)}

p ∈ owns(H, l) ⇒ H[p,next] ∈ owns(H, l))
∧ (∀p. {H[p,prev] ∈ owns(H, l)}

p ∈ owns(H, l) ⇒ H[p,prev] ∈ owns(H, l))
∧ (∀p. {p ∈ owns(H, l)}

p ∈ owns(H, l) ⇒ ψ(H, l, p))

where ψ(H, l, p) ≡ (H[p,data] 6= null). This way we have removed the match-
ing loop, but another problem remains.

For real trees and lists ψ is more complicated, and therefore we want
to avoid ψ being instantiated too often. However, terms of the form p ∈
owns(H, l), occur commonly and may have nothing to do with lists, e.g., might
become active due to instantiation of definition of set operations or frame
clauses. To address this problem, we introduce a function as node(...), along
with an axiom: ∀p. {as node(p)} as node(p) = p, making it an identity and

Chapter 3. Programming with Triggers 29

define p ∈′ S ≡ as node(p) ∈ S. So, by wrapping as node(...) around a term,
we are essentially putting a special marker on it that can be later used in
triggers. If we replace all occurrences of ∈ with ∈′ in the invariant9, both in
triggers and formula bodies, we end up with much more restricted triggering
behavior. The formula will trigger only for pointers p for which as node(p)
was activated.

For example, the typical verification condition might look like inv(H0, l)∧
∆(H0, H1) ⇒ inv(H1, l), stating that the invariant of l is preserved by the
state transition between heaps H0 and H1 (there might be intermediate heaps
between them, but this is irrelevant here). When proving the last conjunct
of the invariant, the SMT solver tests satisfiability of a formula inv(H0, l) ∧
∆(H0, H1) ∧ ¬(∀p. p ∈ owns(H, l) ⇒ ψ(H, l, p)). Assuming the bound vari-
able p to be skolemized into p0, the solver assumes p0 ∈′ owns(H1, l) and
¬ψ(H1, l, p0). In particular, the term as node(p0) is activated. Thus, when
the solver infers p0 ∈ owns(H0, l), then ψ(H0, l, p0) follows, hopefully conflict-
ing with ¬ψ(H1, l, p0).

We have now limited the instantiations. In cases where the limitations
are over-restrictive, e.g., the user needs ψ(H0, l, n) as a lemma for a specific
list node n, then the user needs to introduce the marker as node(n), usually
by adding an explicit assertion of the form n ∈′ owns(H0, l).

Existential Activation In the previous example, it is possible that one
needs to look one element forward in the list, to prove that the invariant of
an arbitrary element is preserved, e.g., we might need ψ(H0, l,H1[p0,next]) in
addition to ψ(H0, l, p0). However, since p0 is a fresh constant, introduced by
the SMT solver, the user cannot explicitly assert H1[p0,next] ∈′ owns(H0, l),
which would be required to trigger it. Instead, the user can supply an annota-
tion which states what terms should be activated when the formula undergoes
skolemization:

(∀p. {p ∈ owns(H, l)}{ex act:H[p,next] ∈′ owns(H, l)}
p ∈ owns(H, l) ⇒ ψ(H, l, p))

This pattern was crucial in verification of recursive data structures in VCC.

3.2.5 The Weird: Distributivity, Neutral Elements and Friends

This section talks about rather surprising behavior of a common set theory
axiom. Similar axioms, causing similar problems, include pointer arithmetic
normalization (&(&p[i])[j] = &p[i+j]) and various distributivity axioms
(for integer arithmetic, bit-vector arithmetic or set theory). The set theory
example we are going to use is the following axiom describing the relation
between set union and difference:

∀A,B,C. {(A \B) \ C} (A \B) \ C = A \ (B ∪ C)

9VCC provides a definition of the ∈′ predicate, so the user can choose to use ∈′ in
invariants, and live with the consequences.

Chapter 3. Programming with Triggers 30

Such an axiom may seem benign, but the number of applications resulting
from a ground term (...((c \ d0) \ d1)... \ dn) is exponential with n (we will get
all possible parenthezations of the expression d0 ∪ ... ∪ dn, and also some of
its subexpressions). The number of instances can be reduced to quadratic by

introducing another function symbol \̂:

∀A,B. {A \B} A \B = A\̂B
∀A,B,C. {(A\̂B) \ C} (A\̂B) \ C = A\̂(B ∪ C)

Alternatively, we could trigger the original axiom on A \ (B ∪ C) However,
should at some point the term c \ (∅ ∪ d) arise, a matching loop would occur,
provided the SMT solver would know d = ∅∪d, but not c = c\∅, for example,
because of axiom instantiation order or a missing axiom. The matching loop
would involve instantiations where B = ∅, C = d and A is c, c \ ∅, (c \ ∅) \ ∅
and so on.

The morale here, is that one needs to be careful when suppling such
axioms that can be recursively applied, and make sure they do not loop or
trigger excessively often. Luckily, such cases can be usually easily spotted when
profiling the axiomatization (i.e., examining SMT solver log files containing
list of instances produced during solver’s run on a particular problem).

3.3 Performance Requirements on the SMT Solver

An important aspect of verification tools that is often overlooked is that they
fail most of the time. This is inherent in the process of developing specifica-
tions: one tries different version of annotations (and possibly code) until the
program finally goes through the verifier. This usually involves running the
verifier every minute or so, after small changes or additions in annotations.
Thus, usually we have a large number of unsuccessful runs of the verifier, and
one successful run at the end. Therefore, in terms of SMT, the time to find a
(probable) model is much more important than the time to prove unsatisfiabil-
ity. This is particularly interesting, as it seems SMT with quantifiers currently
lacks good stop conditions, short of waiting for all the matching possibilities
to be exhausted. This is more of practical, rather then theoretical, problem
because even if we were able to express the axiomatization in a fragment of
logic with finite model property the size of formulas involved would likely make
the theoretically finite models gigantic.

From the interactive standpoint, it would be ideal to have responsive-
ness in the range of a regular compiler, i.e., a couple of seconds. Experience
shows that response times of over a minute are discouraging (or worse), and
response times of over an hour definitely stop the development of annotations.
Incrementality could be possibly exploited: the verifier is run several times
with only slightly different versions of the VC. VCC currently does it manu-
ally: the user specifies which assertion they are interested in proving, and once
they have proven them one-by-one, they can run the full verification, possibly
on a build server (or multiple build servers).

Chapter 3. Programming with Triggers 31

As for the general scale of problems, the VCC background axiomatization
includes about 300 quantified formulas, almost all with explicit triggers, in-
cluding 50 with multi-triggers. While Hyper-V is structured into layers, most
of its types are visible in most of the functions. There are about 300 types with
1500 fields, which after translation yields about 13000 axioms, half of them
ground, consuming about 5 megabytes of SMT-format (Ranise and Tinelli,
2006) file. Just the number of triggers involved exposed a couple of problems
in Z3 E-matching indices. Since vast majority of Hyper-V functions are small,
the background description of types and their invariants dwarfs the size of the
translation of the function body itself. On the other hand, the function body
is where the complexity lies: verification times vary between few seconds and
hours, despite the fact that the background types are the same.

The number of quantifier instances when verifying a function is usually
in the range of tens of thousands. Moreover, most of the axioms are never
instantiated. However, interactions between the ones that are needed are
quite complex. For example, we examined a proof of validity of a simple
function inserting an element into a singly-linked list. While the example
took less than 10 seconds to verify, the maximal required matching depth, i.e.,
the depth of the causal DAG for instances needed in the proof, was already
17. This function involved about 10 heap updates (most of which were ghost
updates of the map abstracting the list and methodology bookkeeping). Thus,
for every heap location accessed at the end of the function, one would need
to apply 10 axioms to learn about the value of that location at the beginning
of the function. 10 out of 17 instances in the chain were actually application
of frame clauses. On the other hand, this chain also involved 6 different user
defined formulas, coming from the invariant of the list. We conclude from this
that any attempt at putting hard limits at instantiation depth are misguided.

3.4 Debugging and Profiling Axiomatizations

Analogously to ordinary programs, axiomatizations need to be debugged when
the verification tool gives invalid answers and profiled when the tool takes too
much time or memory. An invalid answer can be either due to unsoundness,
when the tool proclaims a buggy program to be correct, or due to an incom-
pleteness in the opposite case.

This section gives some insight on methods and tools implemented in
VCC to aid in debugging and profiling axiomatizations.

3.4.1 Soundness

It is possible to develop axiomatization, where each formula presented to the
SMT solver as an axiom is actually a theorem, which is valid in a theory
modelling the programming language semantics. The theory should be a con-
servative extension built in a higher order logic proof assistant. In case of
VCC there are however some practical reasons because of which such an ef-

Chapter 3. Programming with Triggers 32

fort was not undertaken. The two most important reasons are: a verification
methodology in flux, developed alongside the axiomatization and the need to
meet performance requirements on the behavior of Z3 with the axiomatiza-
tion, which required frequent updates and a lot of experimentation. Analo-
gous state of affairs persists in other, similar verification/bug-checking efforts
(Detlefs et al., 1998; Barnett et al., 2005; Lahiri and Qadeer, 2008).

The quality assurance in VCC is thus largely based on testing. As with
most compilers, the size of the test suite corpus by far exceeds the size of
the source of the compiler. The tests are both positive (i.e., benchmarks that
are expected to verify) and negative (where a specific error is expected). The
problem with negative benchmarks is that they are usually synthetic: simple
code snippets constructed to show a specific verification error. The positive
benchmarks can be also synthetic, but additionally larger code snippets are
usually available showing somewhat more complicated use cases, combining
together several features.

To partially compensate for that, VCC uses a reachability analysis (Jan-
ota et al., 2007), which checks if the SMT solver can find any unreachable
program points (i.e., statements in the program, which the SMT solver can
prove will never be executed). An unreachable program point, for the SMT
solver, amounts to proving false at that point. Therefore, the analysis essen-
tially reduces to testing several versions of the program, with assert(false)
statements placed just before joints of the control flow graph. If the SMT
solver finds such assertion to be valid, the location is unreachable. Such a
result might point to code that is indeed unreachable (for example, stemming
from a defensive programming technique), however more often than not it
points to an inconsistent function preconditions or an inconsistent background
axiomatization. Such a test is definitely not a silver bullet10, in particular it
only detects immediate inconsistencies, not ones requiring non-trivial actions
from the user to reproduce, or giving too strong guarantees about the program-
ming language semantics. Still, we found this analysis very valuable during
VCC development.

Soundness problems are thus usually discovered through a failing test case.
After initial efforts to minimize such test case, if the cause of unsoundness is
still unknown, it is useful to know a small subset of axioms that are needed
for the problem to manifest. Such a subset can be extracted from a full proof,
if one can be produced by the SMT solver, but also from the UNSAT core11.
Additionally, if neither of those options is available, one can just run smaller
and smaller subsets of axioms through the SMT solver, using some automated
procedure. On the other hand, we have not found the exact proof to be very
useful, mainly due to its size and complexity.

10 In Boogie it is referred to as the smoke test, from turning a device on and seeing if the
smoke goes out of it.

11 If we treat an SMT problem as a big conjunction, then the UNSAT core is a (hopefully
small) subset of the conjuncts, which are unsatisfiable.

Chapter 3. Programming with Triggers 33

3.4.2 Completeness

When analyzing a completeness problem (i.e., one where the verifier returns
spurious errors), we try to pinpoint the cause of a failure by minimizing the
test case, and possibly adding explicit assertions. If a problem is not apparent,
we turn to a model in which the negation of a VC is satisfiable. The general
technique is to evaluate the failed assertion in the model and try to trace the
reasons why it fails. When doing so, we usually arrive at a point where our
conceptual model of what should happen disagrees with the Z3 model. If the
annotations are correct, the disagreement is because of a missing axiom or a
wrong trigger. Such problems need to be solved by both the verification tool
author, but also by the users, in case they use complex specifications.

The Model Viewers

As the models can get quite large, VCC includes two tools for inspecting them.
The VCC specific model viewer offers a debugger-like view of the counterex-
ample, interlinked with the source code. One can trace pointers and inspect
values of fields of data structures in different states. It thus hides a lot of
axiomatization detail and is meant for the user of the verification tool as an
aid in debugging their specifications.

The other tool is generic and can be used with different axiomatizations,
mainly by the authors of the axiomatization or the SMT solver. It displays
all active terms from the model and allows for inspecting equalities between
them. For every term one can also see its immediate sub- and super-terms.
For example, when looking at term rd(H7, p), one can see it is currently equal
to 17, go to its subterm p, and then look at all other terms using p, e.g.,
rd(H6, p), rd(H8, p) and wr(H8, p, 3), revealing value of pointer p in different
states.

The two encoding patterns described below do not alter the logical value
of the VC, and not even (significantly) the search tree of the SMT solver, but
are used only to make the reason for failure more explicit in the model.

Instantiation Traces in Models

To make sure a quantified formula was triggered, one can use marker functions.
First, we axiomatize the marker function to be always true:

∀x, y. {mark1(x, y)} mark1(x, y)

Then, if we want to check if the following formula triggers:

∀x, y. ψ(x, y)

we change it into the following (leaving trigger intact and preserving it truth
value):

∀x, y. ψ(x, y) ∧ mark1(x, y)

Chapter 3. Programming with Triggers 34

This forces the model to include mark1(t, s) for every t, s, for which the quan-
tified formula is instantiated. Note that ∀x, y. ψ(x, y) might be used positively
and negatively, for example as part of a type invariant, which is why we need
to axiomatize the marker function to be always true.

Such marker functions can be used by the author of a verifier, but are
also available for the end-user if the language allows for specification function
definitions as it is the case for VCC.

Assignment Traces in Models

When looking at the model, it is often useful to inspect values of local variables
at different points. As described in Section 2.2, each source level assignments
to a variable introduces, during VC generation, a new incarnation of that
variable. To help keep track of different incarnations through the tool chain
(e.g., to protect from copy-propagation), after the assignment we introduce an
assumption, using the uninterpreted function symbol local is(...), for example
the following source code:

void foo()
{

int x;
x = 10;
x = x + 1;
assert(x < 11);

}

will be transformed to:

void foo()
{

assume(x1 == 10);
assume(local_is(the_x, 4, 2, x1));
assume(x2 == x1 + 1);
assume(local_is(the_x, 5, 2, x2));
assert(x2 < 11);

}

The parameters to local is(...) are a unique symbolic constant, unused else-
where, and thus immune from copy-propagation, the line and column where
the assignment took place and the current value of the variable (i.e., a ref-
erence to the current incarnation). The model for this program will include
local is(the x, 4, 2, 10) = true and local is(the x, 5, 2, 11) = true, revealing the
value of x at different program points, and allowing the user to spot why the
assertion fails. We use a similar technique to tie different heaps to source
locations.

3.4.3 Performance Problems

Usually there is a tension between expressiveness and ease of annotation on
one side and performance on the other side. Generally, proper triggering

Chapter 3. Programming with Triggers 35

allows for mitigating some such tensions. A feature, bringing new expressive
power, usually consists of new function symbols and axioms. If the axioms are
triggered only by the new function symbols, parts of the code not using the
feature do not suffer performance problems. Using a build server infrastructure
to track the time of executions of different parts of the test suite is a good
way of making sure that introduction of a new feature does not interfere with
existing use cases.

Performance problems tend to manifest themselves in larger benchmarks,
especially ones coming from users of the verification tool. An SMT solver
usually allows one to gather some simple statistical data at the end of its run.
In the case of Z3 such statistics include the number of quantifier instances,
conflicts, as well as various statistics from the arithmetic module (which is
usually the only non-core theory of interest for VCC). Most of the perfor-
mance problems we had were due to excessive quantifier instantiation, but
some were due to inefficiencies in Z3, particularly in the arithmetic module.
The statistics help to distinguish between those two cases: for example low
number of instances per second (in the case of Z3 and VCC less than about
10 000) points to a problem different than quantifier instantiation.

The Causal DAG

In case of quantifier problems, one can instruct Z3 to save to a log file the
data concerning all quantifier instances made during the search. For example,
given the formula:

ψ ≡ (∀x. {f(g(x))} f(g(x)) ⇒ h(x, x))

if in the current model the terms f(d) and g(c) are active and d = g(c), then
Z3 creates an instantiation tautology ψ ⇒ ψc, where:

ψc ≡ f(g(c)) ⇒ h(c, c)

After that, the following tuple is added to the log file:

Lc ≡ 〈ψ, [x := c], {f(d), g(c)}, {h(c, c)}〉

The tuple lists the reference to the quantified formula, the substitution, the
active terms that caused the match, and the outcome of the instantiation (i.e.,
terms that were created in the course of instantiation; the particular log entry
above assumes this is the first time in the current search branch where h(c, c)
was needed).

Later, in the same search branch, if an instantiation tautology φ ⇒ φt is
generated, where its log entry is:

Lt ≡ 〈φ, ..., {..., h(c, c), ...}, ...〉

we call Lc a cause of Lt. The directed graph formed by instances with the
causal relation (where the edge goes from Lc to Lt) is acyclic (instances can

Chapter 3. Programming with Triggers 36

only cause other instances later in time). We refer to it as the causal DAG
(directed acyclic graph). This information might be imprecise (e.g., the in-
stance where a term first appeared does not necessarily have to be the one that
caused the term to be activated; the matching algorithm will not log terms
from proofs of required equivalence class merges and so on). Still, we have
found it invaluable in tracing performance problems.

By the nature of performance problems, the number of instances involved
tends to be rather large (up to millions). We have thus implemented a tool
for analyzing instantiation log files, called the axiom profiler. It allows one
to trace a particular instance through the causal DAG, while also inspecting
various summaries. One summary is the cost of an instance, which is the
estimated number of instances caused by it. More precisely, the cost of an
instance node n in the causal DAG E (where (n,m) ∈ E means n causes m)
is given by c(n):

c(n) = 1 +
∑

(n,m)∈E

c(m)

indeg(m)

where indeg(n) = |{m | (m,n) ∈ E}|, is the number of incoming edges of
n. In other words, the cost of an instance is shared equally by all instances
that caused it. The other summary is the depth of the instance (which is also
computed by Z3 during runtime), which is a maximal sum of weights of nodes
on the path from a DAG root to the instance. The weight is user-defined and
defaults to 1. We view weights as a promising future direction in restricting
solver search space, but do not have much experience with them yet.

The Conflict Tree

Another piece of information that the Z3 log file provides is the conflict tree.
Consider the assignment stack in the SMT solver (Section 2.4). First a num-
ber of literals is pushed, and a conflict is found. We can think of this chain
of literals as one long branch of a tree. Then backtracking occurs, taking
us somewhere up the chain, and, starting from there, new sequence of as-
signments happens, creating another branch. Backtracking always ends just
below decision literals, thus by analysing the sequence of literal assignments,
decisions and backtrack operations, we can reconstruct a tree, where internal
nodes are labelled by literals, the tree is branching at decisions, and the leaves
are labelled by conflicts.

Since information about literal assignments and quantifier instantiation
is interleaved in the log file, the costly places in the search (ones where lots of
quantifier instances are generated) can be identified. This information can be
later attributed to conflicts, i.e., one can see how many quantifier instances and
literal assignments it took to discover a particular conflict. Therefore, one can
pick a costly conflict at random and try to see if it “makes sense”, i.e., if one
expects such conflict to contribute to the final outcome and if it really should
be that hard to find it. Similarly, one can find an instantiation at random and
see if it “makes sense”. This is the most effective way of finding performance

Chapter 3. Programming with Triggers 37

problems we have found. Clearly, this requires an intimate understanding of
the inner workings of axiomatization, as well as some understanding of the
SMT solver search algorithms, which is why we view the axiom profiler as a
tool for the author of a verification tool, and not for the end-users.

Z3 Inspector

In Section 3.3 we have argued how important it is for the SMT solver to
return the “satisfiable” answer fast. However, the ideal time constraints on
such responses (in range of few seconds) are very hard to meet with the current
combination of hardware speed, SMT solver performance and VC complexity.
As a partial remedy, Boogie offers its users a way of inspecting the progress of
Z3 on the current VC. Unlike in other implementations (Filliâtre, 2003) this
is achieved without splitting the VC into subformulas before sending them
one-by-one to the SMT solver. Instead, we instruct Z3 to simulate a failure at
pre-defined time intervals, and use the standard error-reporting mechanism.
This standard mechanism relies on “labels” (Leino et al., 2005), which describe
the part of formula, which is satisfied by the current monome, and thus also
the assertion, negation of which is satisfiable in the model of the monome.
The labels also encode the execution path that lead to the failing assertion.

Boogie, which is normally responsible for translation of labels to error
messages, captures continuous label output of Z3 and passes it, along with
error translation information, to the Z3 Inspector tool. The Inspector displays
the source code of the program, from which the VC was generated, where
each line is annotated with possible errors that could be reported for this line,
should one of the obligations in the VC fail to prove. As the SMT solver works
through the formula, the error message corresponding to the current monome
is highlighted.

This works particularly well for the case split strategy in Z3, which tries
to satisfy the formula left-to-right. This means Z3 will try to prove assertions
top-down and, which is more important, will only move to the next assertion,
after the previous one is proven. Translated to Z3 Inspector terms the assertion
will blink, one by one, for certain amount of time. If one assertion blinks for
a long time, it means the prover is trying too hard to refine a model for the
case of this assertion failing. The user of the verification tool can then decide,
based on time it took to prove this or similar assertion before, to consider this
particular assertion to be faulty and kill the verification process.

The cumulative number of samples, pointing to the particular error mes-
sage, is also displayed, allowing for analysis of which proof obligation was
particularly costly, also after the search is done. One could imagine the con-
flict clauses being communicated out of Z3, so Z3 Inspector could mark the
errors that are already guaranteed not to happen (i.e., we know that there is
no model that would satisfy the negation of their assertions). This might be
useful with a more random case split strategies.

In general the Z3 Inspector provides progress information about the ver-
ification process, which is accessible and meaningful for the end-user. It was

Chapter 3. Programming with Triggers 38

helpful in reducing user frustration with the verification process by providing
some basic control over it.

3.5 Conclusion

We have presented some of the triggering patterns used in software verification,
as well as development practices for axiomatizations, in hope of establishing
the requirements for a possible alternative to E-matching based quantifier in-
stantiation methods. Following the presented operational view, where trigger-
ing is a way of programming the SMT solver, we envision such an alternative
to admit high degree of control, e.g., a domain specific language based on term
rewriting systems. More automatic techniques, e.g., superposition, could be
useful in subproblems involving formulas from the program specification, as
such formulas are less likely to contain useful guidance to the SMT solver,
than the ones from the background axiomatization.

Given some help from the SMT solver side, some of the presented en-
coding patterns might be expressed more directly, allowing the SMT solver to
treat them more efficiently. For example, the “as trick”, of assuming f(c) = c,
just to be able to use f(x) in a trigger, is a method for controlling when a
certain axiom should be applied, and the function f(...) does not have much
logical meaning, just polluting the data-structures of an SMT solver. If a
native SMT construct for labelling terms and axioms would be provided, one
would not need to do so. Clearly each such feature would need to have its pos-
sible performance benefits weighted against complications in the SMT solver
implementation and input language.

Benchmarks SMT benchmarks exercising techniques described in this chap-
ter are available in the UFNIA (and AUFLIA with older benchmarks) division
of the SMT LIB. Current VCC benchmarks will soon be submitted to the UF-
NIA division, pending resolution of some known soundness issues.

Chapter 4

E-matching

Chapter 3 discusses various techniques for setting up efficient axiomatizations
which make proper use of triggers. This chapter presents two novel, efficient
algorithms (Section 4.3 and 4.4) for E-matching of such triggers. These al-
gorithms are compared to a well-known algorithm (Section 4.2) described in
literature.

4.1 Definitions

Let V be the infinite, enumerable set of variables. Let Σ be a set of function
and constant symbols. Let T be a set of first-order terms constructed over Σ
and V.

A substitution is a function σ : V → T that is not the identity only for a
finite subset of V. We identify a substitution with its homomorphic extension
to all terms (i.e., σ : T → T). Let S be the set of all substitutions.

We will use letters x and y, possibly with indices, for variables, f and g
for function symbols, c and d for constant symbols (functions of arity zero),
σ and ρ for substitutions, t for ground terms, and p for possibly non-ground
terms. We will use the notation [x1 := t1, . . . , xn := tn] for substitutions, and
σ[x := t] for a substitution augmented to return t for x.

An instance of an E-matching problem1 consists of a finite set of active
ground terms A ⊆ T , a relation ∼=g ⊆ A×A, and a finite set of non-variable,
non-ground terms p1, . . . , pn, which we call the triggers. Let ∼= ⊆ T × T be
the smallest congruence relation over Σ containing ∼=g. Let root : T → T be

1 In the automated reasoning literature, the term E-matching usually refers to a slightly
different problem, where A is a singleton and ∼= is not restricted to be finitely gener-
ated (Plotkin, 1972). On the other hand, in SMT context, the Simplify technical re-
port (Detlefs et al., 2005) as well as the recent Z3 paper (de Moura and Bjørner, 2008)
use the term E-matching in the sense defined above.

39

Chapter 4. E-matching 40

a function2 such that:

(∀t, s ∈ T . root(t) = root(s)⇔ t ∼= s) ∧ (∀t ∈ T . root(t) ∼= t)

The solution to the E-matching problem is the set:

T =

{
σ

∣∣∣∣ ∃t1, . . . , tn ∈ A. σ(p1) ∼= t1 ∧ · · · ∧ σ(pn) ∼= tn,
∀x ∈ V. σ(x) = root(σ(x))

}

4.1.1 NP Hardness of E-Matching

The problem of deciding for a fixed A and ∼=g, and a given trigger, if T 6= ∅, is
NP-hard (Kozen, 1977). We give a simple independent proof because it gives
intuitions for why this problem is difficult.

We show the reduction of a three-coloring problem instance to an E-
matching problem instance. We are given a graph (V,E). Let

V = {v1, . . . , vn}
E = {(vi1 , vj1), . . . , (vim , vjm)}

We construct a trigger:

f(g(xi1 , xj1), f(g(xi2 , xj2), . . . f(g(xim , xjm), d) . . .))

and match it against A = {d, f(c, d), g(ci, cj)} for i, j ∈ {1, 2, 3}, and ∼= being
the least congruence containing d = f(c, d) and c = g(ci, cj) for i 6= j and
i, j ∈ {1, 2, 3}. We observe that the terms of the form:

f(g(ci1 , cj1), f(g(ci2 , cj2), ..., f(g(cim , cjm), c)...))

are available for matching for ik 6= jk. These terms represent all colorings of
nodes which do not assign the same color to two connected nodes. When we
match such a term against the trigger, all occurrences of a node will need to
have the same color (i.e., only one of the constants c1, c2, or c3 will be assigned
to the variable representing the node).

This encoding depends on congruence giving rise to exponentially many
terms available for matching. In this particular case, the amount of terms
is even infinite, but this is not crucial, i.e., we could restrict the congruence
graph not to have cycles, and still get an NP-hard problem.

NP-hardness is the reason why each solution to the problem is inherently
backtracking in nature. In practice, though, the triggers are small, and the
problem is not the complexity of a backtracking search for a particular trigger,
but rather the fact that in a given proof search there are often hundreds of
thousands of matching problems to solve.

Chapter 4. E-matching 41

fun simplify match([p1, . . . , pn])
R := ∅
proc match(σ, j)

if j = nil then R := R ∪ {σ}
else case hd(j) of

(c, t)⇒ /∗ 1 ∗/
if c ∼= t then match(σ, tl(j))
else skip

(x, t)⇒ /∗ 2 ∗/
if σ(x) = x then match(σ[x := root(t)], tl(j))
else if σ(x) = root(t) then match(σ, tl(j))
else skip

(f(p1, . . . , pn), t)⇒ /∗ 3 ∗/
foreach f(t1, . . . , tn) in A do

if t = ∗ ∨ root(f(t1, . . . , tn)) = t then
match(σ, (p1, root(t1)) :: · · · :: (pn, root(tn)) :: tl(j))

match([], [(p1, ∗), . . . , (pn, ∗)]) /∗ 4 ∗/
return R

Figure 4.1: Simplify’s matching algorithm

4.2 Simplify’s Matching Algorithm

Simplify is a legacy SMT system, the first one to efficiently combine the-
ory and quantifier reasoning. This combination made it a popular target for
various software verification systems. The Simplify technical report (Detlefs
et al., 2005) describes a recursive matching algorithm simplify match given
in Figure 4.1. The symbol :: denotes a list constructor, nil is an empty list,
[x1, . . . , xn] is a shorthand for x1 :: · · · :: xn :: nil, and [] is an empty (identity)
substitution. hd and tl are the functions returning, respectively, head and tail
of a list (i.e., hd(x :: y) = x and tl(x :: y) = y). The command skip is a no-op.

The simplify match algorithm maintains the current substitution and a
stack (implemented as a list) of pairs of a trigger and a ground term to be
matched. We refer to these pairs as jobs. Additionally, it uses the special
variable ∗ in place of a ground term to say that we are not interested in
matching against any specific term, as any active term will do.

We start (line marked /∗ 4 ∗/) by putting the set of triggers to be matched
on the stack and then proceed by taking the top element of the stack.

If the trigger in the top element is a constant (/∗ 1 ∗/), we just compare it
against the ground term, and if the comparison succeeded, continue with the
remaining jobs be a recursive call.

2Such a function exists by virtue of ∼= being an equivalence relation, and is provided by
the typical data structure used to represent ∼=, namely the E-graph (see Simplify technical
report (Detlefs et al., 2005) for details on E-graph).

Chapter 4. E-matching 42

If the trigger is a variable x (/∗ 2 ∗/), we check if the current substitution
already assigns some value to that variable, and if so, we just compare it
against the ground term t. Otherwise, we extend the current substitution by
mapping x to t and recurse. Observe that t cannot be ∗ since we do not allow
a trigger to be a single variable, and ∗ is only paired with triggers in the initial
call, never with subtriggers.

If the trigger is a complex term f(p1, . . . , pn) (/∗ 3 ∗/), we iterate over
all the terms with f in the head (possibly checking if they are equivalent to
the ground term we are supposed to match against), construct the set of jobs
matching respective children of the trigger against respective children of the
ground term, and recurse.

The important invariants of simplify match are:

1. the jobs lists contain stars instead of ground terms only for non-variable,
non-constant triggers

2. all the ground terms t in job lists satisfy root(t) = t

3. for all x either σ(x) = x or σ(x) = root(σ(x))

The detailed discussion of this procedure is given in the Simplify technical
report (Detlefs et al., 2005).

4.3 Subtrigger Matcher

This section describes a novel matching algorithm, optimized for linear trig-
gers. A linear trigger is a trigger in which each variable occurs at most once.
Most triggers used in the program verification problems we have inspected are
linear. The linearity means that matching problems for subterms of a trigger
are independent, which allows for more efficient processing.

However, even if triggers are not linear, it pays off to treat them as lin-
ear, and only after the matching algorithm is complete discard the resulting
substitutions that assign different terms to the same variable. This technique
is often used in term indexes (Ramakrishnan et al., 2001) used in automated
reasoning. The algorithm, therefore, does not require the trigger to be linear.

This matcher algorithm is given in Figure 4.2. It uses operations u and
t, which are defined on sets of substitutions:

A uB = {σ ⊕ ρ | σ ∈ A, ρ ∈ B, σ ⊕ ρ 6= ⊥}
A tB = A ∪B

σ ⊕ ρ =

{
⊥ when ∃x. σ(x) 6= x ∧ ρ(x) 6= x ∧ σ(x) 6= ρ(x)
σ · ρ otherwise

σ · ρ(x) =

{
σ(x) when σ(x) 6= x
ρ(x) otherwise

u returns a set of all possible non-conflicting combinations of substitutions
from two sets. t sums two such sets. The next section shows an implementa-
tion of these operations that does not use explicit sets.

Chapter 4. E-matching 43

fun fetch(S, t, p)
if S = > then return {[p := root(t)]}
else if S = × ∧ t ∼= p then return {[]}
else if S = × then return ∅
else return S(root(t))

fun match(p)
case p of
x⇒ return >
c⇒ return ×
f(p1, . . . , pn)⇒

foreach i in 1 . . . n do Si := match(pi) /∗ 1 ∗/
if ∃i. Si = ⊥ then return ⊥ /∗ 2 ∗/
if ∀i. Si = × then return × /∗ 3 ∗/
S := {t 7→ ∅ | t ∈ A}
foreach f(t1, . . . , tn) in A do /∗ 4 ∗/
t := root(f(t1, . . . , tn))
S := S[t 7→ S(t) t (fetch(S1, t1, p1) u · · · u fetch(Sn, tn, pn))]

if ∀t. S(t) = ⊥ then return ⊥
else return S

fun topmatch(p) /∗ 5 ∗/
S := match(p)
return

⊔
t∈A S(t)

fun subtrigger match([p1, . . . , pn])
return topmatch(p1) u · · · u topmatch(pn)

Figure 4.2: Subtrigger matching algorithm

The match(p) function returns the set of all substitutions σ, such that
σ(p) ∼= t, for a term t ∈ A, categorized by root(t). More specifically, match
returns a map from root(t) to such substitutions, or one of the special symbols
>, ⊥, ×. Symbol > means that p was a variable x, and therefore the map
is: {t 7→ {[x := t]} | t ∈ A, root(t) = t}, symbol ⊥ represents no matches
(i.e., {t 7→ ∅ | t ∈ A, root(t) = t}), and × means p was ground, so the map is
{root(p) 7→ {[]}} ∪ {t 7→ ∅ | t ∈ A, t = root(t), t 6= p}3.

The only non-trivial control flow case in the match function is the case of
a complex trigger f(p1, . . . , pn), which works as follows:

• /∗ 1 ∗/ recurse on subtriggers. Conceptually, we consider the subtriggers
to be independent of each other (i.e., f(p1, . . . , pn) is linear). If they

3Here we assume all the ground subterms of triggers to be in A. This is easily achieved
and does not affect performance in our tests.

Chapter 4. E-matching 44

Figure 4.3: Example of s-tree operations

are, however, dependent, then the u operation filters out conflicting
substitutions.

• /∗ 2 ∗/ check if there is any subtrigger that does not match anything, in
which case the entire trigger does not match anything.

• /∗ 3 ∗/ check if all the children of f(p1, . . . , pn) are ground, in which case
f(p1, . . . , pn) is ground as well.

• /∗ 4 ∗/ otherwise we start with an empty result map S and iterate over
all terms with the correct head symbol. For each such term f(t1, . . . , tn),
we combine (using t) the already present results for root(f(t1, . . . , tn))
with results of matching pi against ti. The fetch function is used to
retrieve results of subtrigger matching by ensuring the special symbols
are treated as the maps they represent.

Finally (/∗ 5 ∗/) the topmatch function just collapses the maps into one big
set.

4.3.1 S-Trees

This section introduces a new data structure, s-tree, which is used to compactly
represent sets of substitutions, so they can be efficiently manipulated during
the matching.

Chapter 4. E-matching 45

The s-trees data structure itself can be viewed as a special case of substi-
tution trees in automated reasoning (Ramakrishnan et al., 2001) with rather
severe restrictions on their shape. We, however, do not use the trees as an
index and, as a consequence, require a different set of operations on s-trees
than those defined on substitution trees.

S-trees require a strict, total order ≺ ⊆ A×A and are defined inductively:

1. ε is an s-tree

2. if T1, . . . , Tn are s-trees and t1, . . . , tn are ground terms, then the pair
xB [(t1, T1), . . . , (tn, Tn)] is an s-tree

The invariant of the s-tree data structure is that in each node the term
t1, . . . , tn are sorted according to ≺ (i.e. for all i and j, i < j ⇒ ti ≺ tj)4, and
that there exists a sequence of variables x1 . . . xk such that the root has the
form x1 B . . . and each node (including the root) has the form:

1. xi B [(t1, xi+1 B . . .), . . . , (tn, xi+1 B . . .)] or

2. xk B [(t1, ε), . . . , (tn, ε)]

for some n, t1, . . . , tn and 1 ≤ i < k. In other words, the variables at a given
level of a tree are the same.

The yield function maps a s-tree into the set of substitutions it is intended
to represent.

yield(ε) = {[]}

yield(xB [(t1, T1), . . . , (tn, Tn)]) =

σ[x := ti]

∣∣∣∣∣∣
i ∈ {1, . . . , n},
σ ∈ yield(Ti)
σ(x) = x ∨ σ(x) = ti


Example s-trees are given in Figure 4.3. The trees are represented as

ordered directed acyclic graphs with aggressive sharing. An s-tree:

xB [(t1, T1), . . . , (tn, Tn)]

has the label x on the node, label ti on the edges and each edge leads to
another tree Ti. The ground symbol corresponds to the empty tree ε. E.g.,
the middle bottom one represents

xB [(a, y B [(f(c), ε), (f(d), ε)]), (c, y B [(c, ε)])]

which yields

{[x := a, y := f(c)], [x := a, y := f(d)], [x := c, y := c]}

The ordering of terms used in the example is:

a ≺ b ≺ c ≺ d ≺ f(a) ≺ f(c) ≺ f(d)

4This invariant is employed in implementation of the t operator.

Chapter 4. E-matching 46

Figure 4.4: Example of an index for flat triggers with g in head

We now define an analogous for s-trees of the operators t and u we defined
earlier for sets of substitutions. Formally, the operators are defined so that
yield is a homomorphism from s-trees to sets of substitutions.

ε u T = T
xB [(t1, T1), . . . , (tn, Tn)] u T = xB [(t1, T1 u T), . . . , (tn, Tn u T)]

ε t ε = ε
xBX t xB Y = xBmerge(X,Y)

merge((t, T) :: X, (t′, T ′) :: Y) =


(t, T t T ′) :: merge(X,Y) if t = t′

(t, T) :: merge(X, (t′, T ′) :: Y) if t < t′

(t′, T ′) :: merge((t, T) :: X,Y) if t′ < t
merge(nil,X) = X
merge(X,nil) = X

The u corresponds to stacking trees one on top of another, while t does a
recursive merge. Example applications are given in Figure 4.3.

The precondition of the t operator is that the operands have the same
shape, meaning the x1 . . . xk sequence from the invariant is the same for both
trees; otherwise, t is undefined. This precondition is fulfilled by the subtrigger
matcher, since it only combines trees resulting from matching of the same
trigger, which means the variables are always accessed in the same order.

To change subtrigger match to use s-trees, we need to change the fetch
function, to return pB [(root(t), ε)] instead of [p := root(t)], ε instead of {[]}
and x B nil for some variable x instead of ∅. After this is done we only call
yield at the very end, to transform an s-tree into a set of substitutions.

4.4 Flat Matcher

During performance testing, we found that most triggers shared the head sym-
bol and matching them was taking a considerable amount of time. Moreover,
the triggers had a very simple form: f(x, c)5. This form is a specific example
of something we call flat triggers. A flat trigger is a trigger in which each
variable occurs at most once and at depth one.

5The actual function symbol was a subtyping predicate in ESC/Java2’s (Kiniry and Cok,
2005) Simplify-based object logic.

Chapter 4. E-matching 47

Flat triggers with a given head can be matched all at once by constructing
a tree that indexes all the triggers with the given function symbol in the head.
Such a tree can be viewed as a special kind of a discrimination tree (Ramakr-
ishnan et al., 2001), where we consider each child of the pattern as a constant
term, instead of traversing it pre-order. Unlike in discrimination trees used
for matching our index has non-ground terms and queries are ground.

We assume, without loss of generality, each function symbol to have only
one arity. A node in the index tree is either a set of triggers {p1, . . . , pn}, or
a set of pairs {(t1, I1), . . . , (tn, In)}, where each of the ti is a ground term or a
special variable ∗, and Ii are index trees.

We call (t1, . . . , tn, p) a path in I if and only if either:

1. n = 0 and p ∈ I; or

2. (t1, I
′) ∈ I and (t2, . . . , tn, p) is a path in I ′

Let star(x) = ∗ for a variable x and star(t) = t, for any non-variable
term t. We say that I indexes a set of triggers Q if for any f(p1, . . . , pn) ∈ Q
there exists a path (star(p1), . . . , star(pn), f(p1, . . . , pn)) in I, and for every
path there exists a corresponding trigger.

Given an index I, we find all the triggers that match the term f(t1, . . . , tn)
by calling match′(f(t1, . . . , tn), [t1, . . . , tn], {I}), where match′ is defined as
follows:

match′(t, [t1, . . . , tn], A) =
match′(t, [t2, . . . , tn], {I ′ | I ∈ A, (p, I ′) ∈ I, p ∼= t1 ∨ p = ∗})

match′(f(t1, . . . , tn), nil, A) =
{f(p1, . . . , pn) 7→ ui=1...n, pi∈V [pi := root(ti)] | I ∈ A, f(p1, . . . , pn) ∈ I}

The algorithm works by maintaining the set of trigger indices A containing
triggers that still possibly match t. At the bottom of the tree we extract
the children of t corresponding to variables in the trigger. We only consider
position at which the trigger has variables, not ground terms (the condition
pi ∈ V).

A flat-aware matcher is implemented by replacing the topmatch function
from Figure 4.2 with the one from Figure 4.5. The point of using it, though,
is to cache If and Sp across calls to subtrigger match.

4.5 Implementation and Experiments

We have implemented all three algorithms inside the Fx7 SMT solver6. Fx7
is implemented in the Nemerle (Moskal et al., 2007) language and runs on the
.NET platform. In each case the implementation is highly optimized and only
unsatisfactory results with the simplify match algorithm led to designing and
implementing the second and the third algorithm.

6Available online at http://nemerle.org/fx7/.

http://nemerle.org/fx7/

Chapter 4. E-matching 48

fun topmatch(p′)
if p is flat then

let f(p1, ..., pn) = p
If := index for all triggers with head f
foreach p in If do Sp := ∅
foreach f(t1, . . . , tn) in A do

foreach p 7→ T in match′(f(t1, . . . , tn), [t1, . . . , tn], If) do
Sp := Sp t T

return Sp′

else
S := match(p′)
return

⊔
t∈A S(t)

Figure 4.5: Flat matcher

The implementation makes heavy use of memoization. Both terms and
s-trees use aggressive (maximal) sharing. The implementations of u and t ex-
ploit this sharing, by memoizing results to avoid processing the same (shared)
subtree more than once.

An important point to consider in the design of matching algorithms is
incrementality. The prover will typically match, assert some facts, and then
match again. The prover is then interested only in receiving the new results.
The Simplify technical report (Detlefs et al., 2005) cites two optimizations to
deal with incrementality. We have implemented one of them, the mod-time
optimization, in all three algorithms. The effects are mixed, mainly since our
usage patterns of the matching algorithm are different than those of Simplify:
we generally change the E-graph more between matchings due to our proof
search strategy.

To achieve incrementality we memoize s-trees returned on a given proof
path and then use the subtraction operation on s-trees to remove substitutions
that had been returned previously. The subtraction on s-trees corresponds to
set subtraction and its implementation is very similar to the one of t.

Another fine point is that the loop over all active terms in the implementa-
tions of all three algorithms skips some terms: if we have inspected f(t1, . . . , tn)
then we skip f(t′1, . . . , t

′
n) given that ti ∼= t′i for i = 1 . . . n. Following work on

fast, proof-producing congruence closure (Nieuwenhuis and Oliveras, 2005), we
encode all the terms using only constants and a single binary function symbol
·(. . .). E.g., f(t1, . . . , tn) is represented by ·(f, ·(t1, · · · · (tn−1, tn))). There-
fore the loop over active terms is skipped when root(·(t1, · · · · (tn−1, tn))) was
already visited.

Yet another issue is that we map all the variables to one special symbol
during the matching, do not store the variable names in s-trees, and only
introduce the names when iterating the trees to get the final results (inside the

Chapter 4. E-matching 49

yield function). This allows for more sharing of subtriggers between different
triggers and is fairly common practice in term indexing.

The tests were performed on a 1 GHz Pentium III computer with 512 MiB
of RAM running Linux and Nemerle r7446 on top of Mono 1.2.3. The memory
used was always under 200 MiB. We ran the prover on a randomly selected
set of verification queries generated by the ESC/Java (Flanagan et al., 2002)
and Spec# (Barnett et al., 2005) tools. The benchmarks are now available as
part of SMT-LIB (Ranise and Tinelli, 2006).

The subtrigger matcher helps speed up matching by around 20% in the
Boogie benchmarks and around 50% in the ESC/Java benchmarks. The flat
matcher is around 2 times faster than Simplify’s matcher in the Boogie bench-
marks and around 10 times in the ESC/Java benchmarks. The detailed results
are given in the Section 4.7.

Now we give some intuitions behind the results. For example, consider
the trigger f(g1(x1), . . . , gn(xn)). If each of gi(xi) returns two matches, except
for the last one which does not match anything, the subtrigger matcher exits
after O(n) steps, while the Simplify matcher performs O(2n) steps. Even when
gn(xn) actually matches something (which is more common), the subtrigger
algorithm still performs O(n) steps to construct the s-tree and only performs
O(2n) steps walking that tree. These steps are much cheaper (as the tree is
rather small and fits in the CPU cache) than matching the gis several times,
which Simplify’s algorithm does. The main point of the subtrigger matcher is
therefore not to repeat work for a given (sub)trigger more than once.

The benefits of the flat matcher seem to be mostly CPU cache-related.
For example, a typical problem might have one hundred triggers with head f ,
and one thousand ground terms with the head f . The flat matcher processes a
data structure (of size one hundred) one thousand times, while the subtrigger
matcher (and also Simplify’s matcher) processes a different data structure (of
size one thousand) one hundred times. Consequently, given that these data
structures occupy a considerable amount of memory, frequently the smaller
data structures in the former case fit the cache, while the larger ones in the
latter case do not.

4.6 Conclusions and Related Work

We have presented two novel algorithms for E-matching. They are shown to
outperform the well-known Simplify E-matching algorithm.

The E-matching problem was first described, along with a solution, in the
Simplify technical report (Detlefs et al., 2005). We know several SMT solvers,
like Zap (Ball et al., 2005), CVC3 (Barrett and Tinelli, 2007), Verifun (Flana-
gan et al., 2004), Yices (Dutertre and de Moura, 2006) and Ergo (Conchon
et al., 2007) include matching algorithms, though there seem to be no publica-
tions describing their algorithms. Specifically, Zap uses a different algorithm
that also relies on the fact of triggers being linear and uses a different kind of
s-trees. Zap, however, does not do anything special about flat triggers.

Chapter 4. E-matching 50

In a recent paper (de Moura and Bjørner, 2008) on Z3 SMT solver, a way
of compiling patterns into a code tree that is later executed against ground
terms is defined. Such a tree is beneficial if there are many triggers that share
the top part of triggers. We, on the other hand, exploit sharing in the bottom
parts of triggers, and the flat matcher handles the case of simple triggers
that share only the head symbol. The Z3 authors also propose an index on
the ground terms that is used to speed up matching in an incremental usage
pattern. Such an index could perhaps be used also with our approach. Of
course, the usefulness of all these techniques largely depends on benchmarks
and the particular search strategy employed in an SMT solver.

During the 2007 SMT competition (Barrett et al., 2008) there were four
solvers participating in the Arithmetic, Uninterpreted Functions, Linear Inte-
ger Arithmetic and Arrays (AUFLIA) division. The AUFLIA division includes
software verification problems and is the only one involving heavy use of quan-
tifier reasoning (see Section 1.1.1 for details). Z3 was first and Fx7 was second,
with the same number of solved benchmarks but much worse run time. Both
solvers used improved matching algorithms, while other participants (CVC3
and Yices) did not, which is some indication of importance of E-matching in
this kind of benchmarks.

Some of the problems in the field of term indexing (Ramakrishnan et al.,
2001) in saturation-based theorem provers are also related. As mentioned ear-
lier, our work uses ideas similar to substitution trees and discrimination trees.
It seems to be the case, however, that the usage patterns in the saturation
provers are different than those in SMT solvers. Matching SMT solvers must
deal with several orders of magnitude fewer non-ground terms, a similar num-
ber of ground terms, but the time constraints are often much tighter. This
different set of constraints and goals consequently leads to the construction of
different algorithms and data structures.

4.7 Appendix: Detailed Experimental Results

The first column lists the benchmark name, the second, third and fourth
columns are the average times spent matching a single trigger during proof
search for a given benchmark. The times are given in microseconds. The
second column refer to the subtrigger matcher (Figure 4.3), the third one for
the subtrigger matcher combined with the flat matcher (Figure 4.4) and the
last column refers to the Simplify matcher (Figure 4.1).

Chapter 4. E-matching 51

Benchmark name Subtrig.
Subtrig.
+ Flat

Simpl.

AssignToNonInvariantField.ClientClass..ctor 248 180 520
Assumptions.Sub..ctor 214 166 444
Branching.T.M.T.notnull.System.Int32 237 217 359
Chunker0.Chunker..ctor.System.String.Int32 133 102 250
DefaultLoopInv0.A.M-modifiesOnLoop-noinfer 173 146 293
Immutable.test3.C..ctor 232 177 549
Interval.Interval.Shift.System.Int32 261 216 564
ModifyOther.Test..ctor 246 179 438
PeerFields.Child..ctor.System.Int32 285 209 602
PeerFields.Parent.M 269 234 494
PeerFields.Parent.P 201 174 369
PeerFields.PeerFields.Assign1.PeerFields 176 140 258
PeerFields.PeerFields.M.System.Int32 284 258 470
PeerModifiesClauses.Homeboy.T-level.2 224 204 313
PureReceiverMightBeCommitted.C..ctor 199 156 351
PureReceiverMightBeCommitted.C.N 189 174 363
QuantifierVisibilityInvariant.A..ctor 245 251 524
QuantifierVisibilityInvariant.B..ctor.int 275 242 479
QuantifierVisibilityInvariant.C..ctor.int 280 233 482
Strengthen.MainClass.Main.HARD 190 163 458
Strings.test3.MyStrings.StringCoolness2.bool 184 153 418
Strings.test3.MyStrings.StringCoolness3 162 129 369
Types.T..ctor.D.notnull-orderStrength.1 142 83 428
ValidAndPrevalid.Interval.Foo4 251 194 545
Average 221 183 431

Chapter 4. E-matching 52

Benchmark name Subtrig.
Subtrig.
+ Flat

Simpl.

javafe.CopyLoaded.019 322 262 826
javafe.ast.AmbiguousMethodInvocation.007 112 70 709
javafe.ast.AmbiguousVariableAccess.007 114 77 775
javafe.ast.ArrayRefExpr.007 106 67 726
javafe.ast.CastExpr.007 113 77 744
javafe.ast.ClassLiteral.007 113 70 764
javafe.ast.CondExpr.007 111 77 739
javafe.ast.FieldAccess.009 118 70 725
javafe.ast.InstanceOfExpr.007 112 72 726
javafe.ast.MethodInvocation.009 122 71 800
javafe.ast.NewArrayExpr.009 112 73 750
javafe.ast.NewInstanceExpr.003 540 272 3959
javafe.ast.NewInstanceExpr.008 108 72 709
javafe.ast.ParenExpr.007 113 76 758
javafe.ast.ThisExpr.007 115 75 723
javafe.ast.VariableAccess.008 109 74 714
javafe.parser.Lex.006 218 189 1056
javafe.parser.Lex.018 256 190 874
javafe.parser.Parse.005 275 202 1864
javafe.parser.Parse.006 354 296 2107
javafe.reader.ASTClassFileParser.005 730 373 5498
javafe.reader.ASTClassFileParser.022 690 415 4544
javafe.tc.Env.007 742 517 5980
javafe.tc.EnvForLocals.001 268 190 869
Average 249 164 1581

Chapter 5

Proof Checking

In Chapter 3 we have shown means to develop an SMT theory corresponding
to a verification methodology. Integrity of such a theory (Section 3.4.1) can
be either ensured formally, possibly with an interactive proof assistant, or in-
formally through testing (which is the dominating practice). There is however
another side to the verification tool integrity, namely soundness of the SMT
solver used. Fortunately, significant parts of the SMT solver are only heuristic
and do not impact the overall soundness. This is true, for example, for the
E-matching algorithms developed in Chapter 4: should they miss some substi-
tutions, we get incompleteness; otherwise, any substitution is allowed by the
semantics of first-order logic, even if the E-matching algorithm is faulty and
produces substitutions not allowed by the triggers.

Still, there are two problems with soundness of SMT solvers. One problem
is that there might be a bug in soundness-impacting part of the SMT solver,
whose implementation can be largely opaque to others than the developer.
The other problem is that we might want to provide the evidence of program
being correct to someone else, like in Proof-Carrying Code (Necula, 1997)
scenarios.

It is therefore desirable for an SMT solver to produce the proof of the
unsatisfiability of formulas. The problem is that in program verification, the
queries are rather huge and so are the proofs. For example formulas in the
AUFLIA division of the SMT-LIB (cf. Section 1.1.1) contain up to 130 000
distinct subterms, with an average of 8 000. The proofs we have generated are
on average five times bigger than the formulas. The most complicated proof
we have encountered contains around 40 000 basic resolution steps and around
1 000 000 (sub)terms in size. What is worth noting however, is that state of
the art SMT solvers are able to check a vast majority of such queries in under
a second. As the general expectation is that proof checking should be faster
than proof generation, it becomes clear that we need very efficient means of
proof checking.

53

Chapter 5. Proof Checking 54

Contributions

The contributions of this chapter are:

• we introduce a simple, yet expressive term rewrite formalism (in Sec-
tion 5.2), and show it is strong enough to encode and check proofs of
theory tautologies and boolean tautologies (Section 5.3), and also NN-
F/CNF (negation normal form/conjunctive normal form) conversions
with skolemization (Section 5.4),

• we discuss two highly efficient implementations of the proposed rewrite
system (Section 5.6). In particular we discuss performance issues (Sec-
tion 5.6.2) and we describe techniques to help ensure soundness of the
rewrite rules (Section 5.6.1).

There are two reasons to use term rewriting as a proof checking vehicle.
One is that the term rewriting is a simple formalism, therefore it is relatively
easy to reason about the correctness of an implementation of the proof checker.
The bulk of soundness reasoning goes at term rewrite rules level, which is much
better understood and simpler to reason about than a general purpose (often
low level) programming language used to implement a proof checker.

The second reason is memory efficiency, which on modern CPUs is also
a key to time efficiency. We encode proof rules as rewrite rules and handle
non-local conditions (like uniqueness of Skolem functions) at the meta level,
which allows for the rewrite rules to be local. The idea behind the encoding of
the proof rules is to take proof terms and rewrite them into the formulas that
they prove. This allows for memory held by the proof terms to be immediately
reclaimed and reused for the next fragment of the proof tree read from a proof
file.

Proof Search in SMT Solvers

As described in Section 2.2, in order to check unsatisfiability of a formula,
an SMT solver will usually first transform it into an equisatisfiable CNF
formula, while simultaneously performing skolemization. Subsequent proof
search alternates between boolean reasoning, theory reasoning, and quan-
tifier instantiation. Both for the boolean part and for deriving the final
empty clause we use resolution. Theory reasoning produces conflict clauses,
which are tautologies under respective theories, e.g., ¬(a > 7) ∨ a ≥ 6 or
¬(c = d) ∨ ¬(f(c) = 42) ∨ ¬(f(d) < 0). Quantifier reasoning is based on
instantiating universal quantifiers and producing tautologies like ¬(∀x. f(x) >
0 → P (x)) ∨ ¬(f(3) > 0) ∨ P (3). It can be thought of as just another back-
ground theory.

To make this search procedure return a proof, we need proofs of: CNF
translation, boolean tautologies and theory tautologies. By taking these three
together, we should obtain a proof that the formula is unsatisfiable.

Chapter 5. Proof Checking 55

5.1 The Idea

We introduce a rather straightforward proof system for boolean resolution
and theory conflicts, consisting of a number of rules. Each proof rule r allows
one to derive a formula φ based on premises φ1, . . . , φn. Per each such rule we
introduce a function symbol r and a rewrite rule of the form r(φ1, . . . , φn) I φ.
The application of the term representing a proof rule to premises yields the
consequence of that proof rule. Therefore, if we represent the entire proof tree
as a corresponding term, then the subterms representing premise-less, leaf
rules will rewrite to the formulas they prove, which will allow the subterms
containing them to rewrite to the formulas they prove and so on. Finally, the
entire term representing the proof tree will rewrite to the formula in the root.

A proof of unsatisfiability of formula ψ, is a proof of false, which can use
the formula ψ in leaves as a premise. Our proof checking machinery will thus
check if a proof term, using ψ in leaves, rewrites to a constant representing
false.

The proof of correctness of the initial skolemization is slightly differ-
ent. There we introduce several satisfiability preserving transformations, name
them with function symbols and construct a term encoding in which order and
to what part of the formula to apply them. Then we define rewrite rules tak-
ing the input formula and transformation as input and giving the transformed
formula as output.

Both operations are performed using a bottom-up rewrite strategy (given
as nf (...) below). The term language we are using contains the standard
first-order terms, the λ-binder allowing for efficient encoding of rules involving
quantified formulas and assumptions, and the let-binder to exploit the DAG
structure of typical proofs.

5.2 Definitions

Let V be an infinite, enumerable, set of variables. We use x and y (all symbols
possibly with indices) as meta-variables ranging over V. Let Σ be an infinite,
enumerable set of function symbols, we use meta-variable f ranging over Σ.
We define the set of terms T , and the set of patterns P ⊆ T as follows:

T ::= x | f(T1, . . . , Tn) | λx. T1 | cons · (T1, T2) | nil · () | build · (f, T1) |
apply · (T1, T2) | fold · (T1)

P ::= x | f(P1, . . . ,Pn)

where n ≥ 0. The notion s·(...) stands for a special form, which have particular
interpretations in the term rewrite system. We will use t1 :: t2 as a syntactic
sugar for cons · (t1, t2), and nil for nil · ().

The set of free variables of a term, FV : T → P(V), is defined as usual:

Chapter 5. Proof Checking 56

FV (x) = {x}
FV (f(t1, . . . , tn)) =

⋃
1≤i≤n FV (ti)

FV (λx. t) = FV (t) \ {x}
FV (s · (t1, . . . , tn)) =

⋃
1≤i≤n FV (ti)

Note that it is also defined on P, as P ⊆ T . Let T (A,B) be a set of terms
built from function symbols from the set A and variables from the set B ⊆ V
(i.e. if t ∈ T (A,B) then FV (t) ⊆ B). A substitution is a function σ : V → T ,
which we identify with its homomorphic, capture free extension to σ : T → T .

A rewrite rule is a pair (p, t), where p ∈ P, t ∈ T and FV (t) ⊆ FV (p).
Let R be a set of such rewrite rules, such that for distinct (p, t), (p′, t′) ∈ R, p
and p′ do not unify. We define a normal form of a term t, with respect to R
as nf (t), with the rules below. Since the function defined below is recursive,
it is possible for it not to terminate. If the rules below do not result in a single
unique normal form for term t, then we say that nf (t) = ⊗. If term has ⊗
as subterm, it is itself regarded as equal to ⊗. In practice this condition is
enforced by limiting running time of the proof checker.

nf (x) = x

nf (f(t1, . . . , tn)) =


nf (tσ)

for (p, t) ∈ R such that
∃σ. pσ = f(nf (t1), . . . ,nf (tn))

f(nf (t1), . . . ,nf (tn))
otherwise

nf (λx. t1) = λx.nf (t1)
nf (apply · (λx. t1, t2)) = nf (t1[x := t2])
nf (build · (f, t1 :: · · · :: tn :: nil))

= nf (f(t1, . . . , tn))
nf (build · (f, t1)) = build · (f,nf (t1))

if none of the above apply
nf (s · (t1, . . . , tn)) = s · (nf (t1), . . . ,nf (tn))

if none of the above apply

where t1[x := t2] denotes a capture free substitution of x with t2 in t1
1.

The semantics of the fold · (t) is not defined above. Its role is to perform
theory-specific constant folding on t. Folding is implemented either inside the
proof checker or by an external tool called by the proof checker. In this chapter
we use integer constant folding (for example nf (fold · (add(20, 22))) = 42).

The signature used throughout this chapter can be divided in four cate-
gories:

1. logical connectives: false, implies, and, or, forall, neg

2. theory specific symbols: eq, add, leq, minus and natural number literals
(0, 1, 2, ...)

1The actual implementation uses de Bruijn indices, so the “capture free” part comes at
no cost.

Chapter 5. Proof Checking 57

Γ ` ψ1 → ψ2 Γ ` ψ1
Γ ` ψ2

(mp)
mp(�(implies(x1, x2)),�(x1)) I
�(x2)

Γ ` ⊥
Γ ` ψ (absurd)

absurd(�(false), x) I
�(x)

Γ ` (ψ → ⊥)→ ⊥
Γ ` ψ (nnpp)

nnpp(�(implies(implies(x, false), false))) I
�(x)

Γ ∪ {ψ1} ` ψ2

Γ ` ψ1 → ψ2
(assume)

assume(x1, x2) I
lift known(implies(x1,apply · (x2,�(x1))))

lift known(implies(x1,�(x2))) I
�(implies(x1, x2))

ψ ∈ Γ
Γ ` ψ (assumption) no rewrite rule associated

Figure 5.1: A complete system for → and ⊥. We list the proof rule, followed
by the associated rewrite rule(s).

3. technical machinery: lift known,�, sk

4. rule names

5.3 Boolean Deduction

Consider the logical system from Figure 5.1. It is complete for boolean logic
with connectives→ and ⊥. Three of the derivation rules there ((mp), (absurd)
and (nnpp)) fit a common scheme:

Γ ` Ξ1(ψ1, . . . , ψm) . . .Γ ` Ξn(ψ1, . . . , ψm)

Γ ` Ξ(ψ1, . . . , ψm)
(r)

where Ξi and Ξ are formulas built from the boolean connectives and formula
meta-variables ψ1, . . . , ψm, while (r) is the name of the rule. We call such rules
standard rules. Additional boolean connectives can be handled by adding more
standard rules. To encode a standard derivation rule, we use the following
rewrite:

r(�(Ξ1(x1, . . . , xm)), . . . ,�(Ξn(x1, . . . , xm)), xi1 , . . . , xil) I
�(Ξ(x1, . . . , xm))

where xij are additional technical arguments, to fulfill the condition that the
left-hand side of a rule has to contains all the free variables in the right-hand

Chapter 5. Proof Checking 58

Γ ` t = t
(eq refl)

eq refl(x) I
�(eq(x, x))

Γ ` t1 = t2 Γ ` t2 = t3
Γ ` t1 = t3

(eq trans)

eq trans(�(eq(x1, x2)),�(eq(x2, x3))) I
�(eq(x1, x3))

Γ ` t1 = t2
Γ ` t2 = t1

(eq trans)
eq symm(�(eq(x1, x2))) I
�(eq(x2, x1))

Γ ` t1 = t2
Γ ` ψ(t1)→ ψ(t2)

(eq sub)

eq sub(�(eq(x1, x2)), y) I
�(implies(apply · (y, x1),apply · (y, x2)))

Γ ` x+ x1 ≤ c1 Γ ` −x+ x2 ≤ c2
x1 + x2 ≤ c1 + c2

(utvpi trans)

utvpi trans(�(leq(add(x1, x2), x3)),�(leq(add(minus(x1), y2), y3))) I
�(leq(add(x2, y2), fold · (add(x3, y3)))

Figure 5.2: The equality rules, and an example of an UTVPI rule.

side and r is a function symbol used to encode this particular rule. Therefore
we can model (mp), (absurd) and (nnpp) using the rewrite rules listed in
Figure 5.1. The intuition behind the �(...) is that if term P rewrites to �(ψ),
then P represents a proof of ψ.

We are left with the (assume)/(assumption) pair, which is modeled using
lambda expressions. There is no explicit rewrite for (assumption) rule. In the
rule for assume(x1, x2) (Figure 5.1), the term x2 is expected to be of the form
λy. t, where t is a proof using y in places where (assumption) should be used.
This is very similar to the encoding of the Imp-I rule in Edinburgh Logical
Framework (Harper et al., 1987).

We call restricted the terms of the form �(...), lift known(...) or sk(...)
(the last one is used in the next section). We say that P ∈ T is a pre-
proof (written preproof (P)), if it does not contain a restricted subterm, or
a subterm which is a s · (...) special form. The idea is that the proof shall
be constructed only using the predefined proof rules and not using auxiliary
technical machinery.

Lemma 1. For any pair (P, σ), such that preproof(P), ∀x ∈ V. xσ = x ∨
∃φ. xσ = �(φ) and nf(Pσ) = �(ψ), there exists a derivation Γ ` ψ where
Γ = {φ | x ∈ V, xσ = �(φ)}.

Proof. The proof is by induction on the size of P . Since �(...) is not a subterm
of P , the head of P must be either:

Chapter 5. Proof Checking 59

1. a variable x, in which case xσ is �(ψ) and the (assumption) rule can
be used, since ψ ∈ Γ,

2. P = r(P1, . . . , Pn, t1, . . . , tm), where a rewrite, obtained from a deriva-
tion rule (r), is applicable to:

r(nf (P1σ), . . . ,nf (Pnσ),nf (t1), . . . ,nf (tm))

We use the induction hypothesis on (Pi, σ), where nf (Piσ) = �(ψi) and
build the derivation using the (r) rule.

3. P = assume(P1, ψ), which rewrites to �(...) in two steps, through the
lift known(...) (which cannot be used explicitly because preproof (P)).
apply·(P1,�(ψ)) needs to be reduced to �(...) for the lift known(...) to
be applied, so nf (P1) = λx. P2, for some P2. Since no rule can result in a
rewrite to a lambda term (all of the rewrite rules have a term of the form
f(...) as their right hand side), then not only nf (P1), but also P1 itself
needs to start with a lambda binder. Therefore P1 = λx. P3, for some
P3. In this case we use the induction hypothesis on (P3, σ[x := �(ψ)]),
and then use the (assume) rule to construct the implication.

There are no other cases, since no other rewrite rule has �(...) as the right-
hand side.

Applying this lemma with (P, ∅) gives the theorem.

Theorem 1. For any P , such that preproof(P) and nf(Pσ) = �(ψ) there
exists a derivation ` ψ.

Theory Conflicts. Proving theory conflicts clearly depends on the particu-
lar theory. Figure 5.2 lists rules for the theory of equality. The encoding is
the same as for the standard rules from Figure 5.1. For arithmetic we cur-
rently support the UTVPI fragment (Harvey and Stuckey, 1997) of integer
linear arithmetic. It consists of inequalities of the form ax + by ≤ c, where
a, b ∈ {−1, 0, 1} and c is an integer. The decision procedure closes set of such
inequalities, with respect to a few rules, of the form similar to the one listed
in Figure 5.2. Again, the encoding is the same as for ordinary deduction rules.

5.4 Skolemization Calculus

Figure 5.3 lists rules for a skolemization calculus. The] is disjoint set union
(i.e. A ∪ B if A ∩ B = ∅ and undefined otherwise). The intuition behind
S;Q ` ψ φ is that for each model M of ∀Q.ψ there exists an extension of
M on the symbols from S that satisfies ∀Q.φ. We formalize it using second
order logic with the following lemma:

Lemma 2. Let Q = {x1, . . . , xn} and S = {f1 . . . fn}. If S;Q ` ψ φ where
ψ ∈ T (Σ, Q), φ ∈ T (Σ] S,Q), then |= ∃2f1 . . . ∃2fn.∀x1, . . . , xn. ψ → φ.

Chapter 5. Proof Checking 60

∅;Q ` ¬ψ(f(Q)) φ
{f};Q ` ¬∀x. ψ(x) φ

(skol)

sk(y, skol(f, y1), neg(forall(x))) I
sk(y, y1, neg(apply · (x,build · (f, y))))

S;Q, x ` ψ(x) φ(x)
S;Q ` ∀x. ψ(x) ∀x. φ(x)

(skip∀)

sk(y, skip∀(y1), forall(x1)) I
forall(λx. sk(x :: y, y1,apply · (x1, x)))

∅;Q ` ψ ψ
(id) sk(y, id, x1) I x1

S1;Q ` ψ1 φ1 S2;Q ` ψ2 φ2
S1] S2;Q ` ψ1 ∧ ψ2 φ1 ∧ φ2 (rec∧)

sk(y, rec∧(y1, y2), and(x1, x2)) I
and(sk(y, y1, x1), sk(y, y2, x2))

S1;Q ` ψ1 φ1 S2;Q ` ψ2 φ2
S1] S2;Q ` ψ1 ∨ ψ2 φ1 ∨ φ2 (rec∨)

sk(y, rec∨(y1, y2), or(x1, x2)) I
or(sk(y, y1, x1), sk(y, y2, x2))

S1;Q ` ¬ψ1 φ1 S2;Q ` ¬ψ2 φ2
S1] S2;Q ` ¬(ψ1 ∨ ψ2) φ1 ∧ φ2

(rec¬∨)

sk(y, rec¬∨(y1, y2), neg(or(x1, x2))) I
and(sk(y, y1, neg(x1)), sk(y, y2, neg(x2)))

S1;Q ` ¬ψ1 φ1 S2;Q ` ¬ψ2 φ2
S1] S2;Q ` ¬(ψ1 ∧ ψ2) φ1 ∨ φ2

(rec¬∧)

sk(y, rec¬∧(y1, y2), neg(and(x1, x2))) I
or(sk(y, y1, neg(x1)), sk(y, y2, neg(x2)))

S1;Q ` ψ1 φ1
S1;Q ` ¬¬ψ1 φ1

(rec¬¬)

sk(y, rec¬¬(y1), neg(neg(x1))) I
sk(y, y1, x1)

Figure 5.3: The skolemization calculus.

Chapter 5. Proof Checking 61

The key point of the proof is that for the rules of the common form:

S1;Q ` Ξ1(ψ1, . . . , ψk) φ1 . . . Sm;Q ` Ξm(ψ1, . . . , ψk) φm
S1] . . .] Sm;Q ` Ξ(ψ1, . . . , ψk) Ξ′(ψ1, . . . , ψk, φ1, . . . , φm)

(r)

where ψj and φj range over first-order formulas it is enough to show the
following:

∀Q : Type. ∀S1 . . . Sn : Type.
∀ψ1 . . . ψk : Q→ Prop.
∀φ1 : S1 ×Q→ Prop. . . .∀φm : Sm ×Q→ Prop.∧

i=1...m(∃fi : Si.∀x : Q.Ξi(ψi(x), . . . , ψk(x))→ φi(fi, x))→
(∃f1 : S1. . . .∃fm : Sm. ∀x : Q.Ξ(ψ1(x), . . . , ψk(x))→

Ξ′(ψm(x), . . . , ψk(x), φ1(f1, x), . . . , φm(fm, x)))

which is much like the formula from the lemma, except that there is only one
Skolem constant fi per premise and also there is only one free variable in all
the formulas, namely x. However these symbols are of arbitrary type, so they
can be thought of as representing sequences of symbols.

We prove such formulas for each rule, the reader can find the proof scripts
for Coq proof assistant online 2.

Rewrite encoding The common form of a rule is encoded as:

sk(y, r(y1, . . . , ym),Ξ(x1, . . . , xk)) I
Ξ′(x1, . . . , xk, sk(y, y1,Ξ1(x1, . . . , xk)), . . . , sk(y, ym,Ξm(x1, . . . , xk)))

The first argument of sk(. . .) is the list of universally quantified variables in
scope. The second argument is a rule name, along with proofs of premises.
The third argument is the formula to be transformed.

The encoding of non-common rules (as well as the common rules used
here) is given in the Figure 5.3.

Lemma 3. If preproof(P), nf(sk(x1 :: · · · :: xn :: nil, P, ψ)) = ψ′, and for
each occurrence of skol(f) as a subterm of P , the function symbol f does not
occur anywhere else in P nor in ψ, then there exists S, such that S;x1, . . . , xn `
ψ ψ′.

Proof. By structural induction over P .

Theorem 2. If preproof(P), nf(sk(nil, P, ψ)) = ψ′, and for each occurrence
of skol(f) as a subterm of P , the function symbol f does not occur anywhere
else in P nor in ψ, and ψ′ is unsatisfiable then ψ is unsatisfiable.

Proof. By Lemmas 2 and 3.

2http://nemerle.org/fx7/

http://nemerle.org/fx7/

Chapter 5. Proof Checking 62

5.5 The Checker

The proof checker reads three files: (1) rewrite rules describing the underlying
logic; (2) a query in SMT-LIB concrete syntax; and (3) the proof. The concrete
syntax for both the rewrite rules and the proof term is similar to the one used
in SMT-LIB. The proof term language includes the following commands:

• let x := t1: bind the identifier x to the term nf (t1)

• initial t1 t2: check if skol(f) is used in t1 only once with each f , that the
f symbols do not occur in t2, compares t2 against the query read from the
SMT-LIB file, and, if everything succeeds, binds �(nf (sk(nil, t1, t2)))
to the special identifier initial; this command can be used only once
in a given proof

• final t1: checks if nf (t1) = �(false), and if so reports success and exits

• assert eq t1 t2: checks if nf (t1) = nf (t2) (and aborts if this is not the
case)

• assert ok t1 t2: checks if nf (t1) = �(nf (t2)) (and aborts if this is not
the case)

• print t1: prints a string representation of t1

The last three commands are used to debug the proofs.

The proofs, after initial skolemization, are structured as a sequence of
clause derivations, using either resolution, theory conflicts, instantiation or
CNF-conversion steps. All these clauses are let-bound, until we reach the
empty clause. Basically we end up with a proof-tree in natural deduction, de-
riving the boolean false constant from the initial formula. The tree is encoded
as a DAG because let-bound clauses can be used more than once.

All those steps are best described through an example3. Figure 5.4 lists
rules not previously mentioned in this chapter that were used in the proof.
The real proof system has more rules. As described in Section 5.6.1, we me-
chanically check all rules. Our example formula is:

P (c) ∧ (c = d) ∧ (∀x.¬P (x) ∨ ¬(∀y.¬Q(x, y))) ∧ (∀x.¬Q(d, x))

The first step is the initial skolemization:

let q1 := forall(λx. or(neg(P (x)), neg(forall(λy. neg(Q(x, y))))))
let q2 := forall(λx. neg(Q(d, x)))
let fin := and(P (c), and(eq(c, d), and(q1, q2)))
let sk := rec∧(id, rec∧(id, rec∧(skip∀(rec∨(id, skol(f, rec¬¬(id)))), id)))
initial sk fin

3The proof presented here is not the simplest possible of this very formula. However it
follows the steps that our SMT solver does and we expect other SMT solvers to do.

Chapter 5. Proof Checking 63

Γ ` ψ1 ∧ ψ2
Γ ` ψ1

(elim∧1)
elim∧1(�(and(x1, x2))) I
�(x1)

Γ ` ψ1 ∧ ψ2
Γ ` ψ2

(elim∧2)
elim∧2(�(and(x1, x2))) I
�(x2)

Γ ` ψ1 ∨ ψ2
Γ ` ¬ψ1 → ψ2

(elim∨)
elim∨(�(or(x1, x2))) I
�(implies(neg(x1), x2))

Γ ` ¬ψ Γ ` ψ
Γ ` ⊥ (elim¬)

elim¬(�(neg(x1))),�((x1)) I
�(false)

Γ ` ψ
Γ ` ¬¬ψ (add¬¬)

add¬¬(�(x1)) I
�(neg(neg(x1)))

Γ ` ψ → ⊥
Γ ` ¬ψ (intro¬)

intro¬(�(implies(x1, false))) I
�(neg(x1))

Γ ` ¬ψ → ⊥
Γ ` ψ (elim¬→)

elim¬→(�(implies(neg(x1), false))) I
�(x1)

Γ ` ∀x. ψ(x)
Γ ` ψ(t)

(inst)
inst(y,�(forall(x))) I
�(apply · (x, y))

Figure 5.4: Additional rules for the example.

Here our expectation, as the proof generator, is that

∀x.¬P (x) ∨ ¬(∀y.¬Q(x, y))

will be replaced by:

∀x.¬P (x) ∨Q(x, f(x))

which we express as:

let q3 := forall(λx. or(neg(P (x)), Q(x, f(x))))
let fsk := and(P (c), and(eq(c, d), and(q3, q2)))
assert ok initial fsk

The first step of the actual proof is a partial CNF-conversion. Our CNF con-
version uses Tseitin scheme, which introduces proxy literals for subformulas.
This produces equisatisfiable set of clauses, yet the proof maps the proxy lit-
erals back to the original subformulas. Then the defining clauses of proxy
literals become just basic boolean facts. We therefore derive clauses of the
form fsk → ¬ψ → ⊥, where ψ is one of the conjuncts of fsk, for example:

let tmp := λf. assume(neg(eq(c, d)), λp. elim¬(p, elim∧2(elim∧1(f))))
let c1 := assume(fsk, tmp)
assert ok c1 implies(fsk, implies(neg(eq(c, d)), false))

Chapter 5. Proof Checking 64

and similarly we derive:

assert ok c0 implies(fsk, implies(neg(P (c)), false))
assert ok c2 implies(fsk, implies(neg(q3), false))
assert ok c3 implies(fsk, implies(neg(q2), false))

Next we instantiate the quantifiers:

let c4 := assume(q2, λq. assume(Q(d, f(c)), λi. elim¬(inst(f(c), q), i)))
assert ok c4 implies(q2, implies(Q(d, f(c)), false))
let i1 := or(neg(P (c)), Q(c, f(c)))
let c5 := assume(q3, λq. assume(neg(i1), λi. elim¬(i, inst(c, q))))
assert ok c5 implies(q3, implies(neg(i1), false))

Then we need to clausify i1:

let c6 := assume(i1, λi. assume(P (c), λo1. assume(neg(Q(c, f(c))), λo2.
elim¬(o2, mp(elim∨(i), add¬¬(o1))))))

assert ok c6 implies(i1, implies(P (c), implies(neg(Q(c, f(c)), false)))

Then we do some equality reasoning:

let c7 := assume(neg(Q(d, f(c))), λln. assume(eq(c, d), λe. assume(Q(c, f(c)),
λlp. elim¬(ln, mp(eq sub(e, λx.Q(x, f(c))), lp)))))

assert ok c7 implies(neg(Q(d, f(c))),
implies(eq(c, d), implies(Q(c, f(c)), false)))

What remains is a pure boolean resolution. The resolution is realized by
assuming the negation of the final clause and then using unit resolution of the
assumed literals and some previous clauses, to obtain new literals, and as a
last step, the false constant. We first resolve c4 with c7:

let c8 := assume(q2, λl1. assume(eq(c, d), λl2. assume(Q(c, f(c)), λl3.
mp(mp(mp(c7, intro¬(mp(c4, l1))), l2), l3)

assert ok c8 implies(q2, implies(eq(c, d), implies(Q(c, f(c)), false)))

and finally we derive (also through resolution) the false constant:

let kq2 := elim¬→(mp(c3, initial))
let kq3 := elim¬→(mp(c2, initial))
let kp := elim¬→(mp(c0, initial))
let ke := elim¬→(mp(c1, initial))
let kq := elim¬→(mp(mp(c6, elim¬→(mp(c5, kq3))), kp))
let c9 := mp(mp(mp(c8, kq2), ke), kq)
final c9

Chapter 5. Proof Checking 65

5.6 Implementation

We have implemented two versions of the proof checker: one full version in
OCaml and a simplified one written in C. Proof generation was implemented
inside the Fx7 (Moskal, 2007) SMT solver, implemented in the Nemerle pro-
gramming language. The solver came second in the AUFLIA division of 2007
SMT competition, being much slower, but having solved the same number of
benchmarks as the winner, Z3 (de Moura and Bjørner, 2008).

An important point about the implementation, is that at any given point,
we need to store only terms that can be referenced by let-bound name, and
thus the memory used by other terms can be reclaimed. As in our encoding
the proof terms actually rewrite to formulas that they prove, there is no need
to keep the proof terms around. We suspect this to be the main key to memory
efficiency of the proof checker. The C implementation exploits this fact, the
OCaml one does not.

Both implementations use de Bruijn (de Bruijn, 1972) indices in repre-
sentation of lambda terms. We also use hash consing, to keep only a single
copy of a given term. We cache normal forms of the terms, we remember what
terms are closed (which speeds up beta reductions). Also a local memoization
is used in function computing beta reduction to exploit the DAG structure of
the term. The rewrite rules are only indexed by the head symbol, if two rules
share the head symbol, linear search is used.

All the memoization techniques used are crucial (i.e., we have found
proofs, where checking would not finish in hours without them).

The OCaml implementation is about 900 lines of code, where about 300
lines is pretty printing for Coq and Maude formats. The C implementation is
1500 lines. Both implementation include parsing of the proof and SMT formats
and command line option handling. The implementations are available online
along with the Fx7 prover.

5.6.1 Soundness Checking

The OCaml version of the checker has also a different mode of operation, where
it reads the rewrite rules and generates corresponding formulas to be proven
in the Coq proof assistant. There are three proof modes for rules:

• for simple facts about boolean connectives, arithmetic and equality, the
checker generates a lemma and a proof, which is just an invocation of
appropriate tactic

• for other generic schemas of proof rules from Section 5.3 and 5.4, the
checker produces proof obligations, and the proofs need to be embedded
in the rule descriptions

• for non-generic proof rules, the user can embed both the lemma and the
proof in the rule description file, just to keep them close

Chapter 5. Proof Checking 66

Directory Total UNSAT Fake Fail

front end suite 2320 2207 101 12
95.13% 4.35% 0.52%

boogie 908 866 25 17
95.37% 2.75% 1.87%

simplify 833 729 44 60
87.52% 5.28% 7.20%

piVC 41 17 10 14
41.46% 24.39% 34.15%

misc 20 16 0 4
80.00% 0.00% 20.00%

Burns 14 14 0 0
100.00% 0.00% 0.00%

RicartAgrawala 14 13 0 1
92.86% 0.00% 7.14%

small suite 10 8 0 2
80.00% 0.00% 20.00%

Figure 5.5: Results on the AUFLIA division of SMT-LIB.

This semiautomatic process helps preventing simple, low-level mistakes in the
proof rules. The checker provides commands to define all these kinds of rules
and associated proofs.

5.6.2 Performance Evaluation

When running Fx7 on a query there are five possible outcomes:

• it reports that the query is unsatisfiable, and outputs a proof

• it reports that the query is unsatisfiable, but since the proof generation
is only implemented for the UTVPI fragment of linear arithmetic, the
proof is correct only if we assume the theory conflicts to be valid (there
is typically a few of them in each of such “fake” proofs)

• it reports the query is satisfiable, timeouts or runs out of memory

Tests were performed on AUFLIA benchmarks from the SMT-LIB (Ranise
and Tinelli, 2006) This division includes first-order formulas, possibly with
quantifiers, interpreted under uninterpreted function symbols, integer linear
arithmetic and array theories. They are mostly software verification queries
(cf. Section 1.1.1). The machine used was a 2.66GHz Pentium 4 PC with 1GB
of RAM, running Linux. The time limit was set to ten minutes.

The results are given in Figure 5.5. The “Total” column refers to the
number of benchmarks marked unsatisfiable in the SMT-LIB; “UNSAT” refers
to the number of cases, where the benchmark was found unsatisfiable and

Chapter 5. Proof Checking 67

a correct proof was generated; “Fake” is the number of benchmarks found
unsatisfiable, but with “fake” proofs; finally “Fail” is the number of cases,
where Fx7 was unable to prove it within the time limit. It should be the case
that UNSAT + Fake + Fail = Total. The percentages are with respect to the
Total.

With the C implementation, proof checking a single proof never took
more than 7 seconds. It took more than 2 seconds in 4 cases and more than
1 second in 19 cases (therefore the average time is well under a second). The
maximal amount of memory consumed for a single proof was never over 7MB,
with average being 2MB.

We have also tested the C implementation on a Dell x50v PDA with a
624MHz XScale ARM CPU and 32MB of RAM, running Windows CE. It was
about 6 times slower than the Pentium machine, but was otherwise perfectly
capable of running the checker. This fact can be thought of as a first step on a
way to PCC-like scenarios on small, mobile devices. Other devices of similar
computing power and, what is more important, RAM amount include most
smart phones and iPods.

The OCaml implementation was on average 3 times slower than the
C version, it also tends to consume more memory, mostly because it keeps
all the terms forever (which is because of our implementation, not because of
OCaml).

We have also experimented with translating the proof objects into the
Maude syntax (Clavel et al., 2001). We have implemented lambda terms and
beta reduction using the built-in Maude integers to encode de Bruijn indices
and used the standard equational specifications for the first-order rules. The
resulting Maude implementation is very compact (about 60 lines), but the
performance is not as good as with the OCaml or C implementation — it
is between 10 and 100 times slower than the OCaml one. It also tends to
consume a lot more memory. The reason is mainly the non-native handling of
lambda expressions. Beta reductions translate to large number of first-order
rewrites, which are then memoized, and we were unable to instrument Maude
to skip memoization of those.

We have performed some experiments using Coq metalogic as the proof
checker. We did not get as far as implementing our own object logic. The main
obstacle we have found was the treatment of binders. Performing skolemiza-
tion on a typical input results in hundreds of Skolem functions. When using
a higher order logic prover, such functions are existentially quantified and the
quantifiers need to be pushed through the entire formula to the beginning.
Later, during the proof, we need to go through them to manipulate the for-
mula. This puts too much pressure on the algorithms treating of binders in the
higher order prover. In our approach Skolem functions are bound implicitly,
so there is no need to move them around. This is especially important in SMT
queries, where the vast majority of the input formula is ground and quantified
subformulas occur only deep inside the input. We can therefore keep most of
the formula binder-free. We were not able to perform any realistic tests, as

Chapter 5. Proof Checking 68

Coq was running out of memory.

Both Maude and Coq are far more general purpose tools than just proof
checkers. However relatively good results with Maude suggest that using a
simple underlying formalism is beneficial in proof checking scenarios.

5.7 Related and Future Work

CVC3 (Barrett and Tinelli, 2007) and Fx7 were the only solvers participating
in the 2007 edition of the SMT competition to produce formal proofs. The
proof generation in CVC3 is based on the LF framework. We are not aware
of a published work evaluating proof checking techniques on large industrial
benchmarks involving quantifiers.

Formalisms for checking SMT proofs have been proposed in the past,
most notably using an optimized implementation (Stump and Dill, 2002)
of Edinburgh Logical Framework (Harper et al., 1987). However even with
the proposed optimizations, the implementations has an order of magnitude
higher memory requirements than our solution. Also the implementation of
the checker is much more complicated.

Recently a Signature Compiler tool has been proposed (Zeller et al., 2008).
It generates a custom proof checker in C++ or Java from a LF signature. We
have run our proof checker on a 1:1 translation of the artificial EQ benchmarks
from the paper. It is running slightly faster than the generated C++ checker.
The memory requirements of our implementation are way below the size of
the input file on those benchmarks. The checkers remain to be compared on
real benchmarks involving richer logics and quantifiers.

In the context of saturation theorem provers it is very natural to output
the proof just as a sequence of resolution or superposition steps. What is
missing here, is the proof of CNF translation, though proof systems has been
proposed (de Nivelle, 2005, 2003) to deal with that.

Finally, work on integrating SMT solvers as decision procedures inside
higher order logic provers include (McLaughlin et al., 2006; Fontaine et al.,
2006), (Conchon et al., 2007). The main problem with these approaches is
that proof generation is usually at least order of magnitude faster than proof
checking inside higher order logic prover. The Ergo (Conchon et al., 2007)
paper mentions promising preliminary results with using proof traces instead
of full proofs with Coq for theory conflicts. It is possible that using traces
could also work for CNF conversion and skolemization. Yet another approach
mentioned there is verifying the SMT solver itself.

An important remaining problem is the treatment of theory conflicts. One
scenario here is to extend the linear arithmetic decision procedure to produce
proofs. It should be possible to encode the proofs with just a minor extensions
to the rewrite formalism. Another feasible scenario is to use a different SMT
solver as a oracle for checking the harder (or all) theory conflicts. This can be
applied also to other theories, like bit vectors or rational arithmetic.

Chapter 5. Proof Checking 69

5.8 Conclusions

We have shown how term rewriting can be used for proof checking. The
highlights of our approach are:

1. time and space efficiency of the proof checker

2. simplicity of the formalism, and thus simplicity of the implementation

3. semiautomatic checking of proof rules

The main technical insight is that the proof rules can be executed locally.
Therefore the memory taken by proofs trees can be reclaimed just after check-
ing them and reused for the subsequent fragments of the proof tree.

Chapter 5. Proof Checking 70

Chapter 6

Conclusions and Future
Research

This thesis tackled several issues concerning interconnection between software
verification tools and SMT solvers. After introduction and setting up the
context, Chapter 3 gave a survey of methods for programming a verification
background theory in an SMT solver, using triggering annotations. Chapter 4
gave algorithms to be employed in an SMT solver, so it can respond promptly
to such programming. Finally, Chapter 5 talked about correctness assurance
of such responses.

The particular area of interest was verification it its full glory: sound,
formal, concerned with high-level, functional properties. This is where the
axiomatization techniques of Chapter 3 are most useful, and this is also where
the PCC scenarios enabled by techniques of Chapter 5 allow for maximal trust
improvement. The grand question, however, is whether it makes sense at all.
Is it advisable to use SMT solvers for full-blown verification of functional prop-
erties of software? Or should we just stay with interactive theorem proving
or, worse yet, informal correctness arguments, augmented by testing?

The experience with VCC, in the Hypervisor verification and otherwise,
suggests that SMT is surprisingly powerful, when it comes to functional veri-
fication. This is supported by successful verification of several highly concur-
rent, but also significant in implementation size, algorithms in the Hypervi-
sor. A small, self contained example is a reader-writer lock, verified inside the
system with very natural external specifications (Hillebrand and Leinenbach,
2009).

Unfortunately, it is also very brittle, both in expressive capabilities and
performance. While Chapter 3 lists several tools and methods for solving some
of those problems, it would definitely be beneficial to work with a more pre-
dictable technology, and thus more research is needed on effective approaches
to programming verification theories in SMT solvers. Still, SMT seems like a
preferable choice, compared to interactive theorem proving, for main-stream
verification.

When it comes to the theory programming, the triggering annotations

71

Chapter 6. Conclusions and Future Research 72

have much in common with term rewriting. Chapter 5 have demonstrated
how first-order rewriting combined with lambda abstractions can be used to
program a logic for a proof checker. The lambda abstractions, while theoreti-
cally very powerful, were easy to implement efficiently, giving rise to fast and
lean proof checker. Possibly a similar approach could be used in the SMT
solver instead, for programming verification theories.

Bibliography

(Babić and Hutter, 2008) Domagoj Babić and Frank Hutter. Spear theorem prover.
In Proc. of the SAT 2008 Race, 2008.

(Ball et al., 2005) Thomas Ball, Shuvendu K. Lahiri, and Madanlal Musuvathi.
Zap: Automated theorem proving for software analysis. In Geoff Sutcliffe
and Andrei Voronkov, editors, LPAR, volume 3835 of Lecture Notes in Com-
puter Science, pages 2–22. Springer, 2005. ISBN 3-540-30553-X.

(Barnett et al., 2005) Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.
The Spec# programming system: An overview. In Gilles Barthe, Lilian
Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors,
Construction and Analysis of Safe, Secure, and Interoperable Smart devices
(CASSIS 2004), volume 3362 of Lecture Notes in Computer Science, pages
49–69. Springer-Verlag, 2005. URL http://www.springerlink.com/
content/0m789xre652nuv06.

(Barnett et al., 2006) Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart
Jacobs, and K. Rustan M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for
Components and Objects: 4th International Symposium, FMCO 2005, vol-
ume 4111 of Lecture Notes in Computer Science, pages 364–387. Springer,
September 2006.

(Barrett and Berezin, 2004) Clark Barrett and Sergey Berezin. CVC Lite: A new
implementation of the Cooperating Validity Checker. In Rajeev Alur and
Doron A. Peled, editors, Proceedings of the 16th International Conference
on Computer Aided Verification (CAV ’04), volume 3114 of Lecture Notes
in Computer Science, pages 515–518. Springer-Verlag, July 2004.

(Barrett and Tinelli, 2007) Clark Barrett and Cesare Tinelli. CVC3. In Werner
Damm and Holger Hermanns, editors, CAV, volume 4590 of LNCS, pages
298–302. Springer, 2007. ISBN 978-3-540-73367-6.

(Barrett et al., 1996) Clark Barrett, David Dill, and Jeremy Levitt. Validity check-
ing for combinations of theories with equality. In Mandayam Srivas and Al-
bert Camilleri, editors, Formal Methods In Computer-Aided Design, volume

73

http://www.springerlink.com/content/0m789xre652nuv06
http://www.springerlink.com/content/0m789xre652nuv06

BIBLIOGRAPHY 74

1166 of Lecture Notes in Computer Science, pages 187–201. Springer-Verlag,
November 1996. Palo Alto, California, November 6–8.

(Barrett et al., 2008) Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron
Stump. Design and results of the 3rd annual satisfiability modulo theories
competition (smt-comp 2007). International Journal on Artificial Intelli-
gence Tools, 17(4):569–606, 2008.

(Barthe et al., 2006) Gilles Barthe, Lilian Burdy, Julien Charles, Benjamin
Grégoire, Marieke Huisman, Jean-Louis Lanet, Mariela Pavlova, and An-
toine Requet. Jack - a tool for validation of security and behaviour of java
applications. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf,
and Willem P. de Roever, editors, FMCO, volume 4709 of Lecture Notes in
Computer Science, pages 152–174. Springer, 2006. ISBN 978-3-540-74791-8.

(Baumann et al., 2009) Christoph Baumann, Bernhard Beckert, Holger Blasum,
and Thorsten Bormer. Better avionics software reliability by code verifica-
tion – A glance at code verification methodology in the Verisoft XT project.
In Embedded World 2009 Conference, Nuremberg, Germany, March 2009.
Franzis Verlag. URL http://www.uni-koblenz.de/˜beckert/pub/
embeddedworld2009.pdf. To appear.

(Böhme et al., 2009) Sascha Böhme, Micha l Moskal, Wolfram Schulte, and
Burkhart Wolff. HOL-Boogie: An interactive prover-backend for the Veri-
fiying C Compiler. Journal of Automated Reasoning, 2009. To appear.

(Bozzano et al., 2005) Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti,
Tommi Junttila, Peter Rossum, Stephan Schulz, and Roberto Sebastiani.
MathSAT: Tight integration of SAT and mathematical decision procedures.
J. Autom. Reason., 35(1-3):265–293, 2005. ISSN 0168-7433. doi: http:
//dx.doi.org/10.1007/s10817-005-9004-z.

(Bryant et al., 2002) Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia.
Modeling and verifying systems using a logic of counter arithmetic with
lambda expressions and uninterpreted functions. In CAV ’02: Proceedings
of the 14th International Conference on Computer Aided Verification, pages
78–92, London, UK, 2002. Springer-Verlag. ISBN 3-540-43997-8.

(Clavel et al., 2001) Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Mart́ı-Oliet, José Meseguer, and José F. Quesada. Maude: Specifi-
cation and programming in rewriting logic. Theoretical Computer Science,
2001.

(Cohen et al., 2009a) Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk
Leinenbach, Micha l Moskal, Thomas Santen, Wolfram Schulte, and Stephan
Tobies. VCC: A practical system for verifying concurrent C. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Markus Wenzel, editors,
Theorem Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of

http://www.uni-koblenz.de/~beckert/pub/embeddedworld2009.pdf
http://www.uni-koblenz.de/~beckert/pub/embeddedworld2009.pdf

BIBLIOGRAPHY 75

Lecture Notes in Computer Science, pages 23–42, Munich, Germany, 2009a.
Springer. Invited paper.

(Cohen et al., 2009b) Ernie Cohen, Micha l Moskal, Wolfram Schulte, and Stephan
Tobies. A practical verification methodology for concurrent programs. Tech-
nical Report MSR-TR-2009-15, Microsoft Research, February 2009b. Avail-
able from http://research.microsoft.com/pubs.

(Cohen et al., 2009c) Ernie Cohen, Micha l Moskal, Wolfram Schulte, and Stephan
Tobies. A Precise Yet Efficient Memory Model For C. In Proceedings of
Systems Software Verification Workshop (SSV 2009), 2009c. To appear.

(Conchon et al., 2007) Sylvain Conchon, Evelyne Contejean, Johannes Kanig, and
Stéphane Lescuyer. Lightweight integration of the Ergo theorem prover
inside a proof assistant. In Second Automated Formal Methods workshop
series (AFM07), Atlanta, Georgia, USA, November 2007.

(Darvas and Leino, 2007) Ádám Darvas and K. Rustan M. Leino. Practical reason-
ing about invocations and implementations of pure methods. In Matthew B.
Dwyer and Antónia Lopes, editors, FASE, volume 4422 of Lecture Notes in
Computer Science, pages 336–351. Springer, 2007. ISBN 978-3-540-71288-6.

(Davis and Putnam, 1960) Martin Davis and Hilary Putnam. A computing proce-
dure for quantification theory. J. ACM, 7(3):201–215, 1960.

(Davis et al., 1962) Martin Davis, George Logemann, and Donald W. Loveland. A
machine program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

(de Bruijn, 1972) N.G. de Bruijn. Lambda-calculus notation with nameless dum-
mies: a tool for automatic formula manipulation with application to the
Church-Rosser theorem. Indag. Math., 34(5):381–392, 1972.

(de Moura and Bjørner, 2008) Leonardo de Moura and Nikolaj Bjørner. Z3: An
Efficient SMT Solver, volume 4963/2008 of Lecture Notes in Computer Sci-
ence, pages 337–340. Springer Berlin, April 2008.

(de Nivelle, 2003) Hans de Nivelle. Implementing the clausal normal form transfor-
mation with proof generation. In fourth workshop on the implementation
of logics, pages 69–83, Almaty, Kazachstan, 2003. University of Liverpool,
University of Manchester.

(de Nivelle, 2005) Hans de Nivelle. Translation of resolution proofs into short first-
order proofs without choice axioms. Information and Computation, 199(1):
24–54, April 2005.

(DeLine and Leino, 2005) Robert DeLine and K. Rustan M. Leino. BoogiePL: A
typed procedural language for checking object-oriented programs. Technical
Report MSR-TR-2005-70, Microsoft Research, March 2005.

http://research.microsoft.com/pubs

BIBLIOGRAPHY 76

(Detlefs et al., 2005) David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a
theorem prover for program checking. Journal of the ACM, 52(3):365–473,
May 2005.

(Detlefs et al., 1998) David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and
James B. Saxe. Extended static checking. SRC Research Report 159, Com-
paq Systems Research Center, 130 Lytton Ave., Palo Alto, December 1998.

(Dijkstra, 1972) E. W. Dijkstra. The humble programmer. Communications of the
ACM, 15(10):859–886, October 1972. Reprinted in Programming Methodol-
ogy, A Collection of Articles by Members of IFIP WG2.3 , D. Gries (ed.),
Springer-Verlag, 1978.

(Dutertre and de Moura, 2006) Bruno Dutertre and Leonardo Mendonça de Moura.
A fast linear-arithmetic solver for DPLL(T). In Thomas Ball and Robert B.
Jones, editors, CAV, volume 4144 of LNCS, pages 81–94. Springer, 2006.
ISBN 3-540-37406-X.

(Eén and Sörensson, 2003) Niklas Eén and Niklas Sörensson. An extensible SAT-
solver. In Enrico Giunchiglia and Armando Tacchella, editors, SAT, volume
2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003.
ISBN 3-540-20851-8.

(Filliâtre, 2003) Jean-Christophe Filliâtre. Why: a multi-language multi-prover ver-
ification tool. Research Report 1366, LRI, Université Paris Sud, March 2003.

(Flanagan et al., 2002) Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata. Extended static check-
ing for Java. In Proceedings of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), volume 37 of
SIGPLAN Notices, pages 234–245. ACM, May 2002.

(Flanagan et al., 2004) Cormac Flanagan, Rajeev Joshi, and James B. Saxe. An
explicating theorem prover for quantified formulas. Technical Report 199,
HP Labs, 2004.

(Fontaine et al., 2006) Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor
Prensa Nieto, and Alwen Tiu. Expressiveness + automation + soundness:
Towards combining SMT solvers and interactive proof assistants. In Hol-
ger Hermanns and Jens Palsberg, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’06), volume 3920 of LNCS,
pages 167–181. Springer-Verlag, 2006.

(Ganzinger et al., 2004) H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. DPLL(T): Fast Decision Procedures. In R. Alur and D. Peled,
editors, 16th International Conference on Computer Aided Verification,
CAV’04, volume 3114 of Lecture Notes in Computer Science, pages 175–
188. Springer, 2004.

BIBLIOGRAPHY 77

(Ge et al., 2007) Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified
verification conditions using satisfiability modulo theories. In Frank Pfen-
ning, editor, CADE, volume 4603 of LNCS, pages 167–182. Springer, 2007.
ISBN 978-3-540-73594-6.

(Harper et al., 1987) Robert Harper, Furio Honsell, and Gordon Plotkin. A frame-
work for defining logics. In Proceedings 2nd Annual IEEE Symp. on
Logic in Computer Science, LICS’87, Ithaca, NY, USA, 22–25 June 1987,
pages 194–204. IEEE Computer Society Press, New York, 1987. URL
citeseer.ist.psu.edu/harper87framework.html.

(Harvey and Stuckey, 1997) W. Harvey and P. Stuckey. A unit two variable per
inequality integer constraint solver for constraint logic programming, 1997.
URL citeseer.ist.psu.edu/harvey97unit.html.

(Hillebrand and Leinenbach, 2009) Mark A. Hillebrand and Dirk C. Leinenbach.
Formal verification of a reader-writer lock implementation in C. In 4th In-
ternational Workshop on Systems Software Verification (SSV 2009), Elec-
tronic Notes in Theoretical Computer Science. Elsevier Science B.V., 2009.
To appear.

(Janota et al., 2007) Mikolás Janota, Radu Grigore, and Micha l Moskal.
Reachability analysis for annotated code. In Sixth International
Workshop on Specification and Verification of Component-Based Sys-
tems (SAVCBS 2007), pages 23–30. ACM, September 2007. URL
http://www.cs.iastate.edu/˜leavens/SAVCBS/2007/papers/
Janota-Grigore-Moskal.pdf.

(Kiniry and Cok, 2005) Joseph R. Kiniry and David R. Cok. ESC/Java2: Uniting
ESC/Java and JML: Progress and issues in building and using ESC/Java2
and a report on a case study involving the use of ESC/Java2 to verify
portions of an Internet voting tally system. In Construction and Analysis
of Safe, Secure and Interoperable Smart Devices: International Workshop,
CASSIS 2004, volume 3362 of LNCS, 2005.

(Kozen, 1977) Dexter Kozen. Complexity of finitely generated algebras. In Pro-
ceedings of the 9th Symposium on Theory of Computing, pages 164–177,
1977.

(Lahiri and Qadeer, 2008) Shuvendu K. Lahiri and Shaz Qadeer. Back to the fu-
ture: revisiting precise program verification using SMT solvers. In George C.
Necula and Philip Wadler, editors, POPL, pages 171–182. ACM, 2008. ISBN
978-1-59593-689-9.

(Leavens et al., 1999) Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML:
A notation for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian
Simmonds, editors, Behavioral Specifications of Businesses and Systems,
pages 175–188. Kluwer Academic Publishers, Boston, 1999.

citeseer.ist.psu.edu/harper87framework.html
citeseer.ist.psu.edu/harvey97unit.html
http://www.cs.iastate.edu/~leavens/SAVCBS/2007/papers/Janota-Grigore-Moskal.pdf
http://www.cs.iastate.edu/~leavens/SAVCBS/2007/papers/Janota-Grigore-Moskal.pdf

BIBLIOGRAPHY 78

(Leino, 2009) K. Rustan M. Leino. This is Boogie 2, 2009. http://research.
microsoft.com/˜leino/papers/krml178.pdf.

(Leino and Monahan, 2009) K. Rustan M. Leino and Rosemary Monahan. Reason-
ing about comprehensions with first-order SMT solvers. In Sung Y. Shin
and Sascha Ossowski, editors, SAC, pages 615–622. ACM, 2009. ISBN 978-
1-60558-166-8.

(Leino et al., 2005) K. Rustan M. Leino, Todd Millstein, and James B. Saxe. Gener-
ating error traces from verification-condition counterexamples. Sci. Comput.
Program., 55(1-3):209–226, 2005. ISSN 0167-6423.

(Luckham et al., 1979) David C. Luckham, Steven M. German, Friedrich W. von
Henke, Richard A. Karp, P. W. Milne, Derek C. Oppen, Wolfgang Polak,
and William L. Scherlis. Stanford Pascal Verifier user manual. Technical Re-
port CS-TR-79-731, Stanford University, Department of Computer Science,
March 1979.

(Malik et al., 2001) Sharad Malik, Ying Zhao, Conor F. Madigan, Lintao Zhang,
and Matthew W. Moskewicz. Chaff: Engineering an efficient sat
solver. Design Automation Conference, 0:530–535, 2001. doi: http://doi.
ieeecomputersociety.org/10.1109/DAC.2001.935565.

(Marché et al., 2004) Claude Marché, Christine Paulin-Mohring, and Xavier Ur-
bain. The krakatoa tool for certificationof java/javacard programs annotated
in jml. J. Log. Algebr. Program., 58(1-2):89–106, 2004.

(McLaughlin et al., 2006) Sean McLaughlin, Clark Barrett, and Yeting Ge. Co-
operating theorem provers: A case study combining HOL-Light and CVC
Lite. In Alessandro Armando and Alessandro Cimatti, editors, Proceedings
of the 3rd Workshop on Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR ’05), volume 144(2) of Electronic Notes in Theoretical
Computer Science, pages 43–51. Elsevier, January 2006. Edinburgh, Scot-
land.

(Moskal, 2007) Micha l Moskal. Fx7 or it is all about quantifiers, 2007. Also,
http://nemerle.org/fx7/.

(Moskal et al., 2007) Micha l Moskal, Kamil Skalski, Pawe l Olszta, et al. Nemerle
programming language, 2007. http://nemerle.org/.

(Moy, 2009) Yannick Moy. Automatic Modular Static Safety Checking for C Pro-
grams. PhD thesis, Université Paris-Sud, January 2009.

(Necula, 1997) George C. Necula. Proof-carrying code. In Conference
Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 106–119,
Paris, France, jan 1997. URL citeseer.ist.psu.edu/article/
necula97proofcarrying.html.

http://research.microsoft.com/~leino/papers/krml178.pdf
http://research.microsoft.com/~leino/papers/krml178.pdf
http://nemerle.org/fx7/
http://nemerle.org/
citeseer.ist.psu.edu/article/necula97proofcarrying.html
citeseer.ist.psu.edu/article/necula97proofcarrying.html

BIBLIOGRAPHY 79

(Nelson and Oppen, 1979) Greg Nelson and Derek C. Oppen. Simplification by
cooperating decision procedures. ACM Transactions on Programming Lan-
guages and Systems, 1(2):245–257, October 1979.

(Nieuwenhuis and Oliveras, 2005) R. Nieuwenhuis and A. Oliveras. Proof-
Producing Congruence Closure. In J. Giesl, editor, 16th International Con-
ference on Term Rewriting and Applications, RTA’05, volume 3467 of Lec-
ture Notes in Computer Science, pages 453–468. Springer, 2005.

(Owre et al., 1992) S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, 11th International Conference
on Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag. URL
http://www.csl.sri.com/papers/cade92-pvs/.

(Plotkin, 1972) Gordon D. Plotkin. Building-in equational theories. In D. Michie
and B. Meltzer, editors, Machine Intelligence, pages 73–90. Edinburgh Uni-
versity Press, 1972.

(Ramakrishnan et al., 2001) I. V. Ramakrishnan, R. C. Sekar, and Andrei
Voronkov. Term indexing. In John Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, pages 1853–1964. Elsevier and
MIT Press, 2001. ISBN 0-444-50813-9, 0-262-18223-8.

(Ranise and Tinelli, 2006) Silvio Ranise and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 1.2. Technical report, Department of Computer Science, The
University of Iowa, 2006. Available at www.SMT-LIB.org.

(Saxe and Leino, 1999) Jim Saxe and K. Rustan M. Leino. ESC/Java
design note 8a: The logic of ESC/Java, 1999. Available at
http://secure.ucd.ie/products/opensource/ESCJava2/
ESCTools/docs/design-notes/escj08a.html.

(Stump and Dill, 2002) A. Stump and D. Dill. Faster Proof Checking in the Edin-
burgh Logical Framework. In 18th International Conference on Automated
Deduction, 2002.

(Stump et al., 2002) Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A
cooperating validity checker. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Proceedings of the 14th International Conference on Computer Aided
Verification (CAV ’02), volume 2404 of Lecture Notes in Computer Science,
pages 500–504. Springer-Verlag, July 2002. Copenhagen, Denmark.

(Sutcliffe and Suttner, 1998) G. Sutcliffe and C.B. Suttner. The TPTP Problem
Library: CNF Release v1.2.1. Journal of Automated Reasoning, 21(2):177–
203, 1998.

(Zeller et al., 2008) Michael Zeller, Aaron Stump, and Morgan Deters. Signature
compilation for the Edinburgh Logical Framework. Electr. Notes Theor.
Comput. Sci., 196:129–135, 2008.

http://www.csl.sri.com/papers/cade92-pvs/
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/design-notes/escj08a.html
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/design-notes/escj08a.html

	Introduction and Summary
	History of SMT Solvers
	SMT-LIB

	It's All About Quantifiers
	SMT vs. ATP
	Previous Publication of Presented Results
	Structure of This Thesis

	Deductive Verification with SMT
	Deductive Verification
	An Example
	E-matching
	DPLL(T)
	Modular Verification and Function Calls

	Programming with Triggers
	E-matching for Theory Building
	Related Work and Contributions
	Background: The Hypervisor Verification and VCC

	Encoding Patterns
	The Simple: Tuples and Inverse Functions
	The Common: Framing in the Heap
	The Liberal: Versioning
	The Restrictive: Stratified Triggering
	The Weird: Distributivity, Neutral Elements and Friends

	Performance Requirements on the SMT Solver
	Debugging and Profiling Axiomatizations
	Soundness
	Completeness
	Performance Problems

	Conclusion

	E-matching
	Definitions
	NP Hardness of E-Matching

	Simplify's Matching Algorithm
	Subtrigger Matcher
	S-Trees

	Flat Matcher
	Implementation and Experiments
	Conclusions and Related Work
	Appendix: Detailed Experimental Results

	Proof Checking
	The Idea
	Definitions
	Boolean Deduction
	Skolemization Calculus
	The Checker
	Implementation
	Soundness Checking
	Performance Evaluation

	Related and Future Work
	Conclusions

	Conclusions and Future Research

