
Theorem Proving for Verification

John Harrison
Intel Corporation

CAV 2008

Princeton

9th July 2008

0

Formal verification

Formal verification: mathematically prove the correctness of a design
with respect to a mathematical formal specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

1

Essentials of formal verification

The basic steps in formal verification:

• Formally model the system

• Formalize the specification

• Prove that the model satisfies the spec

But what formalism should be used?

2

Some typical formalisms

• Propositional logic, a.k.a. Boolean algebra

• Temporal logic (CTL, LTL etc.)

• Quantifier-free combinations of first-order arithmetic theories

• Full first-order logic

• Higher-order logic or first-order logic with arithmetic or set theory

3

Expressiveness vs. automation

There is usually a roughly inverse relationship:

The more expressive the formalism, the less the ‘proof’ is
amenable to automation.

For the simplest formalisms, the proof can be so highly automated
that we may not even think of it as ‘theorem proving’ at all.

The most expressive formalisms have a decision problem that is not
decidable, or even semidecidable.

4

Logical syntax

English Formal

false ⊥
true ⊤
not p ¬p

p and q p ∧ q

p or q p ∨ q

p implies q p ⇒ q

p iff q p ⇔ q

for all x, p ∀x. p

there exists x such that p ∃x. p

5

Propositional logic

Formulas built up from atomic propositions (Boolean variables) and
constants ⊥, ⊤ using the propositional connectives ¬, ∧, ∨, ⇒ and
⇔.

No quantifiers or internal structure to the atomic propositions.

6

Propositional logic

Formulas built up from atomic propositions (Boolean variables) and
constants ⊥, ⊤ using the propositional connectives ¬, ∧, ∨, ⇒ and
⇔.

No quantifiers or internal structure to the atomic propositions.

A formula is a tautology if it is true for all assignments of truth values
to the atomic propositions, e.g. p ∨ ¬p or ¬(p ∧ q) ⇔ ¬p ∨ ¬q.

A formula is satisfiable if it is true for some assignment of truth
values to the atomic propositions.

Note that p is a tautology iff ¬p is unsatisfiable.

7

Expressiveness of propositional logic

Propositional logic seems inexpressive but:

• Combinational logic circuits can be considered as Boolean
formulas, and circuit equivalence as tautology/satisfiability testing

• Finite unfolding of sequential circuits or finite-state transition
systems can be modelled using Boolean variables

• Many other arithmetical and combinatorial problems can be
encoded in Boolean terms, e.g. primality testing, scheduling,
planning.

The last item is a ‘practical’ counterpart to the theoretical
significance of [co-]NP-complete problems.

8

Decision problem for propositional logic

Tautology/satisfiability checking is certainly decidable in exponential
time, because we can examine all assignments of truth-values to the
Boolean variables.

Unless P = NP , there is no polynomial-time decision procedure.

Algorithms like Davis-Putnam-Loveland-Logemann (DPLL) and
Stålmarck’s method are often surprisingly good in practice.

Embodied in highly tuned ‘SAT solver’ implementations, these have
made a big impact, in formal verification and elsewhere.

9

First-order logic

Object-denoting terms built up from variables and constants denoting
objects using function symbols, e.g. x + 1 or f(x).

Atomic formulas are now built up by applying relations to terms, e.g.
x + 1 < 2 · y or R(f(x), g(y)).

Can quantify over object-level variables, e.g. ∀x. ∃y. loves(x, y) or
∃y. ∀x. loves(x, y).

10

First-order logic

Object-denoting terms built up from variables and constants denoting
objects using function symbols, e.g. x + 1 or f(x).

Atomic formulas are now built up by applying relations to terms, e.g.
x + 1 < 2 · y or R(f(x), g(y)).

Can quantify over object-level variables, e.g. ∀x. ∃y. loves(x, y) or
∃y. ∀x. loves(x, y).

The first-order means that we can’t quantify over functions or
relations, e.g. ∃loves. ∀x. ∃y. loves(x, y).

A formula is valid when it holds for all interpretations, i.e. ways of
interpreting the domain of objects as D 6= ∅, constants as elements
of D, function symbols as functions Dn → D and relations as
subsets of Dn, and valuations of the variables as elements of D.

11

First-order validity

There is no ‘naive’ algorithm for first-order validity, because we’d
need to check all possible sets D, including infinite ones.

In fact, first-order validity is undecidable (Church/Turing).

12

First-order validity

There is no ‘naive’ algorithm for first-order validity, because we’d
need to check all possible sets D, including infinite ones.

In fact, first-order validity is undecidable (Church/Turing).

On the other hand, it is semidecidable (r.e.), i.e. there are search
algorithms that will in principle confirm that a valid formula is valid,
but may run forever on invalid formulas.

• Tableaux

• Resolution

In practice, these can seldom solve ‘interesting’ problems in a
practical time. Some notable successes such as McCune’s solution
of the Robbins conjecture.

13

One interpretations versus all interpretations

We are often more interested in whether a formula holds in some
particular interpretation or particular class of interpretations.

This is a very different problem, and it may be easier or harder than
validity in all interpretations.

Consider first-order arithmetic formulas, using constants 0 and 1,
function symbols +, − and ·, and relation symbols =, ≤, <.

∀x. x = y ⇒ x = y holds in all interpretations

∀x. x + x = 2x holds in obvious arithmetic interpretations, but not all
interpretations.

∀x. x ≥ 0 ⇒ ∃y. x = y2 holds in R but not in Z.

14

Different decision problems

Whether a first-order formula in the language of arithmetic:

• Holds in all interpretations: semidecidable (like first-order logic in
general)

15

Different decision problems

Whether a first-order formula in the language of arithmetic:

• Holds in all interpretations: semidecidable (like first-order logic in
general)

• Holds in R: decidable (Tarski’s quantifier elimination for
real-closed fields)

16

Different decision problems

Whether a first-order formula in the language of arithmetic:

• Holds in all interpretations: semidecidable (like first-order logic in
general)

• Holds in R: decidable (Tarski’s quantifier elimination for
real-closed fields)

• Holds in all (ordered) rings: semidecidable (reduces to first-order
validity; not decidable by interpretation)

17

Different decision problems

Whether a first-order formula in the language of arithmetic:

• Holds in all interpretations: semidecidable (like first-order logic in
general)

• Holds in R: decidable (Tarski’s quantifier elimination for
real-closed fields)

• Holds in all (ordered) rings: semidecidable (reduces to first-order
validity; not decidable by interpretation)

• Holds in Z: not even semidecidable (Gödel’s theorem, or Tarski’s
theorem on the undecidability of truth).

18

Restricted decision problems

Some natural restrictions on undecidable problems can yield
decidability:

• Although it’s not even semidecidable if an arithmetic formula
holds in Z, it is decidable whether a purely linear formula does.
(Formulas only involve multiplication by constants: Presburger
arithmetic.)

• Although it’s undecidable whether a formula holds in all rings, it
is decidable for purely universally quantified formulas. (This is
effectively the ‘word problem’ for rings and can be solved with a
variant of Gröbner bases.)

These restricted fragments are often enough for practical problems.

19

Quantifier elimination

Some formulas involving quantifiers are equivalent to a
quantifier-free one for some interpretation or class of interpretations:

• (∃x. ax2 + bx+ c = 0) ⇔ a 6= 0∧ b2 ≥ 4ac∨ a = 0∧ (b 6= 0∨ c = 0)

in R

• (∀x. x < a ⇒ x < b) ⇔ a ≤ b in all interpretations where < is a
dense total order.

20

Quantifier elimination

Some formulas involving quantifiers are equivalent to a
quantifier-free one for some interpretation or class of interpretations:

• (∃x. ax2 + bx+ c = 0) ⇔ a 6= 0∧ b2 ≥ 4ac∨ a = 0∧ (b 6= 0∨ c = 0)

in R

• (∀x. x < a ⇒ x < b) ⇔ a ≤ b in all interpretations where < is a
dense total order.

For some classes of formulas we can find algorithmically for any
formula a counterpart that is quantifier-free and equivalent in the
class of interpretations: quantifier elimination.

For example, arithmetic formulas over R, linear arithmetic formulas
over Z (adding new ‘divisibility by d’ relations to the language).

21

Combining decision procedures

Even hitherto decidable fragments like Presburger arithmetic become
undecidable if we combine with other function or relation symbols.
With one unary function symbol we can characterize squaring;

(∀n.f(−n) = f(n))∧f(0) = 0∧(∀n.0 ≤ n ⇒ f(n+1) = f(n)+n+n+1)

and then multiplication by m = n · p ⇔ (n + p)2 = n2 + p2 + 2m

22

Combining decision procedures

Even hitherto decidable fragments like Presburger arithmetic become
undecidable if we combine with other function or relation symbols.
With one unary function symbol we can characterize squaring;

(∀n.f(−n) = f(n))∧f(0) = 0∧(∀n.0 ≤ n ⇒ f(n+1) = f(n)+n+n+1)

and then multiplication by m = n · p ⇔ (n + p)2 = n2 + p2 + 2m

However, for universally quantified (‘quantifier-free’) formulas, the
Nelson-Oppen scheme lets us test validity in combinations of
theories, e.g. arithmetic with uninterpreted functions.

u + 1 = v ∧ f(u) + 1 = u − 1 ∧ f(v − 1) − 1 = v + 1 ⇒ ⊥

Implemented in SMT (‘satisfiability modulo theories’) solvers.

23

Higher-order logic

In second-order logic we allow quantification over functions and
predicates with object-level arguments, e.g. in the induction principle

∀P. P (0) ∧ (∀n. P (n) ⇒ P (n + 1)) ⇒ ∀n. P (n)

In higher-order logic we even allow predicates and functions with
predicates and functions for arguments, and allow quantification over
those, for infinitely many ‘orders’.

24

Higher-order logic

In second-order logic we allow quantification over functions and
predicates with object-level arguments, e.g. in the induction principle

∀P. P (0) ∧ (∀n. P (n) ⇒ P (n + 1)) ⇒ ∀n. P (n)

In higher-order logic we even allow predicates and functions with
predicates and functions for arguments, and allow quantification over
those, for infinitely many ‘orders’.

Since we can characterize the natural numbers up to isomorphism by
second-order axioms, higher-order validity is not even semidecidable.

In practice, there are search procedures, essentially accepting some
basic axioms for set theory. that will in principle find most ‘ordinary’
truths.

25

Higher-order logic as a universal formalism

HOL or set theory subsumes all the simpler formalisms like
first-order logic and various arithmetic theories.

This even applies to temporal logics, which can be mapped directly
into their ‘semantics’ in higher-order logic (shallow embedding).

26

Higher-order logic as a universal formalism

HOL or set theory subsumes all the simpler formalisms like
first-order logic and various arithmetic theories.

This even applies to temporal logics, which can be mapped directly
into their ‘semantics’ in higher-order logic (shallow embedding).

Map variables p of LTL to unary predicate variables p, which get
applied to terms denoting ‘times’.

• (�φ)(t) =def ∀t′. t ≤ t′ ⇒ φ(t′)

• (♦φ)(t) =def ∃t′. t ≤ t′ ∧ φ(t′)

• (dφ)(t) =def φ(t + 1)

Can state LTL validity by universally quantifying over all the
predicates and constraining arithmetic operations to N.

27

The state of automation

We have seen that for a rich formalism such as HOL, logical validity
cannot even in principle be automated.

There are in principle search procedures that will confirm a wide
class of interesting theorems. In practice these are seldom useful for
practical problems.

Thus, for HOL and arguably even for FOL, we need interactive
provers that can prove theorems with human guidance.

This means much more work for the human being.

At least we should try to make things easier by automating those bits
of the proof that can be automated.

28

Interactive theorem proving

The idea of a more ‘interactive’ approach was already anticipated by
pioneers, e.g. Wang (1960):

[...] the writer believes that perhaps machines may more
quickly become of practical use in mathematical research,
not by proving new theorems, but by formalizing and
checking outlines of proofs, say, from textbooks to detailed
formalizations more rigorous that Principia [Mathematica],
from technical papers to textbooks, or from abstracts to
technical papers.

However, constructing an effective combination is not so easy. Early
examples were the SAM series, AUTOMATH and Mizar.

29

Effective interactive theorem proving

What makes a good interactive theorem prover? Most agree on:

• Reliability

• Library of existing results

• Intuitive input format

• Powerful automated steps

Several other characteristics are more controversial:

• Programmability

• Checkability of proofs

30

LCF

One successful solution was pioneered in Edinburgh LCF (‘Logic of
Computable Functions’).

The same ‘LCF approach’ has been used for many other theorem
provers.

• Implement in a strongly-typed functional programming language
(usually a variant of ML)

• Make thm (‘theorem’) an abstract data type with only simple
primitive inference rules

• Make the implementation language available for arbitrary
extensions.

Gives a good combination of extensibility and reliability.

Now used in Coq, HOL, Isabelle and several other systems.

31

Automated subsystems

Many of the leading interactive provers offer substantial automation
of known decidable classes of subproblems.

HOL Light has basic but useful first-order proof search, and several
decision methods, all built in a ‘correct by construction’ LCF way:

• Linear arithmetic over N, Z and R

• Linear and nonlinear arithmetic over C and R

• Universal formulas over integral domains and fields

Some interactive provers, notably PVS, have a full suite of combined
decision procedures for quantifier-free theories.

It is possible to make use of external systems like computer algebra
programs, soundly checking ‘certificates’ they produce.

32

The 17 Provers of the World

Freek Wiedijk’s book The Seventeen Provers of the World
(Springer-Verlag lecture notes in computer science volume 3600)
describes:

HOL, Mizar, PVS, Coq, Otter/IVY, Isabelle/Isar, Alfa/Agda, ACL2,
PhoX, IMPS, Metamath, Theorema, Lego, Nuprl, Omega, B prover,
Minlog.

Each one has a proof that
√

2 is irrational.

There are many other systems besides these . . .

33

Why?

Even the best interactive theorem provers are difficult to use.

• For typical mathematics, far harder than writing an informal proof
that a human mathematician would find acceptable.

• For most verifications, much more difficult and time-consuming
than highly automated, almost ‘push-button’ methods like SAT,
model checking, STE etc.

With this in mind, why make the effort?

34

Why?

Even the best interactive theorem provers are difficult to use.

• For typical mathematics, far harder than writing an informal proof
that a human mathematician would find acceptable.

• For most verifications, much more difficult and time-consuming
than highly automated, almost ‘push-button’ methods like SAT,
model checking, STE etc.

With this in mind, why make the effort?

• Compared with an informal mathematical proof, they offer
greater reliability and sometimes useful automation.

• Compared with highly automated verification methods, the use of
a richer formalism can bring substantial benefits.

35

Benefits of theorem proving

• Richer formalism can express properties that are not, even in
principle, in the scope of simpler formalisms or solvable by
automated methods.

36

Benefits of theorem proving

• Richer formalism can express properties that are not, even in
principle, in the scope of simpler formalisms or solvable by
automated methods.

• We can formalize and verify properties including the underlying
theory and assumptions, rather than isolated properties.

37

Benefits of theorem proving

• Richer formalism can express properties that are not, even in
principle, in the scope of simpler formalisms or solvable by
automated methods.

• We can formalize and verify properties including the underlying
theory and assumptions, rather than isolated properties.

• It can be more efficient, since many supposedly automated
methods require substantial time and human attention (BDD
variable ordering etc.)

38

Benefits of theorem proving

• Richer formalism can express properties that are not, even in
principle, in the scope of simpler formalisms or solvable by
automated methods.

• We can formalize and verify properties including the underlying
theory and assumptions, rather than isolated properties.

• It can be more efficient, since many supposedly automated
methods require substantial time and human attention (BDD
variable ordering etc.)

• It can be more intellectually stimulating since in the proof
process one understands the design more deeply.

39

Avoiding limitations on expressiveness

Consider the definition of correctness of floating-point operations
according to the IEEE Standard 754.

The key operation is rounding, and this is specified using forms of
words like ‘the result is the closest representable number to the exact
answer’.

-
66

x y

40

Floating-point rounding

This specification is clear and intuitive, but not executable. We can
only express it using real real numbers and sets.

For basic operations like addition, one can come up with executable
variants expressible in more limited formalisms

41

Floating-point rounding

This specification is clear and intuitive, but not executable. We can
only express it using real real numbers and sets.

For basic operations like addition, one can come up with executable
variants expressible in more limited formalisms but:

• Almost collapses to a reference design, leaving one in doubt
over correctness even of the spec.

• Impossible/infeasible for more complicated operations, even
square root.

By using a general mathematical framework supporting general
reasoning about real numbers, we can state the specification
naturally and verify implementations with respect to it.

42

Avoiding limitations on automation

There are numerous model-checkers for verifying properties of
finite-state transition systems.

These seldom directly support infinite-state transition systems. For
example, Murphi does not even allow one to declare unbounded
types (so one might consider this also as expressiveness).

43

Avoiding limitations on automation

There are numerous model-checkers for verifying properties of
finite-state transition systems.

These seldom directly support infinite-state transition systems. For
example, Murphi does not even allow one to declare unbounded
types (so one might consider this also as expressiveness).

But in a general mathematical framework the key ideas are exactly
the same in the finite-state and infinite state cases.

Of course, need new techniques of proof, e.g. inductive invariants,
rigorous finite-state abstraction.

44

Verifying underlying theory

Verifications sometimes rest on non-trivial mathematics.

Without using a general theory, one has to deploy the required
mathematical facts ‘by hand’, outside the verification, which is
unsatisfactory and error-prone.

For example, floating-point arithmetic algorithms ofen depend on
mathematical analysis and number theory:

• Accuracy of polynomial or rational approximations

• Analyzing hard-to-round cases, e.g. FP numbers close to
multiples of π/2.

Also may need special-purpose automation.

45

Formalizing programming languages

Many traditional verification tools just assume some rules for
program verification, e.g. Floyd-Hoare rules.

In a limited formalism, it’s hard to justify why these hold for the
language of interest.

By contrast, in a general framework one can specify the assumed
semantics of the language and prove the Floyd-Hoare rules.

• Shallow embedding – map language directly to its semantics

• Deep embedding – formalize language syntax and semantics

46

Improving efficiency

Even if a system is verifiable in principle using automated finite-state
techniques, it might not be practical in practice.

Consider a typical parametrized system with N essentially equivalent
components (e.g. a cache coherence protocol with N similar
cacheing agents).

Using finite-state techniques, we may in principle be able to perform
exhaustive verifications for any particular N .

47

Improving efficiency

Even if a system is verifiable in principle using automated finite-state
techniques, it might not be practical in practice.

Consider a typical parametrized system with N essentially equivalent
components (e.g. a cache coherence protocol with N similar
cacheing agents).

Using finite-state techniques, we may in principle be able to perform
exhaustive verifications for any particular N .

However, for a complicated system, this may be practical only for
moderate N , say N ≤ 3.

The more analytic proofs encouraged by theorem proving may
extend naturally to arbitrary N .

48

Improving understanding

Precisely because interactive theorem provers force the user to pay
attention to all the details, one often ends up understanding the
system more deeply.

For example, when verifying some FMA-based floating-point division
algorithms based on Markstein’s classic paper, we needed to
formalize some of Markstein’s theorems.

49

Improving understanding

Precisely because interactive theorem provers force the user to pay
attention to all the details, one often ends up understanding the
system more deeply.

For example, when verifying some FMA-based floating-point division
algorithms based on Markstein’s classic paper, we needed to
formalize some of Markstein’s theorems.

One theorem featured a hypothesis, but only a (well-known)
consequence was used in the proof. By being forced to plug this gap,
we noticed that the theorem could be more useful assuming only this
consequence.

50

Improving understanding

Precisely because interactive theorem provers force the user to pay
attention to all the details, one often ends up understanding the
system more deeply.

For example, when verifying some FMA-based floating-point division
algorithms based on Markstein’s classic paper, we needed to
formalize some of Markstein’s theorems.

One theorem featured a hypothesis, but only a (well-known)
consequence was used in the proof. By being forced to plug this gap,
we noticed that the theorem could be more useful assuming only this
consequence.

As a result we were able to design significantly more efficient
algorithms that could be justified by the strengthened theorem.

51

Conclusions

We seem to face a clear trade-off between expressiveness of a
logical formalism and the difficulty of its decision problem.

The most successful techniques in industry have been the highly
automated applications of relatively inexpressive formalisms,
perhaps hitting a ‘sweet spot’ with some temporal logics.

However, there is a substantial body of research on theorem-proving
techniques. Some non-trivial problems still turn out to be decidable,
but in general we need to settle for interactive human-guided proof.

The use of a general mathematical framework offers some significant
advantages that can be significant, or even essential, for some
verification tasks.

52

