Ganzinger-Bachmaier Model Existence Theorem for Propositional Logic

Ruzica Piskac

Ecole Polytechnique Fédérale de Lausanne, Switzerland ruzica.piskac@epfl.ch

Lecture hold at SAV, April 2008

The Resolution Calculus Res

Definition

Resolution inference rule

$$\frac{C \lor A \qquad \neg A \lor D}{C \lor D}$$

• (positive) factorisation

$$\frac{C \lor A \lor A}{C \lor A}$$

Refutational Completeness of Resolution

 We have to show: N ⊨ ⊥ ⇒ N ⊢_{Res} ⊥, or equivalently: If N ⊭_{Res} ⊥, then N has a model.

Refutational Completeness of Resolution

- We have to show: N ⊨ ⊥ ⇒ N ⊢_{Res} ⊥, or equivalently: If N ⊭_{Res} ⊥, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived ⊥).
- Now order the clauses in *N* according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.

Refutational Completeness of Resolution

- We have to show: N ⊨ ⊥ ⇒ N ⊢_{Res} ⊥, or equivalently: If N ⊭_{Res} ⊥, then N has a model.
- Idea: Suppose that we have computed sufficiently many inferences (and not derived ⊥).
- Now order the clauses in *N* according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
- The limit interpretation can be shown to be a model of *N*.

We assume that ≻ is any fixed ordering on ground atoms that is total and well-founded. (There exist many such orderings, e.g., the lenght-based ordering on atoms when these are viewed as words over a suitable alphabet.)

- We assume that ≻ is any fixed ordering on ground atoms that is total and well-founded. (There exist many such orderings, e.g., the lenght-based ordering on atoms when these are viewed as words over a suitable alphabet.)
- 2 Extend \succ to an ordering \succ_L on ground literals:

$$\begin{array}{ll} [\neg]A & \succ_L & [\neg]B & \text{, if } A \succ B \\ \neg A & \succ_L & A \end{array}$$

- We assume that ≻ is any fixed ordering on ground atoms that is total and well-founded. (There exist many such orderings, e.g., the lenght-based ordering on atoms when these are viewed as words over a suitable alphabet.)
- 2 Extend \succ to an ordering \succ_L on ground literals:

$$[\neg]A \succ_L [\neg]B , \text{ if } A \succ B \neg A \succ_L A$$

③ Extend \succ_L to an ordering \succ_C on ground clauses: $\succ_C = (\succ_L)_{mul}$, the multiset extension of \succ_L . *Notation:* \succ also for \succ_L and \succ_C .

Multisets

Definition

Let *E* be a set. A multiset *M* over *E* is a mapping $M : E \to \mathbb{N}$. Hereby M(e) specifies the number of occurrences of elements *e* of the base set *E* within the multiset *M*.

Let (M, \succ) be a partial ordering. The multiset extension of \succ to multisets over *E* is defined by

$$M_1 \succ_{mul} M_2 \Leftrightarrow M_1 \neq M_2$$

$$\land \forall e \in E : [M_2(e) > M_1(e)$$

$$\Rightarrow \exists e' \in E : (e' \succ e \land M_1(e') > M_2(e'))]$$

Example

```
Suppose A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0.
Order the following clauses:
\neg A_1 \lor \neg A_4 \lor A_3
\neg A_1 \lor A_2
\neg A_1 \lor A_4 \lor A_3
A_0 \lor A_1
\neg A_5 \lor A_5
```

```
A_1 \vee A_2
```

Example

Suppose $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$. Then:

$$\begin{array}{ccc} A_0 \lor A_1 \\ \prec & A_1 \lor A_2 \\ \prec & \neg A_1 \lor A_2 \\ \prec & \neg A_1 \lor A_4 \lor A_3 \\ \prec & \neg A_1 \lor \neg A_4 \lor A_3 \\ \prec & \neg A_5 \lor A_5 \end{array}$$

Properties of the Clause Ordering

Theorem

- 1 The orderings on literals and clauses are total and well-founded.
- Let C and D be clauses with A = max(C), B = max(D), where max(C) denotes the maximal atom in C.
 - (i) If $A \succ B$ then $C \succ D$.
 - (ii) If A = B, A occurs negatively in C but only positively in D, then $C \succ D$.

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:

Closure of Clause Sets under Res

Definition

$$\begin{aligned} & Res(N) = \{C \mid C \text{ is concl. of a rule in } Res \text{ w/ premises in } N\} \\ & Res^0(N) = N \\ & Res^{n+1}(N) = Res(Res^n(N)) \cup Res^n(N), \text{ for } n \geq 0 \\ & Res^*(N) = \bigcup_{n \geq 0} Res^n(N) \end{aligned}$$

N is called saturated (wrt. resolution), if $Res(N) \subseteq N$.

Given:

set N of ground clauses, atom ordering \succ .

Given:

set N of ground clauses, atom ordering \succ .

Wanted:

Herbrand interpretation I such that

- "many" clauses from N are valid in I;
- $I \models N$, if N is saturated and $\perp \notin N$.

Given:

set N of ground clauses, atom ordering \succ .

Wanted:

Herbrand interpretation I such that

- "many" clauses from N are valid in I;
- $I \models N$, if N is saturated and $\perp \notin N$.

Construction according to \succ , starting with the minimal clause.

Example

Let $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$ (max. literals in red)

	clauses C	I _C	Δ_C	Remarks
1 2 3 4 5 6 7	$\neg A_0$ $A_0 \lor A_1$ $A_1 \lor A_2$ $\neg A_1 \lor A_2$ $\neg A_1 \lor A_3 \lor A_0$ $\neg A_1 \lor \neg A_4 \lor A_3$ $\neg A_1 \lor A_5$	$ \begin{array}{c} \emptyset \\ \{A_1\} \\ \{A_1\} \\ \{A_1,A_2\} \\ \{A_1,A_2,A_4\} \\ \{A_1,A_2,A_4\} \end{array} $		true in I_C A_1 maximal true in I_C A_2 maximal A_4 maximal A_3 not maximal; <i>min. counter-ex.</i>

 $I = \{A_1, A_2, A_4, A_5\}$ is not a model of the clause set \Rightarrow there exists a counterexample.

Main Ideas of the Construction

- Clauses are considered in the order given by ≺.
- When considering *C*, one already has a partial interpretation I_C (initially $I_C = \emptyset$) available.
- If *C* is true in the partial interpretation *I_C*, nothing is done.
 (Δ_C = ∅).
- If C is false, one would like to change I_C such that C becomes true.

Main Ideas of the Construction

- Changes should, however, be *monotone*. One never deletes anything from *I*_C and the truth value of clauses smaller than *C* should be maintained the way it was in *I*_C.
- Hence, one chooses $\Delta_C = \{A\}$ if, and only if, *C* is false in I_C , if *A* occurs positively in *C* (adding *A* will make *C* become true) and if this occurrence in *C* is strictly maximal in the ordering on literals (changing the truth value of *A* has no effect on smaller clauses).

Resolution Reduces Counterexamples

Example

$$\neg A_1 \lor A_4 \lor A_3 \lor A_0 \qquad \neg A_1 \lor \neg A_4 \lor A_3$$

 $\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0$

Construction of I for the extended clause set:

clauses C	IC	Δ_C	Remarks
$\neg A_0$	Ø	Ø	
$A_0 \lor A_1$	Ø	$\{A_1\}$	
$A_1 \lor A_2$	$\{A_1\}$) Ø	
$\neg A_1 \lor A_2$	$\{A_1\}$	$\{A_2\}$	
$\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0$	$\{A_1, A_2\}$) Ø	A_3 occurs twice
			minimal counter-ex.
$\neg A_1 \lor A_4 \lor A_3 \lor A_0$	$\{A_1, A_2\}$	$\{A_4\}$	
$\neg A_1 \lor \neg A_4 \lor A_3$	$\{A_1, A_2, A_4\}$	Ø	counterexample
$\neg A_1 \lor A_5$	$\{A_1, A_2, A_4\}$	$\{A_5\}$	

The same *I*, but smaller counterexample, hence some progress was made.

Factorization Reduces Counterexamples

Example

 $\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0$

 $\neg A_1 \lor \neg A_1 \lor A_3 \lor A_0$

Construction of *I* for the extended clause set:

clauses C	IC	Δ_C	Remarks		
$\neg A_0$	Ø	Ø			
$A_0 \lor A_1$	Ø	$\{A_1\}$			
$A_1 \lor A_2$	$ \{A_1\}$	Ø			
$\neg A_1 \lor A_2$	$\{A_1\}$	$\{A_2\}$			
$\neg A_1 \lor \neg A_1 \lor A_3 \lor A_0$	$\{A_1, A_2\}$	$\{A_3\}$	_		
$\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0$	$\{A_1, A_2, A_3\}$	Ø	true in I_C		
$\neg A_1 \lor A_4 \lor A_3 \lor A_0$	$\{A_1, A_2, A_3\}$	Ø			
$\neg A_1 \lor \neg A_4 \lor A_3$	$\{A_1, A_2, A_3\}$	Ø	true in I_C		
$\neg A_3 \lor A_5$	$\{A_1, A_2, A_3\}$	$\{A_5\}$			
The resulting $I = \{A_1, A_2, A_3, A_5\}$ is a model of the clause set.					

Definitions

Construction of Candidate Models Formally

Definition

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$\begin{split} I_C &:= \bigcup_{C \succ D} \Delta_D \\ \Delta_C &:= \begin{cases} \{A\}, & \text{if } C \in N, \, C = C' \lor A, \, A \succ C', \, I_C \not\models C \\ \emptyset, & \text{otherwise} \end{cases}$$

Definitions

Construction of Candidate Models Formally

Definition

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$\begin{split} I_C &:= \bigcup_{C \succ D} \Delta_D \\ \Delta_C &:= \begin{cases} \{A\}, & \text{if } C \in N, \, C = C' \lor A, \, A \succ C', \, I_C \not\models C \\ \emptyset, & \text{otherwise} \end{cases}$$

We say that C produces A, if $\Delta_C = \{A\}$.

Definitions

Construction of Candidate Models Formally

Definition

Let N, \succ be given. We define sets I_C and Δ_C for all ground clauses C over the given signature inductively over \succ :

$$\begin{split} I_C &:= \bigcup_{C \succ D} \Delta_D \\ \Delta_C &:= \begin{cases} \{A\}, & \text{if } C \in N, \, C = C' \lor A, \, A \succ C', \, I_C \not\models C \\ \emptyset, & \text{otherwise} \end{cases}$$

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_C \Delta_C$. We also simply write I_N , or I, for I_N^{\succ} if \succ is either irrelevant or known from the context.

Structure of N, \succ

Let $A \succ B$; producing a new atom does not affect smaller clauses.

Model Existence Theorem

Theorem

(Bachmair & Ganzinger): Let \succ be a clause ordering, let N be saturated wrt. Res, and suppose that $\perp \notin N$. Then $I_N^{\succ} \models N$.

Model Existence Theorem

Theorem

(Bachmair & Ganzinger): Let \succ be a clause ordering, let N be saturated wrt. Res, and suppose that $\perp \notin N$. Then $I_N^{\succ} \models N$.

Proof

Easy exercise! :-)