
Software Analysis and Verification

Lecture 1.
A: Introduction to the subject
B: Format of the class

Instructor: Viktor Kuncak, INR 318
viktor.kuncak@epfl.ch



Part A:
Introduction to the subject

Big picture
Example: property, loop invariant, demo
Uses of software analysis and verification



Software analysis and verification

source code

automated
verifier

program satisfies
the properties

error in program
(or property) !

program 
properties

. . . 
proc remove(x : Node) {

Node p=x.prev; n=x.next;
if (p!=null) p.next = n;
else root = n;
if (n!=null) n.prev = p;

}
. . . 

x.next.prev = x
tree is sorted

how can we build it: theory and practice

old (a1 + a2) = a1 + a2



Discovering properties

source code

automated
verifier

program satisfies
the properties

error in program
(or property) !

program 
properties

. . . 
proc remove(x : Node) {

Node p=x.prev; n=x.next;
if (p!=null) p.next = n;
else root = n;
if (n!=null) n.prev = p;

}
. . . 

how can we build it: theory and practice

x.next.prev = x
tree is sorted

old (a1 + a2) = a1 + a2



A simple Java method
public static int sum(int a0, int n0)
{

int res = 0, a = a0, n = n0;
while (n > 0) {
a = 2*a;
res = res + a;
n = n – 1;

}
return res;

}



An example numerical property
public static int sum(int a0, int n0)
/*: 

requires “a0 ≥ 0 & n0 ≥ 0”
ensures “result ≥ 0”

*/
{

int res = 0, a = a0, n = n0;
while (n > 0) {
a = 2*a;
res = res + a;
n = n – 1;

}
return res;

}

method contract: 
“if parameters are non-
negative, then 
so is the returned value”

Does the property hold?

Why?



An example numerical property
public static int sum(int a0, int n0)
/*: 

requires “a0 ≥ 0 & n0 ≥ 0”
ensures “result ≥ 0”

*/
{

int res = 0, a = a0, n = n0;
while /*: invariant “a ≥ 0 & res ≥ 0” */ (n > 0) {
a = 2*a;
res = res + a;
n = n – 1;

}
return res;

}

method contract: 
“if parameters are non-
negative, then 
so is the returned value”

inductive loop invariant:

1. true at loop entry

2. if true at iteration k, true at k+1

3. implies the desired property.



Demo
using Jahob



Replace ≥ with > . Loop invariant?
public static int sum(int a0, int n0)
/*: 

requires “a0 > 0 & n0 > 0”
ensures “result > 0”

*/
{

int res = 0, a = a0, n = n0;
while /*: invariant “ ” */ (n > 0) {
a = 2*a;
res = res + a;
n = n – 1;

}
return res;

}

method contract: 
“if parameters are non-
negative, then 
so is the returned value”

inductive loop invariant:

1. true at loop entry

2. if true at iteration k, true at k+1

3. implies the desired property.



public static int sum(int a0, int n0)
/*: 

requires “a0 > 0 & n0 > 0”
ensures “result > 0”

*/
{

int res = 0, a = a0, n = n0;
while /*: invariant “a>0 & res≥0 & (res>0 | n>0)”*/
(n > 0) {
a = 2*a;
res = res + a;
n = n – 1;

}
return res;

}

What does a verification system do?

accepts program 
and desired properties

checks whether desired properties hold

infers intermediate properties 
along the way



Our automated verifier: Jahob
(you can use it in your final project if you wish)

Field constraint
analysis

Boolean Algebra with 
Presburger Arithmetic

(BAPA)

decision procedure
dispatcher

Translation to
first-order logic

first-order
theorem prover

MONA 
decision procedure

Presburger Arithmetic
decision procedure

symbolic 
shape analysis

syntactic 
loop invariant inference

Karen Zee

Thomas Wies

Isabelle

Coq

CVC Lite

Omega

w/ Thomas Wiesw/ Charles Bouillaguet

Huu Hai Nguyen

Charles

Karen, 
Thomas

front end,
verification condition generator



A loop invariant inferred by Jahob
public static void reverse(int a0, int n0)
/*: modifies content

ensures “content = old content”
*/
{

Node tmp, rest;
rest = first; first = null;
while (rest != null) {

tmp = first; first = rest; 
rest = rest.next;
first.next = tmp;

}
}

restfirst

“no new nodes introduced or existing nodes lost”



Shape invariants

next

prev

next next

prev prev

root

acyclicity of next

x.next.prev == x

rightleft
graph is a treeshape not given by types,

but by structural properties;
may change over time rightleft

class Node {
Node f1, f2;

}

elements are sorted



Shape and numerical quanties

next nextfirst

3
size value of size field is 

the number of stored objects

table

key value

node is stored in the bucket 
given by the hash of node’s key

hashCode

dynamically allocated arrays

numerical quantities

instances do not share array



Jahob summary
Verifies programs in Java subset
Specifications written in subset of Isabelle/HOL
Jahob proves

– data structure preconditions, postconditions
– data structure invariants
– absence of run-time errors

Current strength: data structures
Verified data structures

– lists, trees, priority queues, hash tables



Why are such tools interesting?

Reliability
– discovering and preventing existing errors
– making it easier to write correct programs

Performance
– prove properties that enable optimizations

Code maintenance and understanding
– reverse engineering, visualization, refactoring

Intellectual challenge



Application for reliability
Everyday software full of bugs – cost up to 60 billion/year
Critical software (and hardware) - not very different

– air-traffic control: are 2 planes going to collide
– Ariane 5
– Mars Rover
– Northeast black out in US
– software in your car: 105 lines of code (recalls)
– nuclear submarine
– heart pace maker

Reports of serious bugs in all of these
Developing a good tool is difficult, but can pay off!



Verification and analysis systems
Jahob, 
Blast, HyTech
SLAM
Spec#
ESC/Java2
TVLA
FindBugs
Saturn
...



Full or partial correctness

Full correctness, full specifications:
– all we would like to be true about the program
– difficulty: specification as hard as program

Partial correctness, partial specifications:
– select most important properties
– specifications smaller
– more cost-effective

Ideally: tool can check everything
– programmer selects how much to verify



public static int sum(int a0, int n0)
/*: 

requires “a0 > 0 & n0 > 0”
ensures “result = 2*a0*(2^n0 - 1)”

*/
{

int res = 0, a = a0, n = n0;
while /*: invariant “ ”*/
(n > 0) {
a = 2*a;
res = res + a;
n = n – 1;

}
return res;

}

Full specification



Tools applied in industry
ASTREE (ENS, Paris)

In Nov. 2003, ASTRÉE was able to prove 
completely automatically the absence of any run-
time error in the primary flight control software of 
the Airbus A340 fly-by-wire system, a program of 
132,000 lines of C analyzed in 1h20

Coverity
GrammaTech
AbsInt
SparkAda



Application for performance

Common sub-expression elimination
Moving code out of the loop: interference
Induction variable elimination (value change)
Parallelization: also interference
Static memory allocation

– escape analysis: do allocated objects live only 
within the procedure?

– static preallocation, garbage collection
– write barrier removal



Applications for maintenance

Reverse engineering: recover specifications
Refactoring: is a given transformation valid
Slicing, dependency analysis:

what parts of program should we look at?
Which components interact?
Call graph analysis

– What method could a given call site invoke?



Intellectual challenge

Verifying compiler grand challenge
– compared to human genome project
– compiler that says “this procedure is fishy”

Undecidability results: Rice’s theorem
Computational complexity
Key challenge: what is the class of programs

– programming discipline
Verifying “understandable programs”

– AI completeness



Part B:
Format of the class



Suggested prerequisites

Talk to me if you did not take them
– Theory of Computation
– Compilers



What will you learn?

What analysis and verification is good for
What we can do today
What we may be able to do tomorrow
Good if you are interested in

– pursuing research in analysis and verification
– using verification techniques in other areas
– using existing tools to find and prevent errors in 

your programs, and improve these tools
• important trend: customizable analysis tools



Who is teaching

Instructor: myself
You: active participation (more on this later)
Some invited lectures
Attend selected talks in verification at EPFL

– I will point them out to the class when relevant
Perhaps a teaching assistant towards the end



Grading
Assumption: you are interested in material

– just do your best and do not worry
– if material unclear, ask immediately

Elements of your grade – do them all
– mini project: describe, implement, present
– homeworks: write and grade
– write lecture notes and put them online (wiki)

• in pairs, also ask others and me if anything unclear
– paper summaries: write, lead discussions
– lecture participation: ask and answer questions



Writing lecture notes (scribing)

Everyone must do it
– after we go through everyone, start again
– put initial draft in wiki format (like Wikipedia)
– your class mates and myself can improve it
– no strict grading, but need to do it seriously

Volunteer before the class
– anyone for tomorrow’s class?

programs formulas
proving certain formulas



What happens when – phase 1

Lecture:
take notes

Wednesday

Lecture:
take notes

Thursday

Exercise:
present, grade

Lecture:
take notes

Wednesday

Lecture:
take notes

Thursday

Exercise:
present, grade

new exercise

submit
exercise 

and notes

Weak N Weak N+1



What happens when – phase 2

Lecture:
take notes

Wednesday

Lecture:
take notes

Thursday

Paper:
lead discussion

Lecture:
take notes

Wednesday

Lecture:
take notes

Thursday

Paper:
lead discussion

new paper reading

submit
paper summary 

and notes

Weak N Weak N+1



What happens when – phase 3

Present 
project

Wednesday

Present
project

Thursday

Present
project

submit mini project



Final mini project

You can use Jahob if you wish
– take advantage of existing system
– may take some time to understand

You can start from scratch
– build a small language

Recommended impl. language: O’Caml
– can use ML, Haskell, Scala, Java, ...

Can have a project without implementation
– prove somewhat new theorems in it



Some topics we expect to cover

Verification condition generation
Theorem proving and decision procedures
Abstract interpretation (dataflow analysis)
Predicate abstraction and shape analysis
Interprocedural analysis
Concurrent, higher-order, object-oriented 

features
Run-time checking, bug finding



Preliminary Quiz

Does NOT affect the grade
Helps me make lectures more interesting
Answer in electronic form and email back


