STURM’S THEOREM

Given a univariate polynomial with simple roots \(p \) and the sequence of polynomials

\[
\begin{align*}
 p_0(x) &= p(x) \\
 p_1(x) &= p'(x) \\
 p_2(x) &= -\text{rem}(p_0, p_1) = p_1(x)q_0(x) - p_0(x) \\
 p_3(x) &= -\text{rem}(p_1, p_2) = p_2(x)q_1(x) - p_1(x) \\
 & \vdots \\
 p_m(x) &= -\text{rem}(p_{m-2}, p_{m-1})
\end{align*}
\]

denote the number of sign changes in the sequence \(p(\xi), p_1(\xi), p_2(\xi), \ldots, p_m(\xi) \) by \(\sigma(\xi) \).

Then for \(a < b \), both real and such that \(p(a), p(b) \neq 0 \), the number of real roots in \([a, b]\) is given by \(\sigma(a) - \sigma(b) \).

Multiple root. Consider a polynomial \(f \) with multiple roots. Then \((x - \alpha)^2\) divides \(f \), with \(\alpha \) being the root. Differentiating, we see that \((x - \alpha)\) divides \(f' \), hence \(f \) and \(f' \) have a common factor. From this it follows, that \(f \) and \(f' \) are relatively prime if and only if \(f \) has only simple roots.

Sturm’s theorem is still applicable in the multiple-root case, since the sequence above will yield this common factor and dividing \(f \) by it, results in a polynomial with the same, but only simple, root.

Definition. A Sturm sequence of a polynomial \(f \) in an interval \([a, b]\) is a sequence of polynomials \(f_0 = f, f_1, \ldots, f_m \) such that it holds

1. \(f_m \) has no zeros in \([a, b]\)
2. \(f_0(a), f_0(b) \neq 0 \)
3. for \(0 < i < m - 1 \) and \(a < \gamma < b \), if \(f_i(\gamma) = 0 \) then \(f_{i-1} = -f_{i+1} \)
4. no two consecutive \(f_i \)’s vanish simultaneously at any point in the interval
5. within a sufficiently small neighbourhood of a root of \(f_0 \), \(f_1 \) has constant sign

The sequence \(p_i \) is a Sturm sequence. The algorithm given above to compute the sequence \(p_i \) is the Euclidean algorithm with a special way of defining the remainders. By assumption, \(f \) and \(f' \) are relatively prime, hence the final polynomial \(p_m \) is a constant non-zero polynomial and thus has no roots in \([a, b]\).

The second point is given by assumption and the third follows directly from the definition of the algorithm:

\[
p_i(x) = p_i(x)q_{i-1}(x) - p_{i-1}(x)
\]

If \(p_i = 0 \) then clearly \(p_{i+1}(x) = -p_{i-1}(x) \), for some \(x \) in the interval.

To show the forth point, suppose this was not true and \(p_i(x) = p_{i+1}(x) = 0 \) for some \(x \) in the interval. But then \(p_{i+2}(x) = \ldots = p_m(x) = 0 \) by the definition of the series. This contradicts the fact that \(p_m \) is a nonzero constant polynomial, and thus we have that no two consecutive \(p_i \)’s vanish simultaneously.

The last point is given by the continuity of polynomials and the fact that \(p \) has only simple roots. Then in a sufficiently small neighbourhood of a root, \(f \) is monotonously increasing or decreasing and thus \(p_i = p' \) has constant sign.

Proof of main theorem. Having established that our sequence \(p_i \) is a Sturm sequence, we can now proceed to prove the main theorem.

Evaluating the Sturm chain at some point \(x \), with \(x \) in the interval \([a, b]\), results in a sequence of values \(p_0(x), p_1(x), \ldots, p_m \). Let \(SC(x) \) denote the number of sign changes in the sequence at the point \(x \). That is, if we have \(++++ \) or \(---- \), \(SC(x) = 0 \) and for \(+++- \) for example \(SC(x) = 2 \).

The idea of the proof is to follow the changes in \(SC \) as \(x \) passes through the interval \([a, b]\). In particular, we will show that \(SC \) is a monotonically decreasing function and that each root of \(p \) and only a root of \(p \) makes \(SC \) drop by 1.
Clearly, SC can change only if we pass through a root of one of the p_i, since only this will cause a change in sign in one of the values in the sequence. Here we have to consider two cases:

Case 1: $p_i(x) = 0, i > 0$: One of the intermediate polynomials passes through a zero. Then for p_{i-1}, p_i, p_{i+1} we have by the definition of the Sturm sequence that p_{i-1} and p_{i+1} have opposite, but constant signs, since p_{i-1} and p_{i+1} cannot be zero in a sufficiently small neighborhood and thus cannot change sign. Hence, whatever the sign of p_i is in this small neighborhood, it does not change the overall sign change count (To see this, note that p_{i-1} and p_{i+1} have opposite signs, hence if the sign sequence before is $+$ $-$ $-$, it is after $+$ $+$ $-$ and the number of sign changes remains the same. Similarly for the other cases.)

Case 2: $p_0(x) = 0$: By definition of the Sturm sequence, p_1 has constant sign in some small neighborhood, say $[α, β]$. Then there are two possibilities:
- $p_1 > 0$, an thus $p_0(α) < 0$ and $p_0(β) > 0$. The sign sequence before is $-$ $+$ and after $+$ $+$, hence SC decreases by one.
- $p_1 < 0$, an thus $p_0(α) > 0$ and $p_0(β) < 0$. The sign sequence before is $+$ $-$ and after $-$ $-$, hence SC decreases by one.

Thus, if (and only if) x passes through a root of p_0, SC looses one sign change. This implies that SC is monotonically decreasing and that the number of sign-change-losses in the interval $[a, b]$ counts the number of real roots of the polynomial.

References