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Quantifier Elimination in General - Problem formulation

Given a formula

F (x1, . . . , xk) = Qxk+1.Qxk+2. . . .Qxm.G (x1, x2, . . . , xm),

where G is quantifier-free,

find a quantifier-free formula F ′(x1, . . . , xk),

such that F and F ′ are equally satisfiable.



Quantifier Elimination - General Strategy

It is enough if we do it on

∃x1.L1(x1, . . . , xk) ∧ L2(x1, . . . , xk) ∧ . . . ∧ Lk(x1, . . . , xk),

where Li (x1, . . . , xk) are literals!

Why?



Quantifier Elimination - General Strategy

It is enough if we do it on

∃x1.L1(x1, . . . , xk) ∧ L2(x1, . . . , xk) ∧ . . . ∧ Lk(x1, . . . , xk),

where Li (x1, . . . , xk) are literals!

Why?



Real and Complex Fields: Signatures

I Real numbers: ({+2, ·2}, {=2, <2, >2,≥2,≤2})
I Complex numbers: ({+2, ·2}, {=2})

Atoms are just inequalities with multivariate polynomials!
For the reals:

f (x1, . . . , xn) ./ 0,with ./∈ {=2, <2, >2,≥2,≤2}



Real and Complex Fields: Signatures

I Real numbers: ({+2, ·2}, {=2, <2, >2,≥2,≤2})
I Complex numbers: ({+2, ·2}, {=2})

Atoms are just inequalities with multivariate polynomials!
For the reals:

f (x1, . . . , xn) ./ 0,with ./∈ {=2, <2, >2,≥2,≤2}



Some History

I Descartes 1637, “rule of signs”;

I Sturm 1835, rule to determine the number of roots of a
polynomial;

I Tarski 1930’s, published in 1948: first QE procedure for reals;

I Collins 1975, first QE procedure efficient enough to be
implemented: Cylindrical Algebraic Decomposition (CAD);

I ...



The Complex Case is Simple

Lemma
All we need to do is QE on

∃x .
k∧

j=1

fj(x , y1, . . . , yn) = 0 ∧
k ′∧

j=k+1

fj(x , y1, . . . , yn) 6= 0.



The Complex Case is Simple

Lemma
Let f1, . . . , fk ∈ R(X1, . . . ,Xn). Then

k∧
i=1

fi (x1, . . . , xn) 6= 0 ⇐⇒
k∏

i=1

fi (x1, . . . , xn) 6= 0.



The Complex Case is Simple

Lemma (simple!)

Let f , g ∈ R(X ), df = deg f , dg = deg g. Suppose df ≥ dg ≥ 1.
Then there is r ∈ RX with deg r < df , such that Then

f (x) = 0 ∧ g(x) = 0 ⇐⇒ r(x) = 0 ∧ g(x) = 0.

Proof.
Pick r as the remainder of the division of f and g .



The Complex Case is Simple

Lemma (Pseudo-division)

Let f , g ∈ R(X ,Y1 . . . ,Yn), df = degx f , dg = degx g, and fix
y ∈ Rn. Suppose df ≥ dg and

g(x , y) =
∑dg

i=0 Ai (y)x i .

Then if Adg (y) = 0, there are some k ∈ N, q, r ∈ R(X ,Y1 . . . ,Yn)
with degx r < dg , such that

Adg (y)k f (x , y) = g(x , y)q(x , y) + r(x , y)

Proof.
See blackboard.



The Complex Case is Simple

Lemma (complicated!)

Let f , g ∈ R(X ,Y1 . . . ,Yn), df = degx f , dg = degx g. Suppose
df ≥ dg and

g(x , y) =
∑dg

i=0 Ai (y)x i ..

Set
gt(x , y) =

∑dg−1
i=0 Ai (y)x i .

Then there is r ∈ R(X ,Y1 . . . ,Yn) with degx r < dg , such that

f (x , y) = 0 ∧ g(x , y) = 0⇐⇒
Adf (y) = 0 ∧ f (x , y) = 0 ∧ gt(x , y) = 0 ∨
Adf (y) 6= 0 ∧ r(x , y) = 0 ∧ g(x , y) = 0.

Proof.
Use pseudo-division.



The Complex Case is Simple

We have managed to prove that

∃x .
k∧

j=1

fj(x , y1, . . . , yn) = 0 ∧
k ′∧

j=k+1

fj(x , y1, . . . , yn) 6= 0.

is equally satisfiable with∨
i

Pi (y1, . . . , yn)∧(∃x .f (x , y1, . . . , yn) = 0 ∧ g(x , y1, . . . , yn) 6= 0) ,

for some predicates Pi depending only on y1, . . . , yn.

The red part above is equivalent to

¬∀x .f (x , y1, . . . , yn) = 0→ g(x , y1, . . . , yn) = 0.



The Complex Case is Simple

Lemma
The formula

∀x .f (x , y1, . . . , yn) = 0→ g(x , y1, . . . , yn) = 0

is equisatisfiable with

f (·, y1, . . . , yn)|gdf (·, y1, . . . , yn).

Proof.
Fundamental Theorem of Algebra!



The Complex Case is Simple

There are q, r ∈ R(X ,Y1, . . . ,Yn) with degx(r) < degx(f ), such
that

Adg (y)f (x , y) = g(x , y)q(x , y) + r(x , y).

Lemma
Given that Adg 6= 0,

f (·, y1, . . . , yn)|gdf (·, y1, . . . , yn)⇐⇒ r(x , y) ≡ 0.

We are done!!
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The Real Case is also Simple

We do QE on

∃x .
k∧

i=1

fi (x , y1, . . . , yn) ./ 0,with ./∈ {=2, <2, >2,≥2,≤2}.



The Real Case is also Simple

Simplest case, polynomials are univariate.
We would like to have something like this:

(−∞, x1)x1(x1, x2)x2(x2, x3)x3(x3, x4)x4(x4, x5)x5(x5,+∞)

f1(x) + 0 + + + 0 − − − 0 +

f2(x) + + + 0 − − − − − − −
f3(x) − 0 + 0 + 0 − 0 + 0 +

f4(x) + + + + + + + 0 − 0 +

Then we can readily decide whether the formula is true or false! It
is clear from the table that there is a solution that satisfies the
constraints or not.



The Real Case is also Simple

Task: build table for f , f1, f2, . . . , fk ∈ R(X ).
Do this with recursion! Assume we already have a table for

f0 = f ′

f1
...

fk

f mod f0

f mod f1
...

f mod fk



The Real Case is also Simple

How to transform the table:

I If fj(x) = 0 then we can infer the sign of f (x) from the sign of
(f mod fj)(x).

I Let x̃ and x̃ ′ be two consecutive roots of f ′. Then in the
interval [x̃ , x̃ ′] there is at most one root of f . Also, the sign of
f changes at most once.

I The head coefficient of f gives the sign at +∞ and −∞.

I Drop polynomials f ′, f mod f0, f mod f1, . . . , f mod fk ,
since they do not appear in the final table.

I Whenever the sign of f changes between two consecutive
points in the table, introduce a new point corresponding to a
root of f , and infer the signs of the other polynomials in the
table.



The Real Case is also Simple

Generalize for more variables: consider y1, . . . , yn as constants, and
eliminate x in the following way.

I Use pseudo-division instead of normal (univariate) polynomial
division.

I Note that the signs of the polynomials in the table depend
directly on the coefficients of polynomials.

I Branch on the sign of each coefficient that appears while
creating the table (thereby creating predicates of the form
A(y1, . . . , yn), to determine the sign table.

I Use this to create the formula on y1, . . . , yn with no
quantifiers.

I Done!
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Cylindrical Algebraic Decomposition

Define a cell recursively:

I In 1-D: a cell is either a point or an interval.

I In Rk : a set S ∈ Rk is a cell if there is a k − 1-dimensional
cell D ⊂ Rk−1 and functions f , g : Rk−1 → R such that there
are polynomials F ,G ∈ R(X ,Y1, . . . ,Yk−1) with

F (f (y1, . . . , yk−1), y1, . . . , yk−1) = 0,

G (g(y1, . . . , yk−1), y1, . . . , yk−1) = 0,

and

S = {(x , y1, . . . , yk−1) : (y1, . . . , yk−1) ∈ D, f (y) < x < g(y)}.



Cylindrical Algebraic Decomposition

Our QE method generates a Cylindrical Algebraic Decomposition:
see blackboard!



Thanks for listening!


