Alternation, Space Complexity and QFPAbit

Alternation

$$ATIME(f(n)) = \{L \mid L \text{ is decidable by an } O(f(n)) \\Alternating Turing Machine\}$$

•
$$APTIME = \bigcup_{k \in \mathbb{N}} ATIME(n^k)$$

Alternation

- Clearly NP⊆APTIME
- co-NP \subseteq APTIME
- Example: TQBF₂ is neither in NP nor in co-NP but it is in APTIME

Space Complexity

- A Turing Machine is said to be f(n) space if for an input of length n it scans only f(n) cells.
- $SPACE(f(n)) = \{L \mid L \text{ is decidable by an } O(f(n)) \text{ space}$ $Turing Machine\}$

$$PSPACE = \bigcup_{k \in \mathbb{N}} SPACE(n^k)$$

 Interesting result: NPSPACE=PSPACE (Savitch)

APTIME vs PSPACE

- Theorem: For $f(n) \ge n$ we have ATIME(f(n)) \subseteq SPACE(f(n)) \subseteq ATIME($f^2(n)$)
- Corollary: APTIME=PSPACE

Polynomial Hierarchy

- Let i be a natural number. A Σ_i-Alternating Turing Machine is an ATM that changes between performing existential and universal steps at most i-1 times, starting with existential steps.
- A Π_i-alternating Turing Machine is defined just like a Σ_i-ATM but starts with universal steps.

Polynomial Hierarchy

•
$$\Sigma_i P = \bigcup_k \Sigma_i TIME(n^k)$$

•
$$\Pi_i P = \bigcup_k \Pi_i TIME(n^k)$$

• For example, $\Sigma_1 P = NP$ and $\Pi_1 P = co-NP$.

QF Presburger Arithmetic

- Satisfiability NP-hard: propositional SAT can be reduced to it
- Satisfiability also in NP (see references)

QFPAbit

- We add bitwise operators ⊼, ⊽, ¬ as functions. They are interpreted as acting on the Two's Complement Binary Representation of the numbers
- Note that the "+" isn't actually necessary anymore (see homework)

Two's Complement Encoding

• $\langle b_k, b_{k-1}, ..., b_0 \rangle = -b_k 2^k + \sum_{i=0}^{k-1} b_i 2^i$

QFPAbit stronger than QFPA

- The set of numbers that satisfy a QFPA formula is **ultimately periodic**
- But consider

 $pow2(x) \equiv 1 + ((x-1)\overline{\vee}x) = 2x \wedge x > 0$

 x satisfies pow2 if and only if x is a power of 2. The set of all powers of 2 is not ultimately periodic.

QFPAbit Satisfiability

- Given a QFPAbit formula, does there exist an assignment to the variables such that the formula is satisfied?
- Is in PSPACE
- Clearly NP-hard
- Proven to be co-NP-hard
- Conjectured to be PSPACE-complete

- We will reduce a given QFPAbit formula to an Alternating Finite Automaton
- AFA Emptiness \in PSPACE

Alternating Finite Automata

- An AFA is a tuple (Q,V, δ ,I,F) where
 - $Q=\{q_1,q_2,..,q_m\}$ is the set of state variables
 - $V = \{v_1, v_2...v_n\}$ is the set of input variables
 - $\delta: Q \rightarrow Prop(Q \cup V)$ is the transition function
 - $I \in Prop(Q \cup V)$ is the initial formula
 - F:Q \rightarrow {0, I} is the final function that maps states to boolean values

Alternating Finite Automata

- The alphabet of the automaton defined on the previous slide is {0,1}ⁿ
- An AFA should be viewed more like a "formula constructing device"
- Note that these automata can't accept the empty string
- An AFA can be regarded as a description of a DFA accepting the language where every word is reversed

Boolean operations

- Given an AFA $A_1 = (Q_1, V, \delta_1, I_1, F_1)$ and an AFA $A_2 = (Q_2, V, \delta_2, I_2, F_2)$, define:
 - $\neg A_{I} = (Q_{I}, V, \delta_{I}, \neg I_{I}, F_{I})$
 - $A_1 \wedge A_2 = (Q_1 \cup Q_2, V, \delta_1 \cup \delta_2, I_1 \wedge I_2, F_1 \cup F_2)$
 - $A_1 \lor A_2 = (Q_1 \cup Q_2, V, \delta_1 \cup \delta_2, I_1 \lor I_2, F_1 \cup F_2)$

Boolean operations

• It is easy to see that the following holds:

- $L(\neg A_1) = L^c(A_1) \setminus \{\epsilon\}$
- $L(A_1 \wedge A_2) = L(A_1) \cap (A_2)$
- $L(A_1 \lor A_2) = L(A_1) \cup (A_2)$

References

- M Sipser: Introduction to The Theory of Computation (2nd ed.); Thomson Course Technology 2006
- T Schuele, K Schneider: Verification of Data Paths Using Unbounded Integers: Automata Strike Back
- S Seshia, R Bryant: Deciding quantifier-free Presburger formulas using parameterized solution bounds; Logical Methods in Computer Science I (2:6) (2005) 1–26