
Seminar on Automated Reasoning 2010

Lecture 5:

Reasoning Modulo Theories -

Overview, Decision Procedure for Equality

Swen Jacobs

22. October 2010

First-order Theories

A theory T is defined by

• a signature ΣT , and

• a set of closed ΣT -formulas AT , the axioms of T .

Differences to full FOL:

• restricted signature

• some or all symbols have a predefined meaning, given by axioms

Seminar on Automated Reasoning, L5 2

Theory of Equality

The theory of equality TE is given by

ΣE = ({a/0, b/0, . . . , f /1, . . . g/2, . . .}, {=/2, p/0, . . . q/1, . . .}),

and axioms

A
x . x = x (reflexivity)

A

x , y . x = y → y = x (symmetry)

A

x , y , z . x = y ∧ y = z → x = z (transitivity)

A

x , y .
(
∧n

i=1 xi = yi

)

→ f (x) = f (y) (function congruence)

A

x , y .
(
∧n

i=1 xi = yi

)

→ (p(x) ↔ p(y)) (predicate congruence)

(the last two are schemes, hold for every function/predicate symbol)

Seminar on Automated Reasoning, L5 3

Satisfiability Modulo Theories

An interpretation I which satisfies all axioms of T , i.e. I |= AT , is

called a T -interpretation.

A ΣT -formula F is valid in theory T (or T -valid) if AT |= F , i.e.

every T -interpretation satisfies F , written T |= F .

A ΣT -formula F is satisfiable in T (or T -satisfiable) if there exists a

T -interpretation which satisfies F .

Seminar on Automated Reasoning, L5 4

Decidability of Theories and Fragments

A theory T is decidable if T |= F is decidable for every ΣT -formula

F .

A fragment of a theory T is a syntactically restricted subset of

ΣT -formulas. E.g., the quantifier-free fragment of T is the set of

quantifier-free ΣT -formulas.

A fragment of T is decidable if T |= F is decidable for every formula

in the fragment.

Seminar on Automated Reasoning, L5 5

First-order Theories

Examples: Theories of

• Equality TE

• Arrays TArrays

• Presburger Arithmetic PA

• Sets with cardinality constraints BAPA

• Rational numbers TQ

• Real numbers TR

Seminar on Automated Reasoning, L5 6

Theory of Equality

The theory of equality TE is given by

ΣE = ({a/0, b/0, . . . , f /1, . . . g/2, . . .}, {=/2, p/0, . . . q/1, . . .}),

and axioms

A
x . x = x (reflexivity)

A

x , y . x = y → y = x (symmetry)

A

x , y , z . x = y ∧ y = z → x = z (transitivity)

A

x , y .
(
∧n

i=1 xi = yi

)

→ f (x) = f (y) (function congruence)

A

x , y .
(
∧n

i=1 xi = yi

)

→ (p(x) ↔ p(y)) (predicate congruence)

(the last two are schemes, hold for every function/predicate symbol)

Seminar on Automated Reasoning, L5 7

Problems in TE

Question: Is a = b ∧ b = c ∧ f (a) 6= f (c) satisfiable in TE?

From (transitivity) and a = b ∧ b = c conclude a = c

From (congruence) and a = c conclude f (a) = f (c)

f (a) = f (c) contradicts f (a) 6= f (c)

Seminar on Automated Reasoning, L5 8

Problems in TE

Application: Validation of compiler translations

1: y := 1 1: y := 1

2: if x = y + y 2: R := y + y

3: then y := x * x 3: jmpNE(x,R,5)

4: endif 4: y := R * R

To prove: (equivalence of left- and right-hand side)

y1 = 1 ∧ ((x2 6= y1 + y1 ∧ y3 = y1) ∨ (x0 = y1 + y1 ∧ y3 = x0 ∗ x0))

∧ y ′

1 = 1 ∧ R2 = y ′

1 + y ′

1 ∧ ((x ′

0 6= R2 ∧ y ′

4 = y ′

1) ∨ (x ′

0 = R2 ∧ y ′

4 = R2 ∗ R2))

∧ x0 = x ′

0 ∧ y0 = y ′

0 → x0 = x ′

0 ∧ y3 = y ′

4

⇒ this can be proved for uninterpreted ∗ and +

Seminar on Automated Reasoning, L5 9

Theory of Arrays

The theory of arrays TArray is given bya

ΣArray = ({read/2,write/3}, {=/2}),

and axioms

A

x . x = x (reflexivity)

A
x , y . x = y → y = x (symmetry)

A

x , y , z . x = y ∧ y = z → x = z (transitivity)

A

a, x , y . x = y → read(a, x) = read(a, y) (array congruence)

A

a, v , x , y . x = y → read(write(a, x , v), y) = v (read-over-write 1)

A

a, v , x , y . x 6= y → read(write(a, x , v), y) = read(a, y) (read-over-write 2)

aNote that we omit sorts, which is less restrictive and less efficient.

Seminar on Automated Reasoning, L5 10

Problems in TArray

Question: Is i = j ∧ i 6= k ∧ read(a, j) = e1 ∧ e1 6= e2 ∧

read(write(a, k, e2), i) = e2 satisfiable in TArray?

From (array congruence) and i = j conclude read(a, i) = read(a, j)

From (transitivity), read(a, i) = read(a, j), and read(a, j) = e1 conclude

read(a, i) = e1

From (read-over-write 2) and i 6= k conclude read(write(a, k, e2), i) =

read(a, i)

From (symmetry), (transitivity), read(write(a, k, e2), i) = read(a, i), and

read(write(a, k, e2), i) = e2, conclude read(a, i) = e2

From (symmetry), (transitivity), read(a, i) = e1, and read(a, i) = e2

conclude e1 = e2

Seminar on Automated Reasoning, L5 11

Problems in TArray

Applications:

Arrays are used to model problems in hard- and software verification,

e.g. for memory accesses, the stack of programs or for arrays in

programs.

Seminar on Automated Reasoning, L5 12

Presburger Arithmetic

The theory of Presburger Arithmetic PA is given by

ΣN = ({0/0, 1/0,+/2}, {=/2}),

and axioms

A

x . x + 1 6= 0 (zero)
A

x , y . x + 1 = y + 1 → x = y (successor)

F [0] ∧ (

A

x . F [x] → F [x + 1]) →

A

x . F [x] (induction)

A

x . x + 0 = x (plus zero)

A

x , y . x + (y + 1) = (x + y) + 1 (plus successor)

((induction) is a scheme, holds for every ΣN-formula F)

Seminar on Automated Reasoning, L5 13

Boolean Algebra

The theory of Boolean Algebra BA is given by

ΣPA = ({∅/0,U/0, c/1,∪/2,∩/2}, {=/2,⊆/2}),

and axioms

Axioms of TE

A
x , y , z . x ∪ (y ∪ z) = (x ∪ y) ∪ z (associativity of ∪)

A

x , y . x ∪ y = y ∪ x (commutativity of ∪)

A

x , y . x ∪ (x ∩ y) = x (absorption 1)

A

x , y , z . x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z) (distributivity 1)

A

x . x ∪ xc = U (complement 1)

(continued on next slide)

Seminar on Automated Reasoning, L5 14

Boolean Algebra

The theory of Boolean Algebra BA is given by

ΣPA = ({∅/0,U/0, c/1,∪/2,∩/2}, {=/2,⊆/2}),

and axioms

(continued from previous slide)

A
x , y , z . x ∩ (y ∩ z) = (x ∩ y) ∩ z (associativity of ∩)

A

x , y . x ∩ y = y ∩ x (commutativity of ∩)

A

x , y . x ∩ (x ∪ y) = x (absorption 2)

A

x , y , z . x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (distributivity 2)

A

x . x ∩ xc = ∅ (complement 2)

A

x , y . x ∪ y = y ↔ x ⊆ y (partial order ⊆)

Seminar on Automated Reasoning, L5 15

Boolean Algebra with Presburger Arithmetic

The theory of Boolean Algebra with Presburger Arithmetic

BAPA is given by

ΣBAPA = ΣPA ∪ ΣBA ∪ ({| · |/1}, {}),

and axioms

(Axioms of PA)

(Axioms of BA)

A

x , y . x ∩ y = ∅ → |x ∪ y | = |x | + |y | (disjoint sets)

A

x . |x | = 0 ↔ x = ∅ (empty set)

Seminar on Automated Reasoning, L5 16

Problems in BAPA

Applications:

• static analysis of data structure consistency properties: for a data

structure that keeps track of its own size internally, prove that

the internal size value is equal to the actual size of the set of

elements in the data structure

• proving conditions for refinement and equivalence of program

fragments with such data structures

• proving the termination of programs that manipulate such data

structures

Seminar on Automated Reasoning, L5 17

Rational Numbers

The theory of rational numbers TQ is given by

ΣQ = ({0/0, 1/0,−/1,+/2}, {=/2,≤/2}),

and axioms

A

x , y . x ≤ y ∧ y ≤ x → x = y (antisymmetry)

A

x , y , z. x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
A

x , y . x ≤ y ∨ y ≤ x (totality)

A

x , y , z. x + (y + z) = (x + y) + z (associativity of +)

A

x . x + 0 = x (identity wrt. +)

A

x . x + (−x) = 0 (inverse wrt. +)

A

x , y . x + y = y + x (commutativity of +)

A

x , y , z. x ≤ y → x + z ≤ y + z (ordered wrt. +)

(continued on next slide)

Seminar on Automated Reasoning, L5 18

Rational Numbers

The theory of rational numbers TQ is given by

ΣQ = ({0/0, 1/0,−/1,+/2}, {=/2,≤/2}),

and axioms

(continued from last slide)

A

x . n · x = 0 → x = 0 (torsion-free)
A

x .

E

y . x = n · y (divisible)

((torsion-free) and (divisible) are schemes, hold for every n ∈ N
+,

where n · x stands for x + . . . + x
| {z }

n times

)

test

test

test

Seminar on Automated Reasoning, L5 19

Real Numbers

The theory of real numbers TR is given by

ΣR = ΣQ ∪ ({·/2}, {}),

and axioms

A

x , y . x ≤ y ∧ y ≤ x → x = y (antisymmetry)

A

x , y , z. x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
A

x , y . x ≤ y ∨ y ≤ x (totality)

A

x , y , z. x + (y + z) = (x + y) + z (associativity of +)

A

x . x + 0 = x (identity wrt. +)

A

x . x + (−x) = 0 (inverse wrt. +)

A

x , y . x + y = y + x (commutativity of +)

A

x , y , z. x ≤ y → x + z ≤ y + z (ordered wrt. +)

(continued on next slide)

Seminar on Automated Reasoning, L5 20

Real Numbers

(continued from last slide)

A

x , y , z. x · (y · z) = (x · y) · z (associativity of ·)

A

x . x · 1 = x (identity wrt. ·)

A

x . x 6= 0 →

E

y . x · y = 1 (inverse wrt. ·)

A

x , y . x · y = y · x (commutativity of ·)
A

x , y . 0 ≤ x ∧ 0 ≤ y → 0 ≤ x · y (ordered wrt. ·)

A

x , y , z. x · (y + z) = x · y + x · z (distributivity)

0 6= 1 (separate identities)

A

x .

E

y . x = y2 ∨ −x = y2 (square-root)

A

x .

E

y . yn + x1 · yn−1 + . . . + xn−1 · y + xn = 0 (at least one root)

((at least one root) is a scheme that holds for every odd integer n)

Seminar on Automated Reasoning, L5 21

Rational and Real Numbers

Application: (one among many)

Analysis and verification of hybrid systems, i.e. systems whose state

space is spanned by both discrete and continuous variables.

Hybrid automaton of a watertank:

4 discrete states, 2 continuous variables

x represents time, y amount of water

Want to prove properties like:

- never more than 12 water in tank

- never less than 1 water in tank

Seminar on Automated Reasoning, L5 22

Decidablity of Theories

Overview of decidablity of the conjunctive fragments (i.e. only

conjunctions of literals are allowed) of our example theories:

Theory Full QF

TE undecidable O(n log n)

TArrays undecidable NP-complete

PA ∼3EXPTIME NP-complete

BAPA ∼3EXPTIME NP-complete

TQ 2EXPTIME PTIME

TR 2EXPTIME 2EXPTIME

Seminar on Automated Reasoning, L5 23

Decidablity of Theories

For problems in these theories, general-purpose methods like resolution

• are in general no decision procedures

• are in general not as efficient as specialized methods

• often have an infinite search space even for the simplest problems,

because of infinite sets of axioms

Therefore, we will investigate specialized decision procedures for

important theories.

Seminar on Automated Reasoning, L5 24

Congruence Closure

Congruence closure is a method to decide quantifier-free TE -formulas

Applications are in verification of programs:

• directly, by abstraction of function properties

• extensions to prove properties of data structures like arrays, lists

• is the basis for combining theories

“Almost all proofs require reasoning about equalities.”

— Greg Nelson and Derek C. Oppen

Fast Decision Procedures Based on Congruence Closure, 1980

Seminar on Automated Reasoning, L5 25

Congruence Closure

Definition: a binary relation ∼ is a congruence relation if

A

x . x ∼ x

A

x , y . x ∼ y → y ∼ x

A

x , y , z . x ∼ y ∧ y ∼ z → x ∼ z
A

x , y .
(
∧n

i=1 xi ∼ yi

)

→ f (x) ∼ f (y) (for every function f)

Definition: given a set S and a congruence relation ∼ on S , the

congruence class of s ∈ S under ∼ is

[s]∼ = {s′ ∈ S | s ∼ s′}

Seminar on Automated Reasoning, L5 26

Congruence Closure

A congruence relation ∼ on a set S defines a partition on this set:

if P is the set of all congruence classes of S under ∼, then
(

⋃

S′∈P

S ′

)

= S ,

and

A

S1,S2 ∈ P. S1 6= S2 → S1 ∩ S2 = ∅.

Definition: A relation ∼′ is a refinement of ∼, written ∼′≺∼, if

A

s1, s2 ∈ S . s1 ∼′ s2 → s1 ∼ s2.

Seminar on Automated Reasoning, L5 27

Congruence Closure

Definition: If ∼ is a binary relation on S , then the

congruence closure ∼c of ∼ is the congruence relation such that

• ∼≺∼c , and

• for all other congruence relations ∼′ such that ∼≺∼′,

either ∼′=∼c or ∼c≺∼′.

(i.e. it is the smallest congruence relation that includes ∼)

Seminar on Automated Reasoning, L5 28

Congruence Closure

Abstract Algorithm: Given a TE -formula

F : s1 = t1 ∧ . . . ∧ sn = tn ∧ sn+1 6= tn+1 ∧ . . . ∧ sm 6= tm,

1. start with the relation ∼ in which each subterm of F is its own

congruence class

2. then, for every equality si = ti in F , merge [si]∼ and [ti]∼ by

(a) forming the union [si]∼ ∪ [ti]∼, and

(b) propagating the new congruences that arise in this union.

3. F is unsatisfiable if and only if there is a disequality sj 6= tj in F

such that sj ∼ tj in the resulting relation.

Seminar on Automated Reasoning, L5 29

Congruence Closure

Question: Is g(a, b) = a ∧ g(g(a, b), b) 6= a TE -satisfiable?

Initial congruence classes: {a}, {b}, {g(a, b)}, {g(g(a, b), b)}

Using g(a, b) = a to merge: {a, g(a, b)}, {b}, {g(g(a, b), b)}

By congruence, g(a, b) ∼ a and b ∼ b imply g(g(a, b), b) ∼ g(a, b)

Thus, merge: {a, g(a, b), g(g(a, b), b)}, {b}

This is the congruence closure.

The formula is unsatisfiable, since it contains g(g(a, b), b) 6= a, but

we have g(g(a, b), b) ∼ a in the congruence closure.

Seminar on Automated Reasoning, L5 30

Congruence Closure

Efficient implementation: using a directed acyclic graph (DAG)

Idea: All subterms are represented in one DAG with different

connections for subterm relationship, equalities in formula and

deduced equalities.

Once the DAG for subterm relationship is constructed, only

connections for equalities need to be updated.

Details: The Calculus of Computation

Original Results:

[Downey, Sethi, Tarjan 1980], [Nelson, Open 1980]

Seminar on Automated Reasoning, L5 31

