
Lecture 2:
First-Order Logic -

Syntax, Semantics, Resolution

Ruzica Piskac

Ecole Polytechnique Fédérale de Lausanne, Switzerland
ruzica.piskac@epfl.ch

Seminar on Automated Reasoning 2010

Introduction

Acknowledgments

These slides were originally developed by
Harald Ganzinger (1950 - 2004)
http://www.mpi-inf.mpg.de/~hg/

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 2 / 125

http://www.mpi-inf.mpg.de/~hg/

Introduction

Part 1: First-Order Logic

• formalizes fundamental mathematical concepts

• expressive (Turing-complete)

• not too expressive (not axiomatizable: natural numbers,
uncountable sets)

• rich structure of decidable fragments

• rich model and proof theory

First-order logic is also called (first-order) predicate logic.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 3 / 125

Syntax

1.1 Syntax

• non-logical symbols (domain-specific)
⇒ terms, atomic formulas

• logical symbols (domain-independent)
⇒ Boolean combinations, quantifiers

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 4 / 125

Syntax From a Signature to Formulas

Signature

Usage: fixing the alphabet of non-logical symbols

Σ = (Ω, Π),

where

• Ω a set of function symbols f with arity n ≥ 0, written f /n,

• Π a set of predicate symbols p with arity m ≥ 0, written p/m.

If n = 0 then f is also called a constant (symbol). If m = 0 then p is also
called a propositional variable. We use letters P, Q, R, S, to denote
propositional variables.
Refined concept for practical applications: many-sorted signatures
(corresponds to simple type systems in programming languages); not
so interesting from a logical point of view

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 5 / 125

Syntax From a Signature to Formulas

Variables

Predicate logic admits the formulation of abstract, schematic
assertions. (Object) variables are the technical tool for schematization.
We assume that

X

is a given countably infinite set of symbols which we use for (the
denotation of) variables.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 6 / 125

Syntax From a Signature to Formulas

Terms

Terms over Σ (resp., Σ-terms) are formed according to these syntactic
rules:

s, t, u, v ::= x , x ∈ X (variable)
| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X). A term not containing
any variable is called a ground term. By TΣ we denote the set of
Σ-ground terms.
In other words, terms are formal expressions with well-balanced
brackets which we may also view as marked, ordered trees. The
markings are function symbols or variables. The nodes correspond to
the subterms of the term. A node v that is marked with a function
symbol f of arity n has exactly n subtrees representing the n immediate
subterms of v.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 7 / 125

Syntax From a Signature to Formulas

Atoms

Atoms (also called atomic formulas) over Σ are formed according to
this syntax:

A, B ::= p(s1, ..., sm) , p/m ∈ Π
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm
of first-order logic with equality. Admitting equality does not really
increase the expressiveness of first-order logic, (cf. exercises). But
deductive systems where equality is treated specifically can be much
more efficient.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 8 / 125

Syntax From a Signature to Formulas

Literals

L ::= A (positive literal)
| ¬A (negative literal)

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 9 / 125

Syntax From a Signature to Formulas

Clauses

C, D ::= ⊥ (empty clause)
| L1 ∨ . . . ∨ Lk, k ≥ 1 (non-empty clause)

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 10 / 125

Syntax From a Signature to Formulas

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:
F, G, H ::= ⊥ (falsum)

| ⊤ (verum)
| A (atomic formula)
| ¬F (negation)
| (F ∧ G) (conjunction)
| (F ∨ G) (disjunction)
| (F =⇒ G) (implication)
| (F ≡ G) (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 11 / 125

Syntax From a Signature to Formulas

Notational Conventions

• We omit brackets according to the following rules:
• ¬ >p ∨ >p ∧ >p =⇒ >p ≡

(binding precedences)
• ∨ and ∧ are associative and commutative
• =⇒ is right-associative

• Qx1, . . . , xn F abbreviates Qx1 . . . Qxn F.

• infix-, prefix-, postfix-, or mixfix-notation with the usual operator
precedences; examples:

s + t ∗ u for +(s, ∗(t, u))
s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))

−s for −(s)
0 for 0()

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 12 / 125

Syntax Example

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)
ΩPA = {0/0, +/2, ∗/2, s/1}
ΠPA = {≤ /2, < /2}
+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤
Exampes of formulas over this signature are:
∀x, y(x ≤ y ≡ ∃z(x + z ≈ y))
∃x∀y(x + y ≈ y)
∀x, y(x ∗ s(y) ≈ x ∗ y + x)
∀x, y(s(x) ≈ s(y) =⇒ x ≈ y)
∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 13 / 125

Syntax Example

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can be
defined in first-order logic with equality just with the help of +. The first
formula defines ≤, while the second defines zero. The last formula,
respectively, defines s.
Eliminating the existential quantifiers by Skolemization (cf. below)
reintroduces the “redundant” symbols.
Consequently there is a trade-off between the complexity of the
quantification structure and the complexity of the signature.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 14 / 125

Syntax Variables

Bound and Free Variables

In QxF, Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx. An
occurrence of a variable x is called bound, if it is inside the scope of a
quantifier Qx. Any other occurrence of a variable is called free.
Formulas without free variables are also called closed formulas or
sentential forms.
Formulas without variables are called ground.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 15 / 125

Syntax Variables

Example

∀

scope
︷ ︸︸ ︷

y (∀

scope
︷ ︸︸ ︷

x p(x) =⇒ q(x, y))

The occurrence of y is bound, as is the first occurrence of x. The
second occurrence of x is a free occurrence.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 16 / 125

Syntax Substitutions

Substitutions

Substitution is a fundamental operation on terms and formulas that
occurs in all inference systems for first-order logic. In the presence of
quantification it is surprisingly complex.
By F[s/x] we denote the result of substituting all free occurrences of x
in F by the term s.
Formally we define F[s/x] by structural induction over the syntactic
structure of F by the equations depicted on the next page.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 17 / 125

Syntax Substitutions

Substitution of a Term for a Free Variable

x[s/x] = s

x′[s/x] = x′ ; if x′ 6= x

f (s1, . . . , sn)[s/x] = f (s1[s/x], . . . , sn[s/x])

⊥[s/x] = ⊥

⊤[s/x] = ⊤

p(s1, . . . , sn)[s/x] = p(s1[s/x], . . . , sn[s/x])

(u ≈ v)[s/x] = (u[s/x] ≈ v[s/x])

¬F[s/x] = ¬(F[s/x])

(FρG)[s/x] = (F[s/x]ρG[s/x]) ; for each binary connective ρ

(QyF)[s/x] = Qz((F[z/y])[s/x]) ; with z a “fresh” variable

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 18 / 125

Syntax Substitutions

Why Substitution is Complicated

We need to make sure that the (free) variables in s are not captured
upon placing s into the scope of a quantifier, hence the renaming of the
bound variable y into a “fresh”, that is, previously unused, variable z.
Why this definition of substitution is well-defined will be discussed
below.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 19 / 125

Syntax Substitutions

General Substitutions
In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of
variables occurring in one of the terms σ(x), with x ∈ dom(σ), is
denoted by codom(σ).
Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise
distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =

{

si, if y = xi

y, otherwise

We also write xσ for σ(x).

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 20 / 125

Syntax Substitutions

Modifying a Substitution

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =

{

t, if y = x

σ(y), otherwise

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 21 / 125

Syntax Substitutions

Application of a Substitution
“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρ Gσ) ; for each binary connective ρ

(Qx F)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

E: Convince yourself that for the special case σ = [t/x] the new
definition coincides with our previous definition (modulo the choice of
fresh names for the bound variables).

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 22 / 125

Syntax Substitutions

Structural Induction
Theorem

Let G = (N, T, P, S) be a context-free grammara and let q be a property
of T∗ (the words over the alphabet T of terminal symbols of G).
q holds for all words w ∈ L(G), whenever one can prove these 2
properties:

1 (base cases)
q(w′) holds for each w′ ∈ T∗ such that X ::= w′ is a rule in P.

2 (step cases)
If X ::= w0X0w1 . . . wnXnwn+1 is in P with Xi ∈ N, wi ∈ T∗, n ≥ 0,
then for all w′

i ∈ L(G, Xi), whenever q(w′
i) holds for 0 ≤ i ≤ n, then

also q(w0w′
0w1 . . . wnw′

nwn+1) holds.

Here L(G, Xi) ⊆ T∗ denotes the language generated by the grammar G
from the nonterminal Xi.

aInfinite grammars are also admitted.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 23 / 125

Syntax Substitutions

Structural Recursion

Theorem

Let G = (N, T, P, S) be a unambiguous context-free grammar. A
function f is well-defined on L(G) (that is, unambiguously defined)
whenever these 2 properties are satisfied:

1 (base cases)
f is well-defined on the words w′ ∈ Σ∗ for each rule X ::= w′ in P.

2 (step cases)
If X ::= w0X0w1 . . . wnXnwn+1 is a rule in P then
f (w0w′

0w1 . . . wnw′
nwn+1) is well-defined, assuming that each of the

f (w′
i) is well-defined.

Q: Why should G be unambigous?

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 24 / 125

Syntax Substitutions

Substitution Revisited
Q: Does Theorem 2 justify that our homomorphic extension

apply : FΣ(X) × (X → TΣ(X)) → FΣ(X),

with apply(F, σ) denoted by Fσ, of a substitution is well-defined?
A: We have two problems here. One is that “fresh” is (deliberately) left
unspecified. That can be easily fixed by adding an extra variable
counter argument to the apply function.
The second problem is that Theorem 2 applies to unary functions only.
The standard solution to this problem is to curryfy, that is, to consider
the binary function as a unary function producing a unary (residual)
function as a result:

apply : FΣ(X) → ((X → TΣ(X)) → FΣ(X))

where we have denoted (apply(F))(σ) as Fσ.
E: Convince yourself that this does the trick.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 25 / 125

Semantics

1.2. Semantics

To give semantics to a logical system means to define a notion of truth
for the formulas. The concept of truth that we will now define for
first-order logic goes back to Tarski.
In classical logic (dating back to Aristoteles) there are “only” two truth
values “true” and “false” which we shall denote, respectively, by 1 and
0.
There are multi-valued logics having more than two truth values.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 26 / 125

Semantics Structures

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (U, (fA : Un → U)f/n∈Ω, (pA ⊆ Um)p/m∈Π)

where U 6= ∅ is a set, called the universe of A.
Normally, by abuse of notation, we will have A denote both the algebra
and its universe.
By Σ-Alg we denote the class of all Σ-algebras.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 27 / 125

Semantics Assignments

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to
be defined externally (explicitly or implicitly in a given context) by an
assignment.
A (variable) assignment, also called a valuation (over a given
Σ-algebra A), is a map β : X → A.
Variable assignments are the semantic counterparts of substitutions.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 28 / 125

Semantics Truth Values of Formulas

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → A

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω

In the scope of a quantifier we need to evaluate terms with respect to
modified assigments. To that end, let β[x → a] : X → A, for x ∈ X and
a ∈ A, denote the assignment

β[x 7→ a](y) :=

{

a if x = y

β(y) otherwise

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 29 / 125

Semantics Truth Values of Formulas

Truth Value of a Formula in A with Respect to β

The set of truth values is given as {0, 1}. A(β) : Σ-formulas → {0, 1} is
defined inductively over the structure of F as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(p(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ pA
A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U

{A(β[x 7→ a])(F)}

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 30 / 125

Semantics Example

Ex: “Standard” Interpretation N for Peano Arithmetic

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n, m) 7→ n + m

∗N : (n, m) 7→ n ∗ m

≤N = {(n, m) | n less than or equal to m}

<N = {(n, m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 31 / 125

Semantics Example

Values over N for Sample Terms and Formulas

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3
N(β)(x + y ≈ s(y)) = 1
N(β)(∀x, y(x + y ≈ y + x)) = 1
N(β)(∀z z ≤ y) = 0
N(β)(∀x∃y x < y) = 1

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 32 / 125

Models, Validity, and Satisfiability

1.3 Models, Validity, and Satisfiability

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 33 / 125

Models, Validity, and Satisfiability Definitions

Validity and Satisfiability

F is valid in A under assigment β:

A, β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A, β |= F, for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F, for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A, β |= F.
Otherwise F is called unsatisfiable.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 34 / 125

Models, Validity, and Satisfiability Substitution Lemma

Substitution Lemma
The following theorems, to be proved by structural induction, hold for
all Σ-algebras A, assignments β, and substitutions σ.

Theorem
For any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → A is the assignment β ◦ σ(x) = A(β)(xσ).

Theorem

For any Σ-formula F, A(β)(Fσ) = A(β ◦ σ)(F).

Corollary

A, β |= Fσ ⇔ A, β ◦ σ |= F

These theorems basically express that the syntactic concept of
substitution corresponds to the semantic concept of an assignment.
Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 35 / 125

Models, Validity, and Satisfiability Properties

Entailment and Equivalence
F entails (implies) G (or G is entailed by F), written F |= G

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA, whenever A, β |= F
then A, β |= G.

F and G are called equivalent
:⇔ for all A ∈ Σ-Alg und β ∈ X → UA we have

A, β |= F ⇔ A, β |= G.

Theorem

F entails G iff (F =⇒ G) is valid

Theorem

F and G are equivalent iff (F ≡ G) is valid.

Extension to sets of formulas N in the “natural way”, e.g., N |= F
:⇔ for all A ∈ Σ-Alg and β ∈ X → UA:

if A, β |= G, for all G ∈ N, then A, β |= F.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 36 / 125

Models, Validity, and Satisfiability Properties

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as
explained by the following proposition.

Theorem

F valid ⇔ ¬F unsatisfiable

Hence in order to design a theorem prover (validity checker) it is
sufficient to design a checker for unsatisfiability.
Q: In a similar way, entailment N |= F can be reduced to unsatisfiability.
How?

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 37 / 125

Models, Validity, and Satisfiability Theories

Theory of a Structure

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) =df {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:
For which structures A can one axiomatize Th(A), that is, can one
write down a formula F (or a recursively enumerable set F of formulas)
such that

Th(A) = {G | F |= G}?

Analoguously for sets of structures.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 38 / 125

Models, Validity, and Satisfiability Theories

Two Interesting Theories

Let ΣPres = ({0/0, s/1, +/2}, ∅) and Z+ = (Z, 0, s, +) its standard
interpretation on the integers.1 Th(Z+) is called Presburger
arithmetic.2 Presburger arithmetic is decidable in 3EXPTIME3 (and
there is a constant c ≥ 0 such that Th(Z+) 6∈ NTIME(22cn

)) and in
2EXPSPACE; usage of automata-theoretic methods.
However, N∗ = (N, 0, s, +, ∗), the standard interpretation of
ΣPA = ({0/0, s/1, +/2, ∗/2}, ∅), has as theory the so-called Peano
arithmetic which is undedidable, not even recursively enumerable.
Note: The choice of signature can make a big difference with regard to
the compational complexity of theories.

1There is no essential difference when one, instead of Z, considers the natural
numbers N as standard interpretation.

2M. Presburger (1929)
3D. Oppen: A 222n

upper bound on the complexity of Presburger arithmetic. Journal
of Computer and System Sciences, 16(3):323–332, July 1978

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 39 / 125

Algorithmic Problems

1.4 Algorithmic Problems

Validity(F):
|= F ?

Satisfiability(F):
F satisfiable?

Entailment(F,G):
does F entail G?

Model(A,F):
A |= F?

Solve(A,F):
find an assignment β such that A, β |= F

Solve(F):
find a substitution σ such that |= Fσ

Abduce(F):
find G with “certain properties” such that G entails F

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 40 / 125

Algorithmic Problems

Gödel’s Famous Theorems

1 For most signatures Σ, validity is undecidable for Σ-formulas.
(We will prove this below.)

2 For each signature Σ, the set of valid Σ-formulas is recursively
enumerable.
(We will prove this by giving complete deduction systems.)

3 For Σ = ΣPA and N∗ = (N, 0, s, +, ∗), the theory Th(N∗) is not
recursively enumerable.

These complexity results motivate the study of subclasses of formulas
(fragments) of first-order logic
Q: Can you think of any fragments of first-order logic for which validity
is decidable?

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 41 / 125

Algorithmic Problems Decidable Fragments

Some Decidable Fragments

• Monadic class: no function symbols, all predicates unary; validity
NEXPTIME-complete

• Variable-free formulas without equality: satisfiability NP-complete
Q: why?

• Variable-free Horn clauses (clauses with at most 1 positive atom):
entailment is decidable in linear time (cf. below)

• Finite model checking is decidable in time polynomial in the size of
the structure and the formula.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 42 / 125

Normal Forms, Skolemization, Herbrand Models

1.5 Normal Forms, Skolemization, Herbrand Models

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers.
The subsequent normal form transformations are intended to eliminate
many of them.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 43 / 125

Normal Forms, Skolemization, Herbrand Models

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . . Qnxn F,

where F quantifier-free, Qi ∈ {∀,∃}; we call Q1x1 . . . Qnxn the quantifier
prefix and F the matrix of the formula.
Computing prenex normal form by the rewrite relation ⇒P:

(F ≡ G) ⇒P (F =⇒ G) ∧ (G =⇒ F)

¬QxF ⇒P Qx¬F (¬Q)
(QxF ρ G) ⇒P Qy(F[y/x] ρ G), y fresh, ρ ∈ {∧,∨}

(QxF =⇒ G) ⇒P Qy(F[y/x] =⇒ G), y fresh
(F ρ QxG) ⇒P Qy(F ρ G[y/x]), y fresh, ρ ∈ {∧,∨, =⇒ }

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 44 / 125

Normal Forms, Skolemization, Herbrand Models Skolemization

Skolemization
Intuition: replacement of ∃y by a concrete choice function computing y
from all the arguments y depends on.
Transformation ⇒S (to be applied outermost, not in subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF[f (x1, . . . , xn)/y]

where f /n is a new function symbol (Skolem function).
Together: F

∗
⇒P G

︸︷︷︸

prenex

∗
⇒S H

︸︷︷︸

prenex, no ∃

Theorem

Let F, G, and H as defined above and closed. Then
(i) F and G are equivalent.
(ii) H |= G but the converse is not true in general.
(iii) G satisfiable (wrt. Σ-Alg) ⇔ H satisfiable (wrt. Σ′-Alg)
where Σ′ = (Ω ∪ SKF, Π), if Σ = (Ω, Π).

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 45 / 125

Normal Forms, Skolemization, Herbrand Models Normal Forms

Clausal Normal Form (Conjunctive Normal Form)

(F ≡ G) ⇒K (F =⇒ G) ∧ (G =⇒ F)

(F =⇒ G) ⇒K (¬F ∨ G)

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity of ∧
and ∨. The first five rules, plus the rule (¬Q), compute the negation normal
form (NNF) of a formula.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 46 / 125

Normal Forms, Skolemization, Herbrand Models Normal Forms

The Complete Picture
F

∗
⇒P Q1y1 . . . Qnyn G (G quantifier-free)
∗

⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F′

N = {C1, . . . , Ck} is called the clausal (normal) form (CNF) of F.
Note: the variables in the clauses are implicitly universally quantified.

Theorem

Let F be closed. F′ |= F. The converse is not true in general.

Theorem

Let F be closed. F satisfiable iff F′ satisfiable iff N satisfiable

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 47 / 125

Normal Forms, Skolemization, Herbrand Models Normal Forms

Optimization

Here is lots of room for optimization since we only can preserve
satisfiability anyway:

• size of the CNF exponential when done naively;

• want to preserve the original formula structure;

• want small arity of Skolem functions (cf. Info IV and tutorials)!

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 48 / 125

Normal Forms, Skolemization, Herbrand Models Herbrand Models

Herbrand Interpretations for FOL without Equality

From now an we shall consider PL without equality. Ω shall contains at
least one constant symbol.
A Herbrand interpretation (over Σ) is a Σ-algebra A such that

(i) UA = TΣ (= the set of ground terms over Σ)
(ii) fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f /n ∈ Ω

f
fA(△, . . . ,△) =

△ . . . △

In other words, values are fixed to be ground terms and functions are
fixed to be the term constructors. Only predicate symbols p/m ∈ Π
may be freely interpreted as relations pA ⊆ Tm

Σ
.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 49 / 125

Normal Forms, Skolemization, Herbrand Models Herbrand Models

Herbrand Interpretations as Sets of Ground Atoms
Theorem

Every set of ground atoms I uniquely determines a Herbrand
interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with sets of
Σ-ground atoms.
Example: ΣPres = ({0/0, s/1, +/2}, {< /2,≤ /2})
N as Herbrand interpretation over ΣPres:

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,
0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,
. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))
. . .
s(0) + 0 < s(0) + 0 + 0 + s(0)
. . .}

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 50 / 125

Normal Forms, Skolemization, Herbrand Models Herbrand Models

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F,
if I |= F.

Theorem (Herbrand)

Let N be a set of Σ clauses.
N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)
where

GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ}

the set of ground instances of N.

[Proof to be given below in the context of the completeness proof for
resolution.]

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 51 / 125

Normal Forms, Skolemization, Herbrand Models Herbrand Models

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:
(0 < 0) ∨ (0 ≤ s(0))
(s(0) < 0) ∨ (0 ≤ s(s(0)))
. . .
(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))
. . .

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 52 / 125

Inference Systems and Proofs

1.6 Inference Systems, Proofs
Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . , Fn, Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises
︷ ︸︸ ︷

F1 . . . Fn

Fn+1
︸︷︷︸

conclusion

.

Clausal inference system: premises and conclusions are clauses. One
also considers inference systems over other data structures (cf. below).
A proof in Γ of a formula F from a a set of formulas N (called
assumptions) is a sequence F1, . . . , Fk of formulas where (i) Fk = F, (ii)
for all 1 ≤ i ≤ k: Fi ∈ N, or else there exists an inference
(Fi1 , . . . , Fini

, Fi) in Γ, such that 0 ≤ ij < i, for 1 ≤ j ≤ ni.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 53 / 125

Inference Systems and Proofs Basic Concepts

Soundness, Completeness

Provability ⊢Γ of F from N in Γ:
N ⊢Γ F :⇔ there exists a proof Γ of F from N.
Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . , Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 54 / 125

Inference Systems and Proofs Basic Concepts

Proofs as Trees
markings ∧

= formulas

leaves ∧
= assumptions and axioms

other nodes ∧
= inferences: conclusion ∧

= ancestor

premises ∧
= direct descendants

P(g(a, b))

P(f (a)) ∨ Q(b)

P(f (a)) ∨ Q(b) ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b)

¬P(f (a)) ∨ Q(b) ∨ Q(b)

¬P(f (a)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P(f (a)) ∨ ¬Q(b)

¬P(g(a, b))

⊥

Theorem

(i) Let Γ be sound. Then N ⊢Γ F ⇒ N |= F
(ii) N ⊢Γ F ⇒ there exist F1, . . . , Fn ∈ N s.t. F1, . . . , Fn ⊢Γ F
(resembles compactness).

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 55 / 125

The Resolution Calculus Definition

1.7 Propositional Resolution

We observe that propositional clauses and ground clauses are the
same concept.
In this section we only deal with ground clauses.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 56 / 125

The Resolution Calculus Definition

The Resolution Calculus Res

Definition
• Resolution inference rule

C ∨ A ¬A ∨ D
C ∨ D

• (positive) factorisation

C ∨ A ∨ A
C ∨ A

These are schematic inference rules; for each substitution of the
schematic variables C, D, and A, respectively, by ground clauses and
ground atoms we obtain an inference rule.
As “∨” is considered associative and commutative, we assume that A
and ¬A can occur anywhere in their respective clauses.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 57 / 125

The Resolution Calculus Examples

Sample Refutation

Example

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b) (given)
2. P(f (a)) ∨ Q(b) (given)
3. ¬P(g(b, a)) ∨ ¬Q(b) (given)
4. P(g(b, a)) (given)
5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)
6. ¬P(f (a)) ∨ Q(b) (Fact. 5.)
7. Q(b) ∨ Q(b) (Res. 2. into 6.)
8. Q(b) (Fact. 7.)
9. ¬P(g(b, a)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 58 / 125

The Resolution Calculus Examples

Resolution with Implicit Factorization RIF

C ∨ A ∨ . . . ∨ A ¬A ∨ D
C ∨ D

Example

1. ¬P(f (a)) ∨ ¬P(f (a)) ∨ Q(b) (given)
2. P(f (a)) ∨ Q(b) (given)
3. ¬P(g(b, a)) ∨ ¬Q(b) (given)
4. P(g(b, a)) (given)
5. ¬P(f (a)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)
6. Q(b) ∨ Q(b) ∨ Q(b) (Res. 2. into 5.)
7. ¬P(g(b, a)) (Res. 6. into 3.)
8. ⊥ (Res. 4. into 7.)

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 59 / 125

The Resolution Calculus Examples

Soundness of Resolution

Theorem
Propositional resolution is sound.

Proof of L. et I ∈ Σ-Alg. To be shown:
(i) for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D
(ii) for factorization: I |= C ∨ A ∨ A ⇒ I |= C ∨ A
ad (i): Assume premises are valid in I. Two cases need to be
considered:
(a) A is valid, or (b) ¬A is valid.
a) I |= A ⇒ I |= D ⇒ I |= C ∨ D
b) I |= ¬A ⇒ I |= C ⇒ I |= C ∨ D
ad (ii): even simpler.

NB: In propositional logic (ground clauses) we have:
1. I |= L1 ∨ . . . ∨ Ln ⇔ there exists i: I |= Li.
2. I |= A or I |= ¬A.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 60 / 125

Well-Founded Orderings

1.8 Well-Founded Orderings

Literature: Baader F., Nipkow, T.: Term rewriting and all that.
Cambridge U. Press, 1998, Chapter 2.
For showing completeness of resolution we will make use of the
concept of well-founded orderings. A partial ordering ≻ on a set M is
called well-founded (Noetherian) iff there exists no infinite descending
chain

a0 ≻ a1 ≻ . . .

in M.
NB: A partial ordering is transitive and irreflexive and not necessarily
total (however our orderings usually are total).
An x ∈ M is called minimal, if there is no y in M such that x ≻ y.
Notation
≺ for the inverse relation ≻−1

� for the reflexive closure (≻ ∪ =) of ≻

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 61 / 125

Well-Founded Orderings

Examples

Natural numbers. (N, >)

Lexicographic orderings. Let (M1,≻1), (M2,≻2) be well-founded
orderings. Then let their lexicographic combination

≻ = (≻1,≻2)lex

on M1 × M2 be defined as

(a1, a2) ≻ (b1, b2) :⇔ a1 ≻1 b1, or else a1 = b1 & a2 ≻2 b2

This again yields a well-founded ordering (proof below).
Length-based ordering on words. For alphabets Σ with a well-founded

ordering >Σ, the relation ≻, defined as
w ≻ w′ := α) |w| > |w′| or

β) |w| = |w′| and w >Σ,lex w′,
is a well-founded ordering on Σ∗ (proof below).

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 62 / 125

Well-Founded Orderings

Basic Properties of Well-Founded Orderings

Lemma

(M,≻) is well-founded ⇔ every ∅ ⊂ M′ ⊆ M has a minimal element.

Lemma

(Mi,≻i) well-founded , i = 1, 2 ⇔ (M1 × M2, (≻1,≻2)lex) well-founded.

Proof of (. i) “⇒”: Suppose (M1 × M2, ≻), with ≻ = (≻1,≻2)lex, is not
well-founded. Then there is an infinite sequence

(a0, b0) ≻ (a1, b1) ≻ (a2, b2) ≻

Consider A = {ai | i ≥ 0} ⊆ M1. A has a minimal element an, since
(M1,≻1) is well-founded. But then B = {bi | i ≥ n} ⊆ M2 can not have a
minimal element; contradition to the well-foundedness of (M2,≻2).
(ii) “⇐”: obvious.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 63 / 125

Well-Founded Orderings

Noetherian Induction
Let (M,≻) be a well-founded ordering.

Theorem (Noetherian Induction)

A property Q(m) holds for all m ∈ M, whenever for all m ∈ M this
implication is satisfied:

if Q(m′), for all m′ ∈ M such that m ≻ m′,a

then Q(m).b

ainduction hypothesis
binduction step

Proof of L. et X = {m ∈ M | Q(m) false}. Suppose, X 6= ∅. Since
(M,≻) is well-founded, X has a minimal element m1. Hence for all
m′ ∈ M with m′ ≺ m1 the property Q(m′) holds. On the other hand, the
implication which is presupposed for this theorem holds in particular
also for m1, hence Q(m1) must be true so that m1 can not be in X.
Contradiction.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 64 / 125

Well-Founded Orderings Multiset Orderings

Multi-Sets
Let M be a set. A multi-set S over M is a mapping S : M → N. Hereby
S(m) specifies the number of occurrences of elements m of the base
set M within the multi-set S.
m is called an element of S, if S(m) > 0. We use set notation (∈, ⊂, ⊆,
∪, ∩, etc.) with analogous meaning also for multi-sets, e.g.,

(S1 ⊎ S2)(m) = S1(m) + S2(m)

(S1 ∩ S2)(m) = min{S1(m), S2(m)}

A multi-set is called finite, if

|{m ∈ M| s(m) > 0}| < ∞,

for each m in M.
From now on we only consider finite multi-sets.
Example. S = {a, a, a, b, b} is a multi-set over {a, b, c}, where S(a) = 3,
S(b) = 2, S(c) = 0.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 65 / 125

Well-Founded Orderings Multiset Orderings

Multi-Set Orderings

Definition (≻mul)

Let (M,≻) be a partial ordering. The multi-set extension of ≻ to
multi-sets over M is defined by

S1 ≻mul S2 :⇔ S1 6= S2

and ∀m ∈ M : [S2(m) > S1(m)

⇒ ∃m′ ∈ M : (m′ ≻ m and S1(m
′) > S2(m

′))]

Theorem

a) ≻mul is a partial ordering.
b) ≻ well-founded ⇒ ≻mul well-founded
c) ≻ total ⇒ ≻mul total

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 66 / 125

Well-Founded Orderings Clause Orderings

Clause Orderings

1 We assume that ≻ is any fixed ordering on ground atoms that is
total and well-founded. (There exist many such orderings, e.g., the
lenght-based ordering on atoms when these are viewed as words
over a suitable alphabet such as ASCII.)

2 Extension to literals:

[¬]A ≻L [¬]B , if A ≻ B
¬A ≻L A

3 Extension to an ordering ≻C on ground clauses:
≻C = (≻L)mul, the multi-set extension of the literal ordering ≻L.

Notation: ≻ also for ≻L and ≻C.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 67 / 125

Well-Founded Orderings Example

Example

Example

Suppose A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0.
Order the following clauses:
¬A1 ∨ ¬A4 ∨ A3

¬A1 ∨ A2

¬A1 ∨ A4 ∨ A3

A0 ∨ A1

¬A5 ∨ A5

A1 ∨ A2

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 68 / 125

Well-Founded Orderings Example

Example

Example

Suppose A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0.
Then:

A0 ∨ A1

≺ A1 ∨ A2

≺ ¬A1 ∨ A2

≺ ¬A1 ∨ A4 ∨ A3

≺ ¬A1 ∨ ¬A4 ∨ A3

≺ ¬A5 ∨ A5

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 68 / 125

Well-Founded Orderings Stratified Clause Sets

Properties of the Clause Ordering

Theorem

1 The orderings on literals and clauses are total and well-founded.
2 Let C and D be clauses with A = max(C), B = max(D), where

max(C) denotes the maximal atom in C.
(i) If A ≻ B then C ≻ D.
(ii) If A = B, A occurs negatively in C but only positively in D, then

C ≻ D.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 69 / 125

Well-Founded Orderings Stratified Clause Sets

Stratified Structure of Clause Sets
Let A ≻ B. Clause sets are then stratified in this form:

{

{
...

...
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .
. . .

all D
where max(D) = B

all C
where max(C) = A

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 70 / 125

Well-Founded Orderings Saturated sets

Closure of Clause Sets under Res

Definition

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}
Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0
Res∗(N) =

⋃

n≥0 Resn(N)

N is called saturated (wrt. resolution), if Res(N) ⊆ N.

Theorem

(i) Res∗(N) is saturated.
(ii) Res is refutationally complete, iff for each set N of ground clauses:

N |= ⊥ ⇔ ⊥ ∈ Res∗(N)

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 71 / 125

Well-Founded Orderings Construction of Interpretations

Construction of Interpretations

Given:

set N of ground clauses, atom ordering ≻.

Wanted:
Herbrand interpretation I such that

• “many” clauses from N are valid in I;

• I |= N, if N is saturated and ⊥ 6∈ N.

Construction according to ≻, starting with the minimal clause.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 72 / 125

Well-Founded Orderings Construction of Interpretations

Construction of Interpretations

Example

Let A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0 (max. literals in red)

clauses C IC ∆C Remarks

1 ¬A0 ∅ ∅ true in IC
2 A0 ∨ A1 ∅ {A1} A1 maximal
3 A1 ∨ A2 {A1} ∅ true in IC
4 ¬A1 ∨ A2 {A1} {A2} A2 maximal
5 ¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2} {A4} A4 maximal
6 ¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A4} ∅ A3 not maximal;

min. counter-ex.
7 ¬A1 ∨ A5 {A1, A2, A4} {A5}

I = {A1, A2, A4, A5} is not a model of the clause set
⇒ there exists a counterexample.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 73 / 125

Well-Founded Orderings Construction of Interpretations

Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C, one already has a partial interpretation IC

(initially IC = ∅) available.

• If C is true in the partial interpretation IC, nothing is done.
(∆C = ∅).

• If C is false, one would like to change IC such that C becomes true.

• Changes should, however, be monotone. One never deletes
anything from IC and the truthvalue of clauses smaller than C
shouldb be maintained the way it was in IC.

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC, if A
occurs positively in C (adding A will make C become true) and if
this occurrence in C is strictly maximal in the ordering on literals
(changing the truthvalue of A has no effect on smaller clauses).

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 74 / 125

Well-Founded Orderings Construction of Interpretations

Resolution Reduces Counterexamples

Example

¬A1 ∨ A4 ∨ A3 ∨ A0 ¬A1 ∨ ¬A4 ∨ A3

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0

Construction of I for the extended clause set:
clauses C IC ∆C Remarks

¬A0 ∅ ∅
A0 ∨ A1 ∅ {A1}
A1 ∨ A2 {A1} ∅

¬A1 ∨ A2 {A1} {A2}
¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0 {A1, A2} ∅ A3 occurs twice

minimal counter-ex.
¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2} {A4}

¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A4} ∅ counterexample
¬A1 ∨ A5 {A1, A2, A4} {A5}

The same I, but smaller counterexample, hence some progress was
made.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 75 / 125

Well-Founded Orderings Construction of Interpretations

Factorization Reduces Counterexamples

Example

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0

¬A1 ∨ ¬A1 ∨ A3 ∨ A0

Construction of I for the extended clause set:
clauses C IC ∆C Remarks

¬A0 ∅ ∅
A0 ∨ A1 ∅ {A1}
A1 ∨ A2 {A1} ∅

¬A1 ∨ A2 {A1} {A2}
¬A1 ∨ ¬A1 ∨ A3 ∨ A0 {A1, A2} {A3}

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0 {A1, A2, A3} ∅ true in IC
¬A1 ∨ A4 ∨ A3 ∨ A0 {A1, A2, A3} ∅

¬A1 ∨ ¬A4 ∨ A3 {A1, A2, A3} ∅ true in IC
¬A3 ∨ A5 {A1, A2, A3} {A5}

The resulting I = {A1, A2, A3, A5} is a model of the clause set.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 76 / 125

Well-Founded Orderings Formal Model Construction

Construction of Candidate Models Formally

Definition

Let N,≻ be given. We define sets IC and ∆C for all ground clauses C
over the given signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=

{A}, if C ∈ N, C = C′ ∨ A, A ≻ C′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate model for N (wrt. ≻) is given as I≻N :=
⋃

C ∆C.
We also simply write IN , or I, for I≻N if ≻ is either irrelevant or known
from the context.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 77 / 125

Well-Founded Orderings Formal Model Construction

Structure of N,≻
Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
...

...
≺

possibly productive

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .
. . .

all D
with max(D) = B

all C
with max(C) = A

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 78 / 125

Well-Founded Orderings Formal Model Construction

Some Properties of the Construction
Theorem

(i) C = ¬A ∨ C′ ⇒ no D � C produces A.
(ii) C productive ⇒ IC ∪ ∆C |= C.
(iii) Let D′ ≻ D � C. Then

ID ∪ ∆D |= C ⇒ ID′ ∪ ∆D′ |= C and IN |= C.

If, in addition, C ∈ N or max(D) ≻ max(C):

ID ∪ ∆D 6|= C ⇒ ID′ ∪ ∆D′ 6|= C and IN 6|= C.

(iv) Let D′ ≻ D ≻ C. Then

ID |= C ⇒ ID′ |= C and IN |= C.

If, in addition, C ∈ N or max(D) ≻ max(C):

ID 6|= C ⇒ ID′ 6|= C and IN 6|= C.Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 79 / 125

Well-Founded Orderings The Main Theorem

Model Existence Theorem

Theorem (Bachmair, Ganzinger 1990)

Let ≻ be a clause ordering, let N be saturated wrt. Res, and suppose
that ⊥ 6∈ N. Then I≻N |= N.

Proof of S. uppose ⊥ 6∈ N, but I≻N 6|= N. Let C ∈ N minimal (in ≻) such
that I≻N 6|= C. Since C is false in IN , C is not productive. As C 6= ⊥ there
exists a maximal atom A in C.
Case 1: C = ¬A ∨ C′ (i.e., the maximal atom occurs negatively)
⇒ IN |= A and IN 6|= C′

⇒ some D = D′ ∨ A ∈ N produces A. As D′∨A ¬A∨C′

D′∨C′ , we infer that
D′ ∨ C′ ∈ N, and C ≻ D′ ∨ C′ and IN 6|= D′ ∨ C′

⇒ contradicts minimality of C.
Case 2: C = C′ ∨ A ∨ A. Then C′∨A∨A

C′∨A yields a smaller counterexample
C′ ∨ A ∈ N. Contradiction.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 80 / 125

Well-Founded Orderings The Main Theorem

Model Existence Theorem

Theorem (Bachmair, Ganzinger 1990)

Let ≻ be a clause ordering, let N be saturated wrt. Res, and suppose
that ⊥ 6∈ N. Then I≻N |= N.

Corollary

Let N be saturated wrt. Res. Then N |= ⊥ ⇔ ⊥ ∈ N.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 81 / 125

Compactness of Propositional Logic

Compactness of Propositional Logic

Theorem (Compactness)

Let N be a set of propositional formulas. Then N unsatisfiable if, and
only if, there exists M ⊆ N, with |M| < ∞, and M unsatisfiable.

Proof of .
“⇐”: trivial.

“⇒”: Let N be unsatisfiable.

⇒ Res∗(N) unsatisfiable
⇒ (completeness of resolution) ⊥ ∈ Res∗(N)
⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)
⇒ ⊥ has a finite resolution proof P;

choose M as the set of assumptions in P.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 82 / 125

General Resolution

General Resolution through Instantiation
(We use RIF, resolution with implicit factorisation.) Observe that (i)
upon instantiation two literals in a clause can become equal; and (ii)
generally more than one instance of a clause participate in a proof.

P(x) ∨ P(f (a)) ∨ ¬Q(z) ¬P(y) P(g(x′, x)) ∨ Q(x)

P(f (a)) ∨ P(f (a)) ∨ ¬Q(z) ¬P(f (a))¬P(g(b, x)) P(g(b, x)) ∨ Q(x)

¬Q(z)

¬Q(a)

Q(x)

Q(a)

⊥

[f (a)/x]

[a/z]

[f (a)/y] [g(b, x)/y] [b/x′]

[a/x]

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 83 / 125

General Resolution Lifting Principle

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise
from taking the (ground) instances of finitely many
general clauses (with variables) effective and efficient.

Idea (Robinson 65): • Resolution for general clauses
• Equality of ground atoms is generalized to unifiability

of general atoms
• Only compute most general (minimal) unfiers

Significance: The advantage of the method in (Robinson 65)
compared with (Gilmore 60) is that unification enumerates
only those instances of clauses that participate in an
inference. Moreover, clauses are not right away
instantiated into ground clauses. Rather they are
instantiated only as far as required for an inference.
Inferences with non-ground clauses in general represent
infinite sets of ground inferences which are computed
simultaneously in a single step.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 84 / 125

General Resolution Lifting Principle

Resolution for General Clauses

General binary resolution Res:

C ∨ A D ∨ ¬B
(C ∨ D)σ

if σ = mgu(A, B) [resolution]

C ∨ A ∨ B
(C ∨ A)σ

if σ = mgu(A, B) [factorization]

General resolution RIF with implicit factorization:

C ∨ A1 ∨ . . . ∨ An D ∨ ¬B
(C ∨ D)σ

if σ = mgu(A1, . . . , An, B)

We additionally assume that the variables in one of the two premises
of the resolutions rule are (bijectively) renamed such that they become
different to any variable in the other premise. We do not formalize this.
Which names one uses for variables is otherwise irrelevant.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 85 / 125

General Resolution Unification

Unification

Definition

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si, ti terms or atoms) a multi-set of

equality problems. A substitution σ is called a unifier of E :⇔

∀1 ≤ i ≤ n : siσ = tiσ.

If a unifier exists, E is called unifiable. If a unifier of E is more general
than any other unifier of E, then we speak of a most general unifier
(mgu) of E. Hereby a substitution σ is called more general than a
substitution τ

σ ≤ τ :⇔ there exists a substitution ̺ s.t. ̺ ◦ σ = τ

where (̺ ◦ σ)(x) := (xσ)̺ is the composition of σ and ̺ als mappings.4

4Note that ̺ ◦ σ has a finite domain as required for a substitution.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 86 / 125

General Resolution Unification

Unification

Theorem

(Exercise)

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.
(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and xτ are
equal up to (bijective) variable renaming, for any x in X.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 87 / 125

General Resolution Unification

Unification after Martelli/Montanari

t
.
= t, E ⇒MM E

f (s1, . . . , sn)
.
= f (t1, . . . , tn), E ⇒MM s1

.
= t1, . . . , sn

.
= tn, E

f (. . .)
.
= g(. . .), E ⇒MM ⊥

x
.
= t, E ⇒MM x

.
= t, E[t/x]

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒MM ⊥

if x 6= t, x ∈ var(t)

t
.
= x, E ⇒MM x

.
= t, E

if t 6∈ X

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 88 / 125

General Resolution Unification

MM: Main Properties
A substutition σ is called idempotent, if σ ◦ σ = σ.

Theorem

σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

If E = x1
.
= u1, . . . , xk

.
= uk, with xi pw. distinct, xi 6∈ var(uj), then E is

called an (equational problem in) solved form representing the solution
σE = [u1/x1, . . . , uk/xk].

Theorem

If E is a solved form then σE is am mgu of E.

Theorem

1 If E ⇒MM E′ then σ unifier of E iff σ unfier of E′

2 If E
∗

⇒MM ⊥ then E is not unifiable.

3 If E
∗

⇒MM E′, with E′ a solved form, then σE′ is an mgu of E.

Proof of (. 1) We have to show this for each of the rules. Let’s treat the caseRuzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 89 / 125

General Resolution Unification

Main Unification Theorem

Theorem

E unifiable ⇔ there exists a most general unifier σ of E, such that σ is
idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Notation: σ = mgu(E)
Problem: exponential growth of terms possible

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 90 / 125

General Resolution Unification

Proof of the Unification Theorem
• Systems E irreducible wrt. ⇒MM are either ⊥ or a solved form.
• ⇒MM is Noetherian. A suitable lexicographic ordering on the

multisets E (with ⊥ minimal) shows this. Compare in this order:
1. the number of defined variables (d.h. variables x in equations

x
.
= t with x 6∈ var(t)), which also occur outside their definition

elsewhere in E;
2. the multi-set ordering induced by (i) the size (number of

symbols) in an equation; (ii) if sizes are equal consider x
.
= t

smaller than t
.
= x, if t 6∈ X.

• Therefore, reducing any E by MM with end (no matter what
reduction strategy we apply) in an irreducible E′ having the same
unifiers as E, and we can read off the mgu (or non-unifiability) of E
from E′ (Theorem 41, Proposition 40).

• σ is idempotent because of the substitution in rule 4.
dom(σ) ∪ codom(σ) ⊆ var(E), as no new variables are generated.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 91 / 125

General Resolution Lifting Lemma

Lifting Lemma

Lemma

Let C and D be variable-disjoint clauses. If

C

y σ

Cσ

D

y ̺

D̺

C′
[propositional resolution]

then there exists a substitution τ such that

C D
C′′

y τ

C′ = C′′τ

[general resolution]

Same for factorization.
Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 92 / 125

General Resolution Saturation of Sets of General Clauses

Saturation of Sets of General Clauses
Corollary

Let N be a set of general clauses saturated unter Res, i.e., Res(N) ⊆ N.
Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

Proof of W. olog we may assume that clauses in N are pairwise
variable-disjoint. (Otherwise make them disjoint, and this renaming
process does neither change Res(N) nor GΣ(N).)
Let C′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable ground
instances Cσ and D̺ of N with resolvent C′, or else (ii) C′ is a factor of
a ground instance Cσ of C.
Ad (i): By the Lifting Lemma, C and D are resolvable with a resolvent
C′′ with C′′τ = C′, for a suitable substitution τ . As C′′ ∈ N by
assumption, we obtain that C′ ∈ GΣ(N).
Ad (ii): Similar.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 93 / 125

General Resolution Herbrand’s Theorem

Herbrand’s Theorem

Theorem (Herbrand)

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model over Σ

Proof of “ ⇐”. trivial
“⇒”

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res∗(N))

⇒ IGΣ(Res∗(N)) |= GΣ(Res∗(N)) (Theorem 34; Corollary 44)

⇒ IGΣ(Res∗(N)) |= Res∗(N) (I is a Herbrand model)

⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N))

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 94 / 125

General Resolution Theorem of Löwenheim-Skolem

The Theorem of Löwenheim-Skolem

Theorem (Löwenheim-Skolem)

Let Σ be a countable signature and let S be a set of closed Σ-formulas.
Then S is satisfiable iff S has a model over a countable universe.

Proof of S. et S can be at most countably infinite if both X and Σ are
countable. Now generate, maintaining satisfiability, a set N of clauses from S.
This extends Σ by at most countably many new Skolem functions to Σ′. As Σ′

is countable, so is TΣ′ , the universe of Herbrand-interpretations over Σ′. Now
apply Thereom 45.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 95 / 125

General Resolution Main Theorem

Refutational Completeness of General Resolution

Theorem

Let N be a set of general clauses where Res(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof of L. et Res(N) ⊆ N. By Corollary 44: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Theorem 45)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 96 / 125

General Resolution Compactness

Compactness of Predicate Logic

Theorem (Compactness Theorem for First-Order Logic)

Let Φ be a set of first-order Formulas. Φ unsatisfiable ⇔ there exists
Ψ ⊆ Φ, |Ψ| < ∞, Ψ unsatisfiable.

Proof of .
“⇐”: trivial.

“⇒”: Let Φ be unsatisfiable and let N be the set of clauses obtained by
Skolemization and CNF transformation of the formulas in Φ.

⇒ Res∗(N) unsatisfiable
⇒ (Thm 47) ⊥ ∈ Res∗(N)
⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)
⇒ ⊥ has finite resolution proof B of depth ≤ n.

Choose Ψ als the subset of formulas in Φ such that the corresponding
clauses contain the assumptions (leaves) of B.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 97 / 125

Unification

Complexity of Unification
Literature:

1. Paterson, Wegman: Linear Unification, JCSS 17, 348-375 (1978)
2. Dwork, Kanellakis, Mitchell: On the sequential nature of

unification, Journal Logic Prog. 1, 35-50 (1984)
3. Baader, Nipkow: Term rewriting and all that. Cambridge U. Press

1998, Capter 4.8

Theorem (Paterson, Wegman 1978)

Unifiability is decidable is in linear time. A most general unifiers can be
computed sind in linearer time.

Theorem (Dwork, Kanellakis, Mitchell 1984)

Unifiability is log-space complete for P, that is, every problem in P can
be reduced in log space to a unifiability problem.

As a consequence, unifiability can, most probably, not be efficiently
parallelized.
Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 98 / 125

Unification

Acyclic Term Graphs

Terms and term
sets as marked,
ordered, acyclic

graphs; each
variable appears

at most once

gg

gggg

gg

g

f

f

ffff
f

ff

f f

f

hh

x

x

x

x

x

x

y

y

z

z g1

g2

1

1

11

1 1 1 1

1

111 1

1

1
1

1
1

11

1

1

2

2

2 222

22

2
2

2

2

2

3

3

4
4

(a) (b) (c)

(d)

(e)

(f)

. . .

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 99 / 125

Unification

Propagation of Equality Constraints
Since variables occur at most once they don’t appear as markings m(u)
⇒ binding table.

...

...

...

...

A B

C
D E F G

H
I J K

L M

hh

gg

g g g g

x

y

z

a

b

conflict

11 22 3
3

44

Rules (modulo symmetry of .

=) for propagation of .

= in G:

u
.

= v ⇒ u.i
.

= v.i, 1 ≤ i ≤ arity(u)
u

.

= v, v
.

= w ⇒ u
.

= w
m(u) 6= m(v) ⇒ ⊥ (not unifiable)

If G/
.

= contains a cycle (through oriented term-subterm edges) ⇒ not
unifiable.
(Otherwise a term would have to be unified with a proper subterm of itself.)
Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 100 / 125

Unification

Another Example
problem h(x, x, y, z)

.
= h(g(y), g(g(z)), g(g(a)), g(a))

after propagation:

...

...

...

...

A B

C
D E F G

H
I J

K

L M

hh

gg

g g g g

x

y

z

a

a

11 22 3
3

44

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 101 / 125

Unification

After Forming the Quotient

...

h

g

g

gx

y

z

a

1

2

3
4

the quotient graph is cycle-free
⇒ [g(g(g(a)))/x, g(g(a))/y, g(a)/z] is a mgu.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 102 / 125

Unification

Analysis

For a unification problem with term graph of size n we obtain without
much effort these complexity bounds:

• additional space in O(log2n)

• runtime in O(n3)

In fact, at most n2 edges can be generated by propagation, and each
of those requires time O(n) for a reachability test. For the quotient we
have to compute the strongly connected components and then do the
cycle test. This is both possible in time linear in the size of the graph,
that is, in O(n2).

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 103 / 125

Unification

Matching

Let s, t be terms or atoms.
s matches t :
s ≤ t :⇔ there exists a substitution σ s.t. sσ = t
(σ is called a matching substitution.)
s ≤ t ⇒ σ = mgu(s, t), if var(t) ∩ var(s) = ∅.

Theorem (Dwork, Kanellakis, Mitchell 1984)

Matching can be efficiently parallelized.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 104 / 125

Ordered Resolution with Selection

1.9 Ordered Resolution with Selection

Motivation: Search space for Res very large. Idea for improvement:
1. In the completeness proof (Model Existence Theorem 34) one only

needs to resolve and factor maximal atoms ⇒ order restrictions
2. Choice of negative literals don’t-care ⇒ selection

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 105 / 125

Ordered Resolution with Selection

Resolution Calculus Res≻S
Let ≻ be an atom ordering and S a selection function. A literal L is
called [strictly] maximal wrt. a clause C :⇔ there exists a ground
substitution σ such that for all L′ in C: Lσ � L′σ [Lσ ≻ L′σ].

C ∨ A ¬B ∨ D
(C ∨ D)σ

[ordered resolution with selection]

if σ = mgu(A, B) and
(i) Aσ strictly maximal wrt. Cσ;
(ii) nothing is selected in C by S;
(iii) either ¬B is selected,
or else nothing is selected in ¬B ∨ D and ¬Bσ is maximal wrt. Dσ.

C ∨ A ∨ B
(C ∨ A)σ

[ordered factoring]

if σ = mgu(A, B) and Aσ is maximal wrt. Cσ and nothing is selected in
C.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 106 / 125

Ordered Resolution with Selection

Special Case: Propositional Logic

For ground clauses the resolution inference simplifies to

C ∨ A D ∨ ¬A
C ∨ D

if
(i) A ≻ C;
(ii) nothing is selected in C by. S;
(iii) ¬A is selected in D ∨ ¬A,
or else nothing is selected in D ∨ ¬A and ¬A � max(D).

NB: For positive literals, A ≻ C is the same as A ≻ max(C).

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 107 / 125

Ordered Resolution with Selection

Search Spaces Become Smaller

1) A ∨ B
2) A ∨ ¬B
3) ¬A ∨ B
4) ¬A ∨ ¬B
5) B ∨ B 1&3
6) B 5
7) ¬A 6&4
8) A 6&2
9) ⊥ 8&7

we assume A ≻ B and
S as indicated by X ;
the maximal atom in a
clause is depicted in
red.

With this ordering and selection function the refutation proceeds strictly
deterministinally in this example. Generally, proof search will still be
non-deterministic but the search space will be much smaller than with
unrestricted resolution.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 108 / 125

Ordered Resolution with Selection

Avoiding Rotation Redundancy
From

C1 ∨ A C2 ∨ ¬A ∨ B
C1 ∨ C2 ∨ B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨ A
C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations are
possible. However, if A ≻ B, then the second proof does not fulfill the
orderings restrictions.
Conclusion: In the presence of orderings restrictions (however one
chooses ≻) no rotations are possible. In other words, orderings identify
exactly one representant in any class of of rotation-equivalent proofs.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 109 / 125

Ordered Resolution with Selection Lifting Lemma

Lifting-Lemma for Res≻S
Lemma

C

y σ

Cσ

D

y ρ

Dρ

C′
[propositional inference in Res≻S]

and S(Cσ) ≃ S(C), S(Dρ) ≃ S(D) (that is, “corresponding” literals are
selected), implies that there exists a substitution τ such that

C D
C′′

y τ

C′ = C′′τ

[Inference in Res≻S]

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 110 / 125

Ordered Resolution with Selection Lifting Lemma

Saturation of General Clause Sets

Theorem

Let N be a set of general clauses saturated under Res≻S , i.e.
Res≻S (N) ⊆ N. Then there exists a selection function S′ such that
S|N = S′|N and GΣ(N) is also saturated, i.e.,

Res≻S′(GΣ(N)) ⊆ GΣ(N).

Proof of W. e first define the selection function S′ such that
S′(C) = S(C) for all clauses C ∈ GΣ(N) ∩ N, and for C ∈ GΣ(N) \ N we
choose a fixed but arbitrary clause D ∈ N mit C ∈ GΣ(D) and define
S′(C) to be those occurrences of literals which are the ground
instances of the occurrences selected by S in D.
The rest of the proof proceeds as in the proof of Corollary 44 using the
above lifting lemma.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 111 / 125

Ordered Resolution with Selection Soundness and Refutational Completeness

Soundness and Refutational Completeness

Theorem

Let ≻ be an atom ordering and S a selection function such that
Res≻S (N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof of “ ⇐”. trivial
“⇒”
(i) propositional level: construction of a candidate model IN as for

unrestricted resolution, except that clauses C in N that have selected
literals are not productive, even when they are false in IC and when
their maximal atom occurs only once and positively.
(ii) general clauses: (i) + Corollary 53.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 112 / 125

Ordered Resolution with Selection Craig-Interpolation

Craig-Interpolation

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem (Craig 57)

Let F and G be two propositional formulas such that F |= G. Then
there exists a formula H (called the interpolant for F |= G), such that H
contains only prop. variables occurring both in F and in G, and such
that F |= H and H |= G.

Proof of T. ranslate F and ¬G into CNF. let N and M, resp., denote the
resulting clause set. Choose an atom ordering ≻ for which the prop. variables
that occur in F but not in G are maximal. Saturate N into N∗ wrt. Res≻S with an
empty selection function S . Then saturate N∗ ∪ M wrt. Res≻S to derive ⊥. As
N∗ is already saturated, due to the ordering restrictions only inferences need
to be considered where premises, if they are from N∗, only contain symbols
that also occur in G. The conjunction of these premises is an interpolant H.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 113 / 125

Ordered Resolution with Selection Craig-Interpolation

Craig-Interpolation

A theoretical application of ordered resolution is Craig-Interpolation:

Theorem (Craig 57)

Let F and G be two propositional formulas such that F |= G. Then
there exists a formula H (called the interpolant for F |= G), such that H
contains only prop. variables occurring both in F and in G, and such
that F |= H and H |= G.

The theorem also holds for first-order formulas. For universal formulas the
above proof can be easily extended. In the general case, a proof based on
resolution technology is more complicated because of Skolemization.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 114 / 125

Ordered Resolution with Selection Craig-Interpolation

Global Redundancy: Rules for Simplifications and
Deletion
Redundancy

• many proof attempts cannot be completed to proofs:
dead ends in proof search

• one proof attempt may subsume another one
Rules for simplification of TP states N (that we would like to employ)

• Deletion of tautologies

N ∪ {C ∨ A ∨ ¬A} ⊲ N

• Deletion of subsumed clauses

N ∪ {C, D} ⊲ N ∪ {C}

if Cσ ⊆ D (C subsumes D), and Cσ 6= D
(subsumption is strict).

• Reduction (also called subsumption resolution)

N ∪ {C ∨ L, D ∨ Cσ ∨ Lσ} ⊲ N ∪ {C ∨ L, D ∨ Cσ}

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 115 / 125

Resolution Prover RP

Resolution Prover RP

3 clause sets: N(ew) containing new resolvents
P(rocessed) containing simplified resolvents
clauses get into O(ld) once their inferences have been
computed

Strategy: Inferences will only be computed when there are no
possibilites for simplification

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 116 / 125

Resolution Prover RP Transition Rules for RP

Transition Rules for RP

Tautology elimination
NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP | OOO

if C is a tautology
Forward subsumption
NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP | OOO

if some D ∈ PPP ∪OOO subsumes C
Backward subsumption
NNN ∪ {C} | PPP ∪ {D} | OOO ⊲ NNN ∪ {C} | PPP | OOO
NNN ∪ {C} | PPP | OOO ∪ {D} ⊲ NNN ∪ {C} | PPP | OOO

if C strictly subsumes D
Forward reduction
NNN ∪ {C ∨ L} | PPP | OOO ⊲ NNN ∪ {C} | PPP | OOO

if there exists D ∨ L′ ∈ PPP ∪OOO such that L = L′σ and Dσ ⊆ C

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 117 / 125

Resolution Prover RP Transition Rules for RP

Transition Rules for RP (II)

Backward reduction
NNN | PPP ∪ {C ∨ L} | OOO ⊲ NNN | PPP ∪ {C} | OOO
NNN | PPP | OOO ∪ {C ∨ L} ⊲ NNN | PPP ∪ {C} | OOO

if there exists D ∨ L′ ∈ NNN such that L = L′σ and Dσ ⊆ C
Clause processing
NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP ∪ {C} | OOO
Inference computation
∅ | PPP ∪ {C} | OOO ⊲ NNN | PPP | OOO ∪ {C}, mit NNN = Res≻S (OOO ∪ {C})

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 118 / 125

Resolution Prover RP Transition Rules for RP

Soundness and Completeness

Theorem

N |= ⊥ ⇔ N | ∅ | ∅
∗
⊲ N′ ∪ {⊥} | _ | _

Proof in
L. Bachmair, H. Ganzinger: Resolution Theorem Proving
appeared in the Handbook on Automated Theorem Proving, 2001
Basis for the completeness proof is a formal notion of redundancy as
defined subsequently.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 119 / 125

Resolution Prover RP Redundancy

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not
necessarliy in N).

C is called redundant in N :⇔ there exists C1, . . . , Cn ∈ N, n ≥ 0 :

Ci ≺ C and C1, . . . , Cn |= C

Redundancy for general clauses:
C is called redundant in N :⇔ Cσ redundant in GΣ(N),

for all ground instances Cσ of C
Intuition: Redundant clauses are no minimal counterexamples for any
interpretation.
NB: The same ordering ≻ is used both for ordering restrictions and for
redundancy.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 120 / 125

Resolution Prover RP Redundancy

Examples of Redundancy

Theorem

• C tautology (i.e., |= C) ⇒ C redundant in any set N.

• Cσ ⊂ D ⇒ D redundant in N ∪ {C}
(stricta Subsumption: N ∪ {C, D} ⊲ N ∪ {C})

• Cσ ⊆ D ⇒ D ∨ Lσ redundant in N ∪ {C ∨ L, D}

An application of the latter is reduction (subsumption
resolution) in RP

acf. RP for cases when clauses can be deleted even if subsumption is not strict.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 121 / 125

Resolution Prover RP Redundancy

Saturation up to Redundancy
N is called saturated up to redundancy (wrt. Res≻S)

:⇔ Res≻S (N \ Red(N)) ⊆ N ∪ Red(N)

Theorem

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof of [. Sketch]
(i) Ground case:

• consider the construction of the candidate model I≻N for Res≻S
• redundant clauses are not productive
• redundant clauses in N are not minimal counterexamples for I≻N

The premises of “essential” inferences are either minimal
counterexamples or productive.
(ii) Lifting: no additional problems over the proof of Theorem 54.
Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 122 / 125

Resolution Prover RP Redundancy

Monotonicity Properties of Redundancy

Theorem

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)
(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \ M)

Proof: Exercise.
We conclude that redundancy is preserved when, during a theorem
proving process, one adds (derives) new clauses or deletes redundant
clauses.
The theorems 59 and 60 are the basis for the completeness proof of
our prover RP.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 123 / 125

Hyperresolution

Hyperresolution (Robinson 65)

We define an improved version of hyperresolution with ordering restrictions
and selection. As for Res the calculus is parameterized by an atom ordering ≻
and a selection function S.

C1 ∨ A1 . . . Cn ∨ An ¬B1 ∨ . . . ∨ ¬Bn ∨ D
(C1 ∨ . . . ∨ Cn ∨ D)σ

with σ = mgu(A1
.

= B1, . . . , An
.

= Bn), if
(i) Aiσ strictly maximal wrt. Ciσ, 1 ≤ i ≤ n;
(ii) nothing is selected in Ci;
(iii) the indicated occurrences of the ¬Bi are exactly the ones selected by S,
or else nothing is selected in the right premise and n = 1 and ¬B1σ is
maximal wrt. Dσ.
HR needs to be complemented by a factoring inference as for Res≻S .

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 124 / 125

Hyperresolution

Hyperresolution (ctnd)

Hyperresolution can be simulated by iterated binary resolution.
However this yields intermediate clauses which HR might not derive,
and many of them might not be extendable into a full HR inference.
There are many more variants of resolution.
We refer to [Bachmair, Ganzinger: Resolution Theorem Proving] for
further reading.

Ruzica Piskac Lecture 2: First-Order Logic - Syntax, Semantics, Resolution 125 / 125

	Introduction
	Syntax
	From a Signature to Formulas
	Example
	Variables
	Substitutions
	Semantics
	Structures
	Assignments
	Truth Values of Formulas
	Example
	Models, Validity, and Satisfiability
	Definitions
	Substitution Lemma
	Properties
	Theories
	Algorithmic Problems
	Decidable Fragments
	Normal Forms, Skolemization, Herbrand Models
	Skolemization
	Normal Forms
	Herbrand Models

	Inference Systems and Proofs
	Basic Concepts

	The Resolution Calculus
	Definition
	Examples

	Well-Founded Orderings
	Multiset Orderings
	Clause Orderings
	Example
	Stratified Clause Sets
	Saturated sets
	Construction of Interpretations
	Formal Model Construction
	The Main Theorem

	Compactness of Propositional Logic
	General Resolution
	Lifting Principle
	Unification
	Lifting Lemma
	Saturation of Sets of General Clauses
	Herbrand's Theorem
	Theorem of Löwenheim-Skolem
	Main Theorem
	Compactness

	Unification

	Ordered Resolution with Selection
	Lifting Lemma
	Soundness and Refutational Completeness
	Craig-Interpolation

	Resolution Prover RP
	Transition Rules for RP
	Redundancy

	Hyperresolution

