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Constraint logic programming

I Problem: designing programming systems to reason with and
about constraints.

I CLP is a class of programming languages based on:
I Constraint solving
I The logic programming paradigm



Constraint programming

I Sketchpad (1963)

Interactive drawing system using static constraints



Logic programming paradigm

An example program in pure Prolog:

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

We can perform the query:

?- sibling(sally, erica).

Yes



CLP(X ) framework

I The CLP(X ) framework [JL87] is a scheme where X can be
instantiated with a suitable domain of discourse, such as R,
the algebraic structure consisting of uninterpreted functors
over real numbers [JMSY92].



Structure of CLP(R) programs

I Arithmetic terms:
I Real constants and variables are arithmetic terms
I If t1 and t2 are terms, then (t1 + t2), (t1 − t2), (t1 ∗ t2) are also

arithmetic terms

I Terms:
I Uninterpreted constants, arithmetic terms and variables are

terms
I If f is an n-ary uninterpreted functor and t1, . . . , tn are terms,

then f (t1, . . . , tn) is a term

I Constraints:
I If t1 and t2 are arithmetic terms, then t1 = t2, t1 < t2 and

t1 ≤ t2 are constraints
I If not both t1 and t2 are arithmetic terms, then only t1 = t2 is

a constraint



Structure of CLP(R) programs (2)

I An atom is of the form

p(t1, t2, . . . , tn)

where p is a predicate symbol and t1, . . . , tn are terms.

I A rule is of the form

A0 : − α1, α2, . . . , αk .

where each αi , 1 ≤ i ≤ k is either a constraint or an atom.

I A CLP(R) program is a finite collection of rules.



CLP by example

The following program defines the relation sumto(n, s) where

s =
∑

1≤i≤n
i

for natural numbers n.

sumto(0,0).

sumto(N,S) :- N >= 1, N <= S, sumto(N-1,S-N).



CLP by example (2)

sumto(0,0).

sumto(N,S) :- N >= 1, N <= S, sumto(N-1,S-N).

I The query S <= 3, sumto(N, S) gives rise to three answers:
(N = 0,S = 0), (N = 1, S = 1), (N = 2, S = 3).

I Computation sequence for (N = 2, S = 3):

S ≤ 3, sumto(N,S).

S ≤ 3,N = N1, S = S1,N1 ≥ 1,N1 ≤ S1,

sumto(N1 − 1, S1 − N1).

S ≤ 3,N = N1, S = S1,N1 ≥ 1,N1 ≤ S1,

N1 − 1 = N2, S1 − N1 = S2,N2 ≥ 1,N2 ≤ S2

sumto(N2 − 1, S2 − N2).

S ≤ 3,N = N1,S = S1,N1 ≥ 1,N1 ≤ S1,

N1 − 1 = N2, S1 − N1 = S2,N2 ≥ 1,N2 ≤ S2

N2 − 1 = 0, S2 − N2 = 0.



Comparison to logic programming

I Can the power of CLP be obtained by making simple changes
to LP systems [JM94]?

I In other words, can predicates in LP be regarded as
meaningful constraints?

add(0, N, N).

add(S(N), M, S(K)) :- add(N, M, K)

I The query add(N, M, K), add(N, M, S(K)) runs forever in
a conventional LP system:

I A global test for the satisfiability of the two add constraints is
not done by the LP machinery.
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Davis-Putnam-Logemann-Loveland (DPLL)

I DPLL is a decision procedure for the boolean satisfiability
problem

I Modern DPLL-based SAT solvers feature:
I unit propagation
I heuristics for selecting decision variables
I 2-literal watching
I clause learning
I backjumping



Solvers for quantifier-free theories

Given a quantifier-free theory T , a T -solver decides the
satisfiability of finite sets of atoms of T .



Decision procedures for quantifier-free theories

I Decide a boolean combination Φ of atoms of T by combining
a SAT solver with a T -solver.

I Transform Φ into Φ0 by replacing atoms φ1 . . . φt with
propositional variables p1 . . . pt

I A valuation b for Φ0 is a mapping from propositional variables
to {0, 1}

I Define set of atoms Γb such that:
I Γb = {γ1 . . . γt}
I γi = φi if b(pi ) = 1
I γi = ¬φi if b(pi ) = 0

I Φ is satisfiable if there exists b that satisfies Φ0 and such that
Γb is consistent in T .



DPLL(T )

I DPLL(T ) is a framework which leverages the DPLL procedure
and a T -solver.

I Solver must support:
I updating the state by asserting new atoms
I checking consistency of current state
I backtracking
I producing explanations for conflicts (an inconsistent subset of

atoms asserted in current state)

I Solver can optionally implement theory propagation, but:
I it must produce an explanation Γ for an implied atom γ, where

Γ is a subset of atoms asserted in current state such that
Γ |= γ.



DPLL(T ) example

Consider the following simple example formula Φ in quantifier-free
linear arithmetic:

(x + y ≥ 1 ∨ x + y ≤ −5) ∧ (x = −1) ∧ (y = −2)



Conventions

In the following, we assume that:

I The solver is initialized for a fixed formula Φ

I A denotes the set of atoms occurring in Φ

I α denotes the set of atoms asserted so far.



Interface for T -solver

We assume that the following API is implemented by the solver:
I Assert(γ): assert atom γ in current state.

I if it returns ok , γ is inserted into α
I if it returns unsat(Γ), α ∪ {γ} is inconsistent and Γ ⊆ α is an

explanation.

I Check(): check whether α is consistent
I if it returns ok , α is consistent, and a new checkpoint is

created.
I if it returns unsat(Γ), α is inconsistent and Γ ⊆ α is an

explanation

I Backtrack(): backtrack to the last checkpoint
I Propagate(): perform theory propagation

I it returns a set {〈Γ1, γ1〉, . . . , 〈Γt , γt〉} where Γi ⊆ α and
γi ∈ A \ α, such that Γi |= γi for 1 ≤ i ≤ t.



Remarks on the interface for T -solver

I Assert(γ) must be sound but need not be complete: it can
return ok even if α ∪ {γ} is inconsistent.

I Check() must be sound and complete.

=⇒ Several atoms can be asserted in a single “batch”



Quantifier-free linear arithmetic

A quantifier-free linear arithmetic formula is a first-order formula
with atoms:

I either propositional variables

I or of the form
a1x1 + . . .+ anxn ./ b

where a1, . . . , an and b are rational numbers, x1, . . . , xn are
real (or integer variables), and ./∈ {=,≤, <,>,≥, 6=}.



Linear-arithmetic solvers for DPLL(T )

Common approach: solvers based on incremental versions of the
Simplex method

I Implemented in Yices, Simplics, MathSat

I Solver state includes a Simplex tableau derived from assertions

I The tableau can be seen as a set of equalities

xi = bi +
∑
xj∈B

aijxj , xi ∈ N

where B and N are disjoints sets of basic and non-basic
variables.

I Additional constraints are imposed, such as non-negativity of
slack variables



Incremental Simplex method: pivoting

I Pivot(xr , xs): swap basic variable xr and non-basic variable
xs such that ars 6= 0, by replacing

xr = br +
∑
xj∈N

arjxj

with

xs = − br

ars
+

xr
ars
−

∑
xj∈N\{xs}

arjxj
ars

and eliminating xs from the rest of tableau by substitution.



Incremental Simplex method operations

I To assert an atom γ of the form t ≥ 0:
I Normalize γ by substituting in t basic variables by non-basic

ones.
I Check whether resulting atom t ′ ≥ 0 is satisfiable by

maximizing t ′ using the tableau.

I Asserting equalities and strict inequalities follow same principle
I To backtrack:

I Remove rows from the tableau



Performance issues in incremental Simplex solvers

Asserting and backtracking have significant cost, due to:

I pivoting in assertions

I frequent addition and removal of rows

I frequent creation and deletion of slack variables



Important remarks for performance

I Generating minimal explanations is critical

I Theory propagation must be done cheaply:
Full propagation is too expensive, heuristic propagation is
superior

I Zero detection is expensive
=⇒ Convert t 6= 0 into (t > 0) ∨ (t < 0)



A different solver for linear arithmetic

We now proceed to describe a solver for linear arithmetic [DdM06]
with the following properties:

I It is still based on the Simplex method

I It reduces the overhead of the incremental Simplex approach



Preprocessing

Idea: avoid incremental Simplex methods by rewriting formula Φ
into an equisatisfiable formula ΦA ∧ Φ′, where:

I ΦA is a conjunction of linear equalities

I All atoms of Φ′ are elementary, i.e. of the form

y ./ b

where y is a variable, b is a rational constant, and
./∈ {=,≤, <,>,≥}.



Example transformation

Let Φ be the following formula:

x ≥ 0 ∧
(x + y ≤ 2 ∨ x + 2y − z ≥ 6)

∧(x + y = 2 ∨ x + 2y − z > 4)

Introducing variables s1 and s2, it is rewritten to ΦA ∧ Φ′ as:

(s1 = x + y ∧ s2 = x + 2y − z) ∧
(x ≥ 0 ∧ (s1 ≤ 2 ∨ s2 ≥ 6) ∧ (s1 = 2 ∨ s2 > 4))



Properties of the rewritten formula

I Formula ΦA can be written in matrix form as:

Ax = 0

where A is an m × n matrix with linearly independent rows,
and x ∈ Rn.

I The matrix A is fixed at all times and represents the equations

si =
∑
xj∈V

cjxj

where V is the set of variables of the original formula Φ.



Properties of the rewritten formula (2)

I Checking satisfiability of Φ amounts to finding x such that
Ax = 0 and x satisfies Φ′.
=⇒ It suffices to decide the satisfiability of a set of

elementary atoms Γ in linear arithmetic modulo the
constraints Ax = 0.

I If the elementary atoms are only equalities and non-strict
inequalities, the problem consists of finding x ∈ Rn such that

Ax = 0 and lj ≤ xj ≤ uj for j = 1, . . . , n

where lj is either −∞ or a rational number, and uj is either
+∞ or a rational number.



A basic solver

I We first consider a solver that handles only equalities and
non-strict inequalities with real variables.

I The solver state includes:
I A tableau derived from A, which we can represent as:

xi =
∑
xj∈N

aijxj xi ∈ B

I Lower and upper bounds li and ui for each xi
I A mapping β assigning a rational value to each xi

I Initially, lj = −∞, uj = +∞, β(xj) = 0 for all j .



Invariants for the mapping β

The mapping β always satisfies the following invariants:

I The bounds on non-basic variables are always satisfied, i.e.

∀xj ∈ N , lj ≤ β(xj) ≤ uj

I The mapping always satisfies the constraints Ax = 0



Main algorithm

I The main procedure is based on the dual Simplex algorithm
and uses Bland’s pivot-selection rule, which ensures
termination.

I It assumes a total order on the problem variables.

I At a given moment, we assume that the invariants on β hold,
but the mapping may not satisfy the bound constraints
li ≤ β(xi ) ≤ ui for basic variables.

I Procedure Check() looks for a new β that satisfies all
constraints.



Check() procedure

1: loop
2: select smallest basic var. xi s.t. β(xi ) < li or β(xi ) > ui
3: if there is no such xi then
4: return SAT

5: else if β(xi ) < li then
6: select smallest non-basic var. xj s.t.
7: (aij > 0 ∧ β(xj ) < uj ) ∨ (aij < 0 ∧ β(xj ) > lj )
8: if there is no such xj then
9: return UNSAT

10: else
11: PivotAndUpdate(xi , xj , li)
12: end if
13: else if β(xi ) > ui then
14: select smallest non-basic var. xj s.t.
15: (aij < 0 ∧ β(xj ) < uj ) ∨ (aij > 0 ∧ β(xj ) > lj )
16: if there is no such xj then
17: return UNSAT

18: else
19: PivotAndUpdate(xi , xj , ui)
20: end if
21: end if
22: end loop



Termination of Check()

Theorem
Procedure Check() always terminates.

Proof sketch:

I There is a unique tableau for any set of basic variables B.

I There is a finite number of possible assignments β for base Bt

at t-th iteration.

I The state of the solver at iteration t is the pair 〈βt ,Bt〉, and
there are finitely many states reachable from S0.

I If Check() does not terminate, the sequence of states must
contain a cycle.

I One can show by contradiction that such a cycle cannot occur.

The correctness of the procedure is a consequence of this theorem.



Generating explanations

If an inconsistency is detected (say, at line 8 of Check()), then:

I There is a basic variable xi s.t. β(xi ) < li
I For all non-basic variable xj , we have:

aij > 0 =⇒ β(xj) ≥ uj and
aij < 0 =⇒ β(xj) ≤ lj

I If we define N+ = {xj ∈ N | aij > 0} and
N− = {xj ∈ N | aij < 0}, then, by the invariant for β:
β(xj) = uj for all xj ∈ N+ and β(xj) = lj for all xj ∈ N−

I We therefore have:

β(xi ) =
∑
xj∈N

aijβ(xj) =
∑

xj∈N+

aijuj +
∑

xj∈N−

aij lj



Generating explanations (2)

I We have:
β(xi ) =

∑
xj∈N+

aijuj +
∑

xj∈N−

aij lj

I As xi =
∑

xj∈N aijxj holds for all x s.t. Ax = 0:

β(xi )− xi =
∑

xj∈N+

aij(uj − xj) +
∑

xj∈N−

aij(lj − xj)

I We can then derive the implications:∧
xj∈N+

xj ≤ uj =⇒
∑

xj∈N+

aij(uj − xj) ≥ 0

and ∧
xj∈N−

xj ≥ lj =⇒
∑

xj∈N−

aij(lj − xj) ≥ 0



Generating explanations (3)

I We have: ∧
xj∈N+

xj ≤ uj =⇒
∑

xj∈N+

aij(uj − xj) ≥ 0

and ∧
xj∈N−

xj ≥ lj =⇒
∑

xj∈N−

aij(lj − xj) ≥ 0

I Finally, we derive:∧
xj∈N+

xj ≤ uj ∧
∧

xj∈N−

xj ≥ lj =⇒ xi ≤ β(xi )

I As we also have β(xi ) < li , this is inconsistent with li ≤ xi
I Therefore we have the (minimal) explanation:

Γ = {xj ≤ uj | xj ∈ N+} ∪ {xj ≥ lj | xj ∈ N−} ∪ {xi ≥ li}



Assertion procedures

The Assert() function relies on two functions
AssertUpper(xi ≤ ci) and AssertLower(xi ≥ ci):

I AssertUpper(xi ≤ ci):
1: if ci ≥ ui then
2: return SAT

3: else if ci < li then
4: return UNSAT

5: else
6: ui := ci
7: if xi non-basic and β(xi ) > ci then
8: Update(ci)
9: end if
10: return OK

11: end if



Backtracking

I We only need to store:
I the value ui before it is updated by AssertUpper
I the value li before it is updated by AssertLower

I In particular, we don’t store successive βs on a stack: the last
β obtained after a successful Check() is a model for all
previous checkpoints.



Theory propagation

I Unate propagation
I very cheap to implement
I if bound xi ≥ ci is asserted, any unassigned atom xi ≥ c ′ with

c ′ < c is implied.
I useful in practice

I Bound refinement
I Given a row of tableau:

xi =
∑
xj∈N

aijxj

We can refine currently asserted bounds on xi using bounds on
non-basic variables



Example

I Initial state: A0 = {s1 = −x + y , s2 = x + y}

I Assert x ≤ 4

I Assert −8 ≤ x

I Assert s1 ≤ 1



Example

I Initial state: A0 = {s1 = −x + y , s2 = x + y}
I Assert x ≤ 4

I Assert −8 ≤ x

I Assert s1 ≤ 1



Example

I Initial state: A0 = {s1 = −x + y , s2 = x + y}
I Assert x ≤ 4

I Assert −8 ≤ x

I Assert s1 ≤ 1



Example

I Initial state: A0 = {s1 = −x + y , s2 = x + y}
I Assert x ≤ 4

I Assert −8 ≤ x

I Assert s1 ≤ 1



Handling strict inequalities

Lemma
A set of linear arithmetic literals Γ containing strict inequalities
S = {p0 > 0, . . . , pn > 0} is satisfiable iff there exists a rational
number δ > 0 such that for all δ′ such that 0 < δ′ ≤ δ,
Γδ = (Γ ∪ Sδ) \ S is satisfiable, where Sδ = {p1 ≥ δ, . . . , pn ≥ δ}.

I We can replace strict inequalities by non-strict ones if a small
enough δ is known

I We treat δ symbolically instead of computing an explicit value



Handling strict inequalities (2)

I Bounds and assignments range over the set Qδ of pairs of
rationals

I (c , k) ∈ Qδ is denoted by c + kδ

I Define operations:

(c1, k1) + (c2, k2) ≡ (c1 + c2, k1 + k2)

a× (c , k) ≡ (a× c , a× k)

(c1, k1) ≤ (c2, k2) ≡ (c1 < c2) ∨ (c1 = c2 ∧ k1 ≤ k2)

where a is a rational number.



Defining δ

If (c1, k1) ≤ (c2, k2) holds in Qδ, then we can find δ0 > 0 such that

c1 + k1ε ≤ c2 + k2ε

is satisfied by all positive ε ≤ δ0. Define it as:

δ0 = c2−c1
k1−k2 if c1 < c2 and k1 > k2

δ0 = 1 otherwise



Defining δ for the general case

More generally, assume we have 2m elements of Qδ,
vi = (ci , ki ),wi = (di , hi ) for 1 ≤ i ≤ m. If the m inequalities
vi ≤ wi hold in Qδ, then there exists δ0 > 0 such that

c1 + k1ε ≤ d1 + h1ε
...

cm + kmε ≤ dm + hmε

are satisfied by all positive ε ≤ δ0. We can define:

δ0 = min

{
di − ci
ki − hi

| ci < di and ki > hi

}



Problem and solution conversion

I A problem with strict inequalities can be converted into
another without strict inequalities

I Convert xi > li into xi ≥ li + δ = l ′i
I Convert xi < ui into xi ≤ ui − δ = u′i
I The basic solver described previously will give an assignment
β′ mapping variables to elements of Qδ, if the problem is
satisfiable

I If l ′j = (cj , kj), u
′
j = (dj , hj), β

′(xj) = (pj , qj), we already know
that there exists δ0 > 0 such that

cj + kjε ≤ pj + qjε ≤ dj + hjε for 1 ≤ j ≤ n

holds for all positive ε ≤ δ0.

I Define satisfying assignment β(xj) = pj + qjδ0 for original
problem



Integer and mixed integer problems

I The previously described algorithm is not complete if some
variables must be integers.

I A branch and cut strategy is used to be complete for the
integer case. It is the combination of:

I the branch and bound algorithm
I a cutting plane generation algorithm



Branch and bound

Consider the problem

Ax = 0

lj ≤ xj ≤ uj for 1 ≤ j ≤ n

with the additional condition that xi is an integer variable for
i ∈ I ⊆ {1, . . . , n}.



Branch and bound (2)

I Solve the linear programming relaxation, i.e. search for a
solution in reals

I If relaxation is infeasible, the problem is infeasible too.

I If an assignment β is found that satisfies all integer
constraints, we are done.

I If there exists i ∈ I such that β(xi ) 6∈ Z, then solve
(recursively) the two subproblems:

S0 :


Ax = 0

lj ≤ xj ≤ uj for 1 ≤ j ≤ n and j 6= i

li ≤ xi ≤ bβ(xi )c

S1 :


Ax = 0

lj ≤ xj ≤ uj for 1 ≤ j ≤ n and j 6= i

bβ(xi )c+ 1 ≤ xi ≤ ui



The need for a cutting plane generation algorithm

I If not all integer variables have an upper and a lower bound,
branch and bound may not terminate.

I Example:
1 ≤ 3x − 3y ≤ 2

This constraint is unsatisfiable if x and y are integers. A näıve
branch and bound algorithm loops on this input.

I W.l.o.g. we assume that all integer variables are bounded.

I The bounds are typically too large, and cutting plane
algorithms are needed to accelerate convergence.



Cuts

Assume β is a solution to the LP relaxation P of problem S , but
not to S itself. A cut is a linear inequality

a1x1 + . . .+ anxn ≤ b

that is not satisfied by β but is satisfied by any element in the
convex hull of S .
The cut can be added as a new constraint to S , yielding a problem
S ′

I that has the same solutions as S

I but whose LP relaxation P ′ is strictly more constrained than
P.



Deriving Gomory cuts

We have:

xi − β(xi ) =
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj)

xi − bβ(xi )c = f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj)

where

J = {j ∈ I | xj ∈ N ′ ∧ β(xj) = lj}
K = {j ∈ I | xj ∈ N ′ ∧ β(xj) = uj}
N ′ = N ∩ {xj | lj < uj}



Deriving Gomory cuts (2)

We have:

xi − bβ(xi )c = f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj)

which holds for all x that satisfies the problem S . Furthermore, for
any such x , xi − bβ(xi )c is an integer and the following also hold:

xj − lj ≥ 0 for all j ∈ J

uj − xj ≥ 0 for all j ∈ K



Deriving Gomory cuts (3)

We consider two cases:

I If
∑

j∈J aij(xj − lj)−
∑

j∈K aij(uj − xj) ≥ 0, then:

f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) ≥ 1

as f0 > 0 and the left-hand side is an integer. Then we have:∑
j∈J+

aij(xj − lj)−
∑
j∈K−

aij(uj − xj) ≥ 1− f0

where J+ = {j ∈ J | aij ≥ 0} and K− = {j ∈ K | aij < 0}.
Equivalently:∑

j∈J+

aij
1− f0

(xj − lj) +
∑
j∈K−

−aij
1− f0

(uj − xj) ≥ 1



Deriving Gomory cuts (4)

We apply the same procedure for the other case, and combining
the two cases, we obtain:∑

j∈J+

aij
1− f0

(xj − lj) +
∑
j∈J−

−aij
f0

(xj − lj) +

∑
j∈K+

aij
f0

(uj − xj) +
∑
j∈K−

−aij
1− f0

(uj − xj) ≥ 1

which is a mixed-integer Gomory cut: it is satisfied by any x that
satisfies S , but it is not satisfied by the assignment β (as the
left-hand side is equal to 0 in that case).
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