Constraint Logic Programming
and
Integrating Simplex with DPLL(T)

Ali Sinan Koksal

December 3, 2010

Constraint Logic Programming
Underlying concepts
The CLP(X) framework
Comparison of CLP with LP

Constraint logic programming

» Problem: designing programming systems to reason with and
about constraints.
» CLP is a class of programming languages based on:

» Constraint solving
» The logic programming paradigm

Constraint programming

» Sketchpad (1963)

Interactive drawing system using static constraints

Logic programming paradigm

An example program in pure Prolog:
mother_child(trude, sally).
father_child(tom, sally).
father_child(tom, erica).
father_child(mike, tom).
sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).
parent_child(X, Y) :- father_child(X, Y).
parent_child(X, Y) :- mother_child(X, Y).

We can perform the query:

?- sibling(sally, erica).
Yes

CLP(X) framework

» The CLP(X) framework [JL87] is a scheme where X" can be
instantiated with a suitable domain of discourse, such as R,

the algebraic structure consisting of uninterpreted functors
over real numbers [JMSY92].

Structure of CLP(R) programs

» Arithmetic terms:
» Real constants and variables are arithmetic terms
» If t; and t, are terms, then (t; +), (t1 — t2), (t1 * t2) are also
arithmetic terms

» Terms:
» Uninterpreted constants, arithmetic terms and variables are
terms
» If f is an n-ary uninterpreted functor and ti,..., t, are terms,
then f(t1,...,t,) is a term

» Constraints:

» If t; and t, are arithmetic terms, then t; = t, t; < t, and
t1 < t, are constraints

» If not both t; and t, are arithmetic terms, then only t; = t; is
a constraint

Structure of CLP(R) programs (2)

» An atom is of the form

p(ti, t2, ..., tn)

where p is a predicate symbol and ty, ..., t, are terms.

> A rule is of the form
Av:— a1,a0,...,0.

where each «j, 1 < i < k is either a constraint or an atom.

» A CLP(R) program is a finite collection of rules.

CLP by example

The following program defines the relation sumto(n, s) where

for natural numbers n.

sumto (0,0) .
sumto(N,S) :- N >= 1, N <= S, sumto(N-1,S-N).

CLP by example (2)

sumto (0,0) .
sumto(N,S) :- N >= 1, N <= S, sumto(N-1,S-N).

» The query S <= 3, sumto(N, S) gives rise to three answers:
(N=0,5=0),(N=1,5=1),(N=2,5=3).
» Computation sequence for (N =2,5 = 3):
S < 3,sumto(N, S).

S<3,N=N,S=5,N >1,N <5,
sumto(Ny — 1,51 — Ny).

S<3N=N;,5=5,M >1, N < S,
Ni—1=Np, 51— Ny =S5,Np >1,N, < S
sumto(Np — 1, Sy — Nb).

S<3IN=N;,5=5,N >1, N < S,
Ny —1=Np, 51— N1 =5, >1,N, <S5
No—1=0,5 —No = 0.

Comparison to logic programming

» Can the power of CLP be obtained by making simple changes
to LP systems [JM94]?

> In other words, can predicates in LP be regarded as
meaningful constraints?

add(0, N, N).
add(S(N), M, S(K)) :- add(N, M, K)

» The query add(N, M, K), add(N, M, S(K)) runs forever in
a conventional LP system:

» A global test for the satisfiability of the two add constraints is
not done by the LP machinery.

Integrating Simplex with DPLL(7)
DPLL(T7)
Existing linear arithmetic solvers
A solver for quantifier-free linear arithmetic

Davis-Putnam-Logemann-Loveland (DPLL)

» DPLL is a decision procedure for the boolean satisfiability
problem
» Modern DPLL-based SAT solvers feature:
> unit propagation
heuristics for selecting decision variables
2-literal watching
clause learning
backjumping

>
>
>
>

Solvers for quantifier-free theories

Given a quantifier-free theory 7, a T-solver decides the
satisfiability of finite sets of atoms of 7.

Decision procedures for quantifier-free theories

v

Decide a boolean combination ® of atoms of 7 by combining
a SAT solver with a T-solver.

v

Transform ® into ®(by replacing atoms ¢; ... ¢ with
propositional variables p; ... p;

v

A valuation b for ®¢ is a mapping from propositional variables
to {0,1}
Define set of atoms 'y, such that:

> Ip= {’Yl-~-’Yt}

> v = ¢ if b(pi) =1

> i = =g, if b(p;) = 0
& is satisfiable if there exists b that satisfies ®g and such that
Iy is consistent in T .

v

v

DPLL(T)

» DPLL(T) is a framework which leverages the DPLL procedure
and a T-solver.
» Solver must support:

» updating the state by asserting new atoms

» checking consistency of current state

» backtracking

» producing explanations for conflicts (an inconsistent subset of
atoms asserted in current state)

» Solver can optionally implement theory propagation, but:

» it must produce an explanation I for an implied atom -y, where
I is a subset of atoms asserted in current state such that

rE=~.

DPLL(T") example

Consider the following simple example formula ® in quantifier-free
linear arithmetic:

(x+y>1Vx+y <S5 A(x=-1)A(y=-2)

Conventions

In the following, we assume that:
» The solver is initialized for a fixed formula ¢
» A denotes the set of atoms occurring in ¢

» o denotes the set of atoms asserted so far.

Interface for T -solver

We assume that the following APl is implemented by the solver:

v

Assert (): assert atom <y in current state.
» if it returns ok, -y is inserted into «
» if it returns unsat(l), aU {~} is inconsistent and I C « is an
explanation.

v

Check(): check whether « is consistent

» if it returns ok, « is consistent, and a new checkpoint is
created.

» if it returns unsat(l"), « is inconsistent and ' C « is an
explanation

Backtrack(): backtrack to the last checkpoint
Propagate (): perform theory propagation

v

v

» it returns a set {(I'1,v),..., (l'¢,7:)} where I'; C « and
vi € A\ @, such that I'; =, for 1 < < t.

Remarks on the interface for 7T -solver

> Assert (y) must be sound but need not be complete: it can
return ok even if a U {v} is inconsistent.

» Check() must be sound and complete.

—= Several atoms can be asserted in a single “batch”

Quantifier-free linear arithmetic

A quantifier-free linear arithmetic formula is a first-order formula
with atoms:

> either propositional variables
> or of the form
axy+ ...+ apxn X< b

where aj,...,a, and b are rational numbers, xi, ..., x, are
real (or integer variables), and <€ {=, <, <, >, >, #}.

Linear-arithmetic solvers for DPLL(T)

Common approach: solvers based on incremental versions of the
Simplex method

>

>

>

Implemented in Yices, Simplics, MathSat
Solver state includes a Simplex tableau derived from assertions

The tableau can be seen as a set of equalities

x,-:b,-—i—Za,-jxj, xi €N
x€B
where B and N are disjoints sets of basic and non-basic
variables.

Additional constraints are imposed, such as non-negativity of
slack variables

Incremental Simplex method: pivoting

» Pivot(x,, xs): swap basic variable x, and non-basic variable
Xs such that a,s # 0, by replacing

X, = b, + Z arX;
XjEN

with

b, Xr ariX;

7

Xs = ——+ — — E —

drs drs drs
x;eN\{xs}

and eliminating xs from the rest of tableau by substitution.

Incremental Simplex method operations

» To assert an atom ~ of the form t > 0:
» Normalize v by substituting in t basic variables by non-basic
ones.
» Check whether resulting atom t' > 0 is satisfiable by
maximizing t’ using the tableau.

» Asserting equalities and strict inequalities follow same principle

» To backtrack:
» Remove rows from the tableau

Performance issues in incremental Simplex solvers

Asserting and backtracking have significant cost, due to:
> pivoting in assertions
» frequent addition and removal of rows

» frequent creation and deletion of slack variables

Important remarks for performance

» Generating minimal explanations is critical

» Theory propagation must be done cheaply:
Full propagation is too expensive, heuristic propagation is
superior

» Zero detection is expensive
= Convert t # 0 into (t > 0) vV (t < 0)

A different solver for linear arithmetic

We now proceed to describe a solver for linear arithmetic [DdM06]
with the following properties:

> |t is still based on the Simplex method

» |t reduces the overhead of the incremental Simplex approach

Preprocessing

Idea: avoid incremental Simplex methods by rewriting formula ®
into an equisatisfiable formula ®4 A @', where:

» ®4 is a conjunction of linear equalities

» All atoms of @’ are elementary, i.e. of the form
yib

where y is a variable, b is a rational constant, and
e {=,<, <, >, >}

Example transformation

Let @ be the following formula:

x>0A
(x+y<2Vx+2y—z>6)
ANx+y=2Vx+2y—z>4)

Introducing variables s; and s;, it is rewritten to ®4 A ¢’ as:

(si=x+yAsa=x+2y—2z)A
(x>0AN(s1<2Vs>26)A(s1 =2V s >4))

Properties of the rewritten formula

» Formula ®4 can be written in matrix form as:
Ax =0

where A is an m X n matrix with linearly independent rows,
and x € R".

» The matrix A is fixed at all times and represents the equations

Si=) Gx

XJ'EV

where V is the set of variables of the original formula .

Properties of the rewritten formula (2)

» Checking satisfiability of ® amounts to finding x such that
Ax = 0 and x satisfies ¢’.
= It suffices to decide the satisfiability of a set of
elementary atoms I in linear arithmetic modulo the
constraints Ax = 0.

> |If the elementary atoms are only equalities and non-strict
inequalities, the problem consists of finding x € R"” such that

Ax=0and [<x;<wu; forj=1,...,n

where [; is either —oo or a rational number, and u; is either
400 or a rational number.

A basic solver

» We first consider a solver that handles only equalities and
non-strict inequalities with real variables.

» The solver state includes:
» A tableau derived from A, which we can represent as:

X = E ajxj X €B
X €N

» Lower and upper bounds /; and u; for each x;
» A mapping 3 assigning a rational value to each x;

» Initially, /j = —o0, uj = 400, f(x;) = 0 for all ;.

Invariants for the mapping /3

The mapping 5 always satisfies the following invariants:

» The bounds on non-basic variables are always satisfied, i.e.
Vxj € N, 1j < Bx) < uj

» The mapping always satisfies the constraints Ax =0

Main algorithm

» The main procedure is based on the dual Simplex algorithm
and uses Bland's pivot-selection rule, which ensures
termination.

> It assumes a total order on the problem variables.

» At a given moment, we assume that the invariants on 3 hold,
but the mapping may not satisfy the bound constraints
li < B(xi) < uj for basic variables.

» Procedure Check() looks for a new 3 that satisfies all
constraints.

Check () procedure

1: loop
2: select smallest basic var. x; s.t. 8(x;) < l; or B(x;) > u;
3: if there is no such x; then
4: return SAT
5: else if B(x;) < I; then
6: select smallest non-basic var. x; s.t.
7 (aj > 0N B(x) < uj) V(aj <OAB(x) > 1)
8: if there is no such x; then
9: return UNSAT
10: else
11: PivotAndUpdate (x;, xj, ;)
12: end if
13: else if 3(x;) > u; then
14: select smallest non-basic var. x; s.t.
15: (aj < OAB(x) < uj) V(aj > 0AB(x) > 1)
16: if there is no such x; then
17: return UNSAT
18: else
19: PivotAndUpdate (x;, X;, ;)
20: end if
21: end if

22: end loop

Termination of Check()

Theorem
Procedure Check () always terminates.

Proof sketch:

>

>

The

There is a unique tableau for any set of basic variables B.

There is a finite number of possible assignments 5 for base B;
at t-th iteration.

The state of the solver at iteration t is the pair (f:, B), and
there are finitely many states reachable from Sg.

If Check() does not terminate, the sequence of states must
contain a cycle.

One can show by contradiction that such a cycle cannot occur.

correctness of the procedure is a consequence of this theorem.

Generating explanations

If an inconsistency is detected (say, at line 8 of Check()), then:
» There is a basic variable x; s.t. 5(x;) < /;

» For all non-basic variable x;, we have:
aj >0 = f(x;) > uj and
aj <0 = B(x) <j
> If we define N = {x; € N' | a; > 0} and
N~ ={xj € N'| ajj < 0}, then, by the invariant for §:
B(x;) = uj for all x; € Nt and B(x;) = I; for all x; € N
» We therefore have:

Blxi) = Z 2;3(x;) Z ajuj + Z aijl;

;€N x;eN+ x; €N~

Generating explanations (2)

» We have:
Blx)= Y agu+ Y al
Xje./\/'"' XjEN7

> As x; = ije/\/ ajjx; holds for all x s.t. Ax=0:

BOG) —xi= Y ajlui—x)+ Y aj(—x)

XjE/\/Jr XJ'EN7
» We can then derive the implications:

AN X<y = > ajy—x)=0
x;eEN* xieN+

and
N\ x5zl = > ailli—x)=0
x; €N~ x;eEN—

Generating explanations (3)

» We have:
AN x<uy = > aj(y—x)>0
XjE./\/+ X_,'E./\/'+

and

AN x5zl = > ali—x)=0

xieN— xjeEN—

» Finally, we derive:

A x<un N\ x>l = x<B0x)
xENT xjeN—

» As we also have 3(x;) < [;, this is inconsistent with /; < x;

» Therefore we have the (minimal) explanation:

F={<u|lxeNTFUG>h]xeNTU{x >}

Assertion procedures

The Assert () function relies on two functions
AssertUpper(x; < ¢;) and AssertLower (x; > ¢;):

» AssertUpper(x; < ¢;):
1: if ¢; > u; then
return SAT
else if ¢; < I; then
return UNSAT
else
uj ‘= ¢
if x; non-basic and B(x;) > ¢; then
Update(c;)
end if
10: return OK
11: end if

CRONIO WD

Backtracking

» We only need to store:
> the value u; before it is updated by AssertUpper
> the value /; before it is updated by AssertLower
> In particular, we don't store successive s on a stack: the last
(3 obtained after a successful Check() is a model for all
previous checkpoints.

Theory propagation

» Unate propagation
» very cheap to implement
» if bound x; > ¢; is asserted, any unassigned atom x; > ¢’ with
¢’ < cis implied.
» useful in practice
» Bound refinement

» Given a row of tableau:
Xi= Y ap
X €N

We can refine currently asserted bounds on x; using bounds on
non-basic variables

Example

> Initial state: Ag={s1 = —x+y,ss=x+y}

Example

> Initial state: Ag={s1 = —x+y,ss=x+y}
» Assert x < 4

Example

> Initial state: Ag={s1 = —x+y,ss=x+y}
» Assert x < 4
» Assert —8 < x

Example

v

Initial state: Ag ={s1 = —x+y,ss =x+y}
Assert x < 4

Assert —8 < x

Assert 51 <1

v

v

v

Handling strict inequalities

Lemma

A set of linear arithmetic literals I containing strict inequalities
S={po>0,...,p, > 0} is satisfiable iff there exists a rational
number 6 > 0 such that for all &' such that 0 < ¢’ <6,

s = (F'USs)\S is satisfiable, where Ss = {p1 > 6,...,pn > d}.

» We can replace strict inequalities by non-strict ones if a small
enough ¢ is known

» We treat § symbolically instead of computing an explicit value

Handling strict inequalities (2)

» Bounds and assignments range over the set Q5 of pairs of
rationals

» (c, k) € Qs is denoted by ¢ + kd

» Define operations:

(c1,k1) + (e, k2) = (ca+ 2,k + k)
ax(c,k) = (axc,axk)
(c1,k1) < (k) = (aa<a)V(a=caAk <k)

where a is a rational number.

Defining ¢

If (c1, k1) < (c2, k2) holds in Qg, then we can find dp > 0 such that
a + kie <+ koe

is satisfied by all positive € < §g. Define it as:

0o = ,fi:% if 1 < ¢ and k1 > ko

do = 1 otherwise

Defining 6 for the general case

More generally, assume we have 2m elements of Qy,
vi = (ci, ki), wi = (d;, hj) for 1 < i < m. If the m inequalities
v;i < w; hold in Q4, then there exists dg > 0 such that

a+ ke < di+ he

Cm+ kme < dm+ hme

are satisfied by all positive € < §g. We can define:

- [di—c
6o—m|n{ki_hi | ¢i < d; and k,>h,}

Problem and solution conversion

» A problem with strict inequalities can be converted into
another without strict inequalities

» Convert x; > [into x; > i +0 =1/
» Convert x; < uj into x; < uj — 6 = U
> The basic solver described previously will give an assignment

B’ mapping variables to elements of Qs, if the problem is
satisfiable

> If I = (qj, kj)., u; = (dj, hy), B'(x;) = (pj, g;), we already know
that there exists dg > 0 such that
¢ + kie < pj + qje < d; + hje for1<j<n

holds for all positive £ < dg.

» Define satisfying assignment 3(x;) = p;j + q;do for original
problem

Integer and mixed integer problems

» The previously described algorithm is not complete if some
variables must be integers.

» A branch and cut strategy is used to be complete for the
integer case. It is the combination of:

» the branch and bound algorithm
> a cutting plane generation algorithm

Branch and bound

Consider the problem

Ax =0
[<xi<uwujfor1<;j<n

with the additional condition that x; is an integer variable for
iel C{1,...,n}.

Branch and bound (2)

» Solve the linear programming relaxation, i.e. search for a
solution in reals

» If relaxation is infeasible, the problem is infeasible too.

» If an assignment [is found that satisfies all integer
constraints, we are done.

> If there exists i € | such that 8(x;) & Z, then solve
(recursively) the two subproblems:

Ax=0

So: [<x; <y fori1<j<nandj#i
li < xi < [B(xi)]
Ax =0

S i <xi < uj foril<j<nandj#i

1B(xi)] +1<x <u

The need for a cutting plane generation algorithm

» If not all integer variables have an upper and a lower bound,
branch and bound may not terminate.

> Example:
1<3x—-3y <2
This constraint is unsatisfiable if x and y are integers. A naive
branch and bound algorithm loops on this input.
» W.l.o.g. we assume that all integer variables are bounded.

> The bounds are typically too large, and cutting plane
algorithms are needed to accelerate convergence.

Cuts

Assume (3 is a solution to the LP relaxation P of problem S, but
not to S itself. A cut is a linear inequality

axi+...+anxp < b

that is not satisfied by 5 but is satisfied by any element in the
convex hull of §.
The cut can be added as a new constraint to S, yielding a problem
S/

» that has the same solutions as S

» but whose LP relaxation P’ is strictly more constrained than
P.

Deriving Gomory cuts

We have:
xi—B0a) = Y ajlg— 1) =Y ag(u; —x)
jeJ JjeEK
xi—1B0a)) = R+ als— 1) =D ay(y—x)
jed jeK
where

Jo= fellxeN ABGg) = 1)
K = {el]xeN AB)=u)
N = NP <)

Deriving Gomory cuts (2)

We have:

xi—1B0a)] = fo+) ayls— 1) =Y ay(y—x)
jeJ jek
which holds for all x that satisfies the problem S. Furthermore, for
any such x, x; — | 8(x;)] is an integer and the following also hold:
xi—1; >0 forall jeJ
uj—x; >0 forallje K

Deriving Gomory cuts (3)

We consider two cases:
> 1> ey ai(xi — 1) — Xjex ai(uj — x7) = 0, then:

ot ailg —) =D _ai(u—x) > 1
jed jek
as fy > 0 and the left-hand side is an integer. Then we have:
D oailg—h) = Y a(ui—x)>1—f
jeJt JjEK—
where JT ={j € J|a; >0} and K~ ={j € K| aj; <0}.
Equivalently:

a,'_,' —a;j
Zl—fo(xj_lj)jL > ?fo(uj—xj)ZI

jest jeEK—

Deriving Gomory cuts (4)

We apply the same procedure for the other case, and combining
the two cases, we obtain:

JjeJ+ jed—

Z ﬂ(u-—X-)—i— Z — 9y (uj—x) > 1
. fb J J . 1— fb J J =
JEKT JEK—

which is a mixed-integer Gomory cut: it is satisfied by any x that
satisfies S, but it is not satisfied by the assignment (3 (as the
left-hand side is equal to 0 in that case).

References

[Bruno Dutertre and Leonardo de Moura.
Integrating Simplex with DPLL(T).
Technical Report SRI-CSL-06-01, SRI International, 2006.

[Joxan Jaffar and Jean-Louis Lassez.
Constraint logic programming.
In Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL
'87, pages 111-119, New York, NY, USA, 1987. ACM.

[Joxan Jaffar and Michael J. Maher.
Constraint Logic Programming: A Survey.
J. Log. Program., 19/20:503-581, 1994.

@ Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland
H. C. Yap.
The CLP(R) language and system.
ACM Trans. Program. Lang. Syst., 14:339-395, May 1992.

	Constraint Logic Programming
	Underlying concepts
	The CLP(X) framework
	Comparison of CLP with LP

	Integrating Simplex with DPLL(T)
	DPLL(T)
	Existing linear arithmetic solvers
	A solver for quantifier-free linear arithmetic

