
Constraint Logic Programming
and

Integrating Simplex with DPLL(T)

Ali Sinan Köksal

December 3, 2010

Constraint Logic Programming
Underlying concepts
The CLP(X) framework
Comparison of CLP with LP

Integrating Simplex with DPLL(T)
DPLL(T)
Existing linear arithmetic solvers
A solver for quantifier-free linear arithmetic

Constraint logic programming

I Problem: designing programming systems to reason with and
about constraints.

I CLP is a class of programming languages based on:
I Constraint solving
I The logic programming paradigm

Constraint programming

I Sketchpad (1963)

Interactive drawing system using static constraints

Logic programming paradigm

An example program in pure Prolog:

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

We can perform the query:

?- sibling(sally, erica).

Yes

CLP(X) framework

I The CLP(X) framework [JL87] is a scheme where X can be
instantiated with a suitable domain of discourse, such as R,
the algebraic structure consisting of uninterpreted functors
over real numbers [JMSY92].

Structure of CLP(R) programs

I Arithmetic terms:
I Real constants and variables are arithmetic terms
I If t1 and t2 are terms, then (t1 + t2), (t1 − t2), (t1 ∗ t2) are also

arithmetic terms

I Terms:
I Uninterpreted constants, arithmetic terms and variables are

terms
I If f is an n-ary uninterpreted functor and t1, . . . , tn are terms,

then f (t1, . . . , tn) is a term

I Constraints:
I If t1 and t2 are arithmetic terms, then t1 = t2, t1 < t2 and

t1 ≤ t2 are constraints
I If not both t1 and t2 are arithmetic terms, then only t1 = t2 is

a constraint

Structure of CLP(R) programs (2)

I An atom is of the form

p(t1, t2, . . . , tn)

where p is a predicate symbol and t1, . . . , tn are terms.

I A rule is of the form

A0 : − α1, α2, . . . , αk .

where each αi , 1 ≤ i ≤ k is either a constraint or an atom.

I A CLP(R) program is a finite collection of rules.

CLP by example

The following program defines the relation sumto(n, s) where

s =
∑

1≤i≤n
i

for natural numbers n.

sumto(0,0).

sumto(N,S) :- N >= 1, N <= S, sumto(N-1,S-N).

CLP by example (2)

sumto(0,0).

sumto(N,S) :- N >= 1, N <= S, sumto(N-1,S-N).

I The query S <= 3, sumto(N, S) gives rise to three answers:
(N = 0,S = 0), (N = 1, S = 1), (N = 2, S = 3).

I Computation sequence for (N = 2, S = 3):

S ≤ 3, sumto(N,S).

S ≤ 3,N = N1, S = S1,N1 ≥ 1,N1 ≤ S1,

sumto(N1 − 1, S1 − N1).

S ≤ 3,N = N1, S = S1,N1 ≥ 1,N1 ≤ S1,

N1 − 1 = N2, S1 − N1 = S2,N2 ≥ 1,N2 ≤ S2

sumto(N2 − 1, S2 − N2).

S ≤ 3,N = N1,S = S1,N1 ≥ 1,N1 ≤ S1,

N1 − 1 = N2, S1 − N1 = S2,N2 ≥ 1,N2 ≤ S2

N2 − 1 = 0, S2 − N2 = 0.

Comparison to logic programming

I Can the power of CLP be obtained by making simple changes
to LP systems [JM94]?

I In other words, can predicates in LP be regarded as
meaningful constraints?

add(0, N, N).

add(S(N), M, S(K)) :- add(N, M, K)

I The query add(N, M, K), add(N, M, S(K)) runs forever in
a conventional LP system:

I A global test for the satisfiability of the two add constraints is
not done by the LP machinery.

Constraint Logic Programming
Underlying concepts
The CLP(X) framework
Comparison of CLP with LP

Integrating Simplex with DPLL(T)
DPLL(T)
Existing linear arithmetic solvers
A solver for quantifier-free linear arithmetic

Davis-Putnam-Logemann-Loveland (DPLL)

I DPLL is a decision procedure for the boolean satisfiability
problem

I Modern DPLL-based SAT solvers feature:
I unit propagation
I heuristics for selecting decision variables
I 2-literal watching
I clause learning
I backjumping

Solvers for quantifier-free theories

Given a quantifier-free theory T , a T -solver decides the
satisfiability of finite sets of atoms of T .

Decision procedures for quantifier-free theories

I Decide a boolean combination Φ of atoms of T by combining
a SAT solver with a T -solver.

I Transform Φ into Φ0 by replacing atoms φ1 . . . φt with
propositional variables p1 . . . pt

I A valuation b for Φ0 is a mapping from propositional variables
to {0, 1}

I Define set of atoms Γb such that:
I Γb = {γ1 . . . γt}
I γi = φi if b(pi) = 1
I γi = ¬φi if b(pi) = 0

I Φ is satisfiable if there exists b that satisfies Φ0 and such that
Γb is consistent in T .

DPLL(T)

I DPLL(T) is a framework which leverages the DPLL procedure
and a T -solver.

I Solver must support:
I updating the state by asserting new atoms
I checking consistency of current state
I backtracking
I producing explanations for conflicts (an inconsistent subset of

atoms asserted in current state)

I Solver can optionally implement theory propagation, but:
I it must produce an explanation Γ for an implied atom γ, where

Γ is a subset of atoms asserted in current state such that
Γ |= γ.

DPLL(T) example

Consider the following simple example formula Φ in quantifier-free
linear arithmetic:

(x + y ≥ 1 ∨ x + y ≤ −5) ∧ (x = −1) ∧ (y = −2)

Conventions

In the following, we assume that:

I The solver is initialized for a fixed formula Φ

I A denotes the set of atoms occurring in Φ

I α denotes the set of atoms asserted so far.

Interface for T -solver

We assume that the following API is implemented by the solver:
I Assert(γ): assert atom γ in current state.

I if it returns ok , γ is inserted into α
I if it returns unsat(Γ), α ∪ {γ} is inconsistent and Γ ⊆ α is an

explanation.

I Check(): check whether α is consistent
I if it returns ok , α is consistent, and a new checkpoint is

created.
I if it returns unsat(Γ), α is inconsistent and Γ ⊆ α is an

explanation

I Backtrack(): backtrack to the last checkpoint
I Propagate(): perform theory propagation

I it returns a set {〈Γ1, γ1〉, . . . , 〈Γt , γt〉} where Γi ⊆ α and
γi ∈ A \ α, such that Γi |= γi for 1 ≤ i ≤ t.

Remarks on the interface for T -solver

I Assert(γ) must be sound but need not be complete: it can
return ok even if α ∪ {γ} is inconsistent.

I Check() must be sound and complete.

=⇒ Several atoms can be asserted in a single “batch”

Quantifier-free linear arithmetic

A quantifier-free linear arithmetic formula is a first-order formula
with atoms:

I either propositional variables

I or of the form
a1x1 + . . .+ anxn ./ b

where a1, . . . , an and b are rational numbers, x1, . . . , xn are
real (or integer variables), and ./∈ {=,≤, <,>,≥, 6=}.

Linear-arithmetic solvers for DPLL(T)

Common approach: solvers based on incremental versions of the
Simplex method

I Implemented in Yices, Simplics, MathSat

I Solver state includes a Simplex tableau derived from assertions

I The tableau can be seen as a set of equalities

xi = bi +
∑
xj∈B

aijxj , xi ∈ N

where B and N are disjoints sets of basic and non-basic
variables.

I Additional constraints are imposed, such as non-negativity of
slack variables

Incremental Simplex method: pivoting

I Pivot(xr , xs): swap basic variable xr and non-basic variable
xs such that ars 6= 0, by replacing

xr = br +
∑
xj∈N

arjxj

with

xs = − br

ars
+

xr
ars
−

∑
xj∈N\{xs}

arjxj
ars

and eliminating xs from the rest of tableau by substitution.

Incremental Simplex method operations

I To assert an atom γ of the form t ≥ 0:
I Normalize γ by substituting in t basic variables by non-basic

ones.
I Check whether resulting atom t ′ ≥ 0 is satisfiable by

maximizing t ′ using the tableau.

I Asserting equalities and strict inequalities follow same principle
I To backtrack:

I Remove rows from the tableau

Performance issues in incremental Simplex solvers

Asserting and backtracking have significant cost, due to:

I pivoting in assertions

I frequent addition and removal of rows

I frequent creation and deletion of slack variables

Important remarks for performance

I Generating minimal explanations is critical

I Theory propagation must be done cheaply:
Full propagation is too expensive, heuristic propagation is
superior

I Zero detection is expensive
=⇒ Convert t 6= 0 into (t > 0) ∨ (t < 0)

A different solver for linear arithmetic

We now proceed to describe a solver for linear arithmetic [DdM06]
with the following properties:

I It is still based on the Simplex method

I It reduces the overhead of the incremental Simplex approach

Preprocessing

Idea: avoid incremental Simplex methods by rewriting formula Φ
into an equisatisfiable formula ΦA ∧ Φ′, where:

I ΦA is a conjunction of linear equalities

I All atoms of Φ′ are elementary, i.e. of the form

y ./ b

where y is a variable, b is a rational constant, and
./∈ {=,≤, <,>,≥}.

Example transformation

Let Φ be the following formula:

x ≥ 0 ∧
(x + y ≤ 2 ∨ x + 2y − z ≥ 6)

∧(x + y = 2 ∨ x + 2y − z > 4)

Introducing variables s1 and s2, it is rewritten to ΦA ∧ Φ′ as:

(s1 = x + y ∧ s2 = x + 2y − z) ∧
(x ≥ 0 ∧ (s1 ≤ 2 ∨ s2 ≥ 6) ∧ (s1 = 2 ∨ s2 > 4))

Properties of the rewritten formula

I Formula ΦA can be written in matrix form as:

Ax = 0

where A is an m × n matrix with linearly independent rows,
and x ∈ Rn.

I The matrix A is fixed at all times and represents the equations

si =
∑
xj∈V

cjxj

where V is the set of variables of the original formula Φ.

Properties of the rewritten formula (2)

I Checking satisfiability of Φ amounts to finding x such that
Ax = 0 and x satisfies Φ′.
=⇒ It suffices to decide the satisfiability of a set of

elementary atoms Γ in linear arithmetic modulo the
constraints Ax = 0.

I If the elementary atoms are only equalities and non-strict
inequalities, the problem consists of finding x ∈ Rn such that

Ax = 0 and lj ≤ xj ≤ uj for j = 1, . . . , n

where lj is either −∞ or a rational number, and uj is either
+∞ or a rational number.

A basic solver

I We first consider a solver that handles only equalities and
non-strict inequalities with real variables.

I The solver state includes:
I A tableau derived from A, which we can represent as:

xi =
∑
xj∈N

aijxj xi ∈ B

I Lower and upper bounds li and ui for each xi
I A mapping β assigning a rational value to each xi

I Initially, lj = −∞, uj = +∞, β(xj) = 0 for all j .

Invariants for the mapping β

The mapping β always satisfies the following invariants:

I The bounds on non-basic variables are always satisfied, i.e.

∀xj ∈ N , lj ≤ β(xj) ≤ uj

I The mapping always satisfies the constraints Ax = 0

Main algorithm

I The main procedure is based on the dual Simplex algorithm
and uses Bland’s pivot-selection rule, which ensures
termination.

I It assumes a total order on the problem variables.

I At a given moment, we assume that the invariants on β hold,
but the mapping may not satisfy the bound constraints
li ≤ β(xi) ≤ ui for basic variables.

I Procedure Check() looks for a new β that satisfies all
constraints.

Check() procedure

1: loop
2: select smallest basic var. xi s.t. β(xi) < li or β(xi) > ui
3: if there is no such xi then
4: return SAT

5: else if β(xi) < li then
6: select smallest non-basic var. xj s.t.
7: (aij > 0 ∧ β(xj) < uj) ∨ (aij < 0 ∧ β(xj) > lj)
8: if there is no such xj then
9: return UNSAT

10: else
11: PivotAndUpdate(xi , xj , li)
12: end if
13: else if β(xi) > ui then
14: select smallest non-basic var. xj s.t.
15: (aij < 0 ∧ β(xj) < uj) ∨ (aij > 0 ∧ β(xj) > lj)
16: if there is no such xj then
17: return UNSAT

18: else
19: PivotAndUpdate(xi , xj , ui)
20: end if
21: end if
22: end loop

Termination of Check()

Theorem
Procedure Check() always terminates.

Proof sketch:

I There is a unique tableau for any set of basic variables B.

I There is a finite number of possible assignments β for base Bt

at t-th iteration.

I The state of the solver at iteration t is the pair 〈βt ,Bt〉, and
there are finitely many states reachable from S0.

I If Check() does not terminate, the sequence of states must
contain a cycle.

I One can show by contradiction that such a cycle cannot occur.

The correctness of the procedure is a consequence of this theorem.

Generating explanations

If an inconsistency is detected (say, at line 8 of Check()), then:

I There is a basic variable xi s.t. β(xi) < li
I For all non-basic variable xj , we have:

aij > 0 =⇒ β(xj) ≥ uj and
aij < 0 =⇒ β(xj) ≤ lj

I If we define N+ = {xj ∈ N | aij > 0} and
N− = {xj ∈ N | aij < 0}, then, by the invariant for β:
β(xj) = uj for all xj ∈ N+ and β(xj) = lj for all xj ∈ N−

I We therefore have:

β(xi) =
∑
xj∈N

aijβ(xj) =
∑

xj∈N+

aijuj +
∑

xj∈N−

aij lj

Generating explanations (2)

I We have:
β(xi) =

∑
xj∈N+

aijuj +
∑

xj∈N−

aij lj

I As xi =
∑

xj∈N aijxj holds for all x s.t. Ax = 0:

β(xi)− xi =
∑

xj∈N+

aij(uj − xj) +
∑

xj∈N−

aij(lj − xj)

I We can then derive the implications:∧
xj∈N+

xj ≤ uj =⇒
∑

xj∈N+

aij(uj − xj) ≥ 0

and ∧
xj∈N−

xj ≥ lj =⇒
∑

xj∈N−

aij(lj − xj) ≥ 0

Generating explanations (3)

I We have: ∧
xj∈N+

xj ≤ uj =⇒
∑

xj∈N+

aij(uj − xj) ≥ 0

and ∧
xj∈N−

xj ≥ lj =⇒
∑

xj∈N−

aij(lj − xj) ≥ 0

I Finally, we derive:∧
xj∈N+

xj ≤ uj ∧
∧

xj∈N−

xj ≥ lj =⇒ xi ≤ β(xi)

I As we also have β(xi) < li , this is inconsistent with li ≤ xi
I Therefore we have the (minimal) explanation:

Γ = {xj ≤ uj | xj ∈ N+} ∪ {xj ≥ lj | xj ∈ N−} ∪ {xi ≥ li}

Assertion procedures

The Assert() function relies on two functions
AssertUpper(xi ≤ ci) and AssertLower(xi ≥ ci):

I AssertUpper(xi ≤ ci):
1: if ci ≥ ui then
2: return SAT

3: else if ci < li then
4: return UNSAT

5: else
6: ui := ci
7: if xi non-basic and β(xi) > ci then
8: Update(ci)
9: end if
10: return OK

11: end if

Backtracking

I We only need to store:
I the value ui before it is updated by AssertUpper
I the value li before it is updated by AssertLower

I In particular, we don’t store successive βs on a stack: the last
β obtained after a successful Check() is a model for all
previous checkpoints.

Theory propagation

I Unate propagation
I very cheap to implement
I if bound xi ≥ ci is asserted, any unassigned atom xi ≥ c ′ with

c ′ < c is implied.
I useful in practice

I Bound refinement
I Given a row of tableau:

xi =
∑
xj∈N

aijxj

We can refine currently asserted bounds on xi using bounds on
non-basic variables

Example

I Initial state: A0 = {s1 = −x + y , s2 = x + y}

I Assert x ≤ 4

I Assert −8 ≤ x

I Assert s1 ≤ 1

Example

I Initial state: A0 = {s1 = −x + y , s2 = x + y}
I Assert x ≤ 4

I Assert −8 ≤ x

I Assert s1 ≤ 1

Example

I Initial state: A0 = {s1 = −x + y , s2 = x + y}
I Assert x ≤ 4

I Assert −8 ≤ x

I Assert s1 ≤ 1

Example

I Initial state: A0 = {s1 = −x + y , s2 = x + y}
I Assert x ≤ 4

I Assert −8 ≤ x

I Assert s1 ≤ 1

Handling strict inequalities

Lemma
A set of linear arithmetic literals Γ containing strict inequalities
S = {p0 > 0, . . . , pn > 0} is satisfiable iff there exists a rational
number δ > 0 such that for all δ′ such that 0 < δ′ ≤ δ,
Γδ = (Γ ∪ Sδ) \ S is satisfiable, where Sδ = {p1 ≥ δ, . . . , pn ≥ δ}.

I We can replace strict inequalities by non-strict ones if a small
enough δ is known

I We treat δ symbolically instead of computing an explicit value

Handling strict inequalities (2)

I Bounds and assignments range over the set Qδ of pairs of
rationals

I (c , k) ∈ Qδ is denoted by c + kδ

I Define operations:

(c1, k1) + (c2, k2) ≡ (c1 + c2, k1 + k2)

a× (c , k) ≡ (a× c , a× k)

(c1, k1) ≤ (c2, k2) ≡ (c1 < c2) ∨ (c1 = c2 ∧ k1 ≤ k2)

where a is a rational number.

Defining δ

If (c1, k1) ≤ (c2, k2) holds in Qδ, then we can find δ0 > 0 such that

c1 + k1ε ≤ c2 + k2ε

is satisfied by all positive ε ≤ δ0. Define it as:

δ0 = c2−c1
k1−k2 if c1 < c2 and k1 > k2

δ0 = 1 otherwise

Defining δ for the general case

More generally, assume we have 2m elements of Qδ,
vi = (ci , ki),wi = (di , hi) for 1 ≤ i ≤ m. If the m inequalities
vi ≤ wi hold in Qδ, then there exists δ0 > 0 such that

c1 + k1ε ≤ d1 + h1ε
...

cm + kmε ≤ dm + hmε

are satisfied by all positive ε ≤ δ0. We can define:

δ0 = min

{
di − ci
ki − hi

| ci < di and ki > hi

}

Problem and solution conversion

I A problem with strict inequalities can be converted into
another without strict inequalities

I Convert xi > li into xi ≥ li + δ = l ′i
I Convert xi < ui into xi ≤ ui − δ = u′i
I The basic solver described previously will give an assignment
β′ mapping variables to elements of Qδ, if the problem is
satisfiable

I If l ′j = (cj , kj), u
′
j = (dj , hj), β

′(xj) = (pj , qj), we already know
that there exists δ0 > 0 such that

cj + kjε ≤ pj + qjε ≤ dj + hjε for 1 ≤ j ≤ n

holds for all positive ε ≤ δ0.

I Define satisfying assignment β(xj) = pj + qjδ0 for original
problem

Integer and mixed integer problems

I The previously described algorithm is not complete if some
variables must be integers.

I A branch and cut strategy is used to be complete for the
integer case. It is the combination of:

I the branch and bound algorithm
I a cutting plane generation algorithm

Branch and bound

Consider the problem

Ax = 0

lj ≤ xj ≤ uj for 1 ≤ j ≤ n

with the additional condition that xi is an integer variable for
i ∈ I ⊆ {1, . . . , n}.

Branch and bound (2)

I Solve the linear programming relaxation, i.e. search for a
solution in reals

I If relaxation is infeasible, the problem is infeasible too.

I If an assignment β is found that satisfies all integer
constraints, we are done.

I If there exists i ∈ I such that β(xi) 6∈ Z, then solve
(recursively) the two subproblems:

S0 :


Ax = 0

lj ≤ xj ≤ uj for 1 ≤ j ≤ n and j 6= i

li ≤ xi ≤ bβ(xi)c

S1 :


Ax = 0

lj ≤ xj ≤ uj for 1 ≤ j ≤ n and j 6= i

bβ(xi)c+ 1 ≤ xi ≤ ui

The need for a cutting plane generation algorithm

I If not all integer variables have an upper and a lower bound,
branch and bound may not terminate.

I Example:
1 ≤ 3x − 3y ≤ 2

This constraint is unsatisfiable if x and y are integers. A näıve
branch and bound algorithm loops on this input.

I W.l.o.g. we assume that all integer variables are bounded.

I The bounds are typically too large, and cutting plane
algorithms are needed to accelerate convergence.

Cuts

Assume β is a solution to the LP relaxation P of problem S , but
not to S itself. A cut is a linear inequality

a1x1 + . . .+ anxn ≤ b

that is not satisfied by β but is satisfied by any element in the
convex hull of S .
The cut can be added as a new constraint to S , yielding a problem
S ′

I that has the same solutions as S

I but whose LP relaxation P ′ is strictly more constrained than
P.

Deriving Gomory cuts

We have:

xi − β(xi) =
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj)

xi − bβ(xi)c = f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj)

where

J = {j ∈ I | xj ∈ N ′ ∧ β(xj) = lj}
K = {j ∈ I | xj ∈ N ′ ∧ β(xj) = uj}
N ′ = N ∩ {xj | lj < uj}

Deriving Gomory cuts (2)

We have:

xi − bβ(xi)c = f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj)

which holds for all x that satisfies the problem S . Furthermore, for
any such x , xi − bβ(xi)c is an integer and the following also hold:

xj − lj ≥ 0 for all j ∈ J

uj − xj ≥ 0 for all j ∈ K

Deriving Gomory cuts (3)

We consider two cases:

I If
∑

j∈J aij(xj − lj)−
∑

j∈K aij(uj − xj) ≥ 0, then:

f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) ≥ 1

as f0 > 0 and the left-hand side is an integer. Then we have:∑
j∈J+

aij(xj − lj)−
∑
j∈K−

aij(uj − xj) ≥ 1− f0

where J+ = {j ∈ J | aij ≥ 0} and K− = {j ∈ K | aij < 0}.
Equivalently:∑

j∈J+

aij
1− f0

(xj − lj) +
∑
j∈K−

−aij
1− f0

(uj − xj) ≥ 1

Deriving Gomory cuts (4)

We apply the same procedure for the other case, and combining
the two cases, we obtain:∑

j∈J+

aij
1− f0

(xj − lj) +
∑
j∈J−

−aij
f0

(xj − lj) +

∑
j∈K+

aij
f0

(uj − xj) +
∑
j∈K−

−aij
1− f0

(uj − xj) ≥ 1

which is a mixed-integer Gomory cut: it is satisfied by any x that
satisfies S , but it is not satisfied by the assignment β (as the
left-hand side is equal to 0 in that case).

References

Bruno Dutertre and Leonardo de Moura.
Integrating Simplex with DPLL(T).
Technical Report SRI-CSL-06-01, SRI International, 2006.

Joxan Jaffar and Jean-Louis Lassez.
Constraint logic programming.
In Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL
’87, pages 111–119, New York, NY, USA, 1987. ACM.

Joxan Jaffar and Michael J. Maher.
Constraint Logic Programming: A Survey.
J. Log. Program., 19/20:503–581, 1994.

Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland
H. C. Yap.
The CLP(R) language and system.
ACM Trans. Program. Lang. Syst., 14:339–395, May 1992.

	Constraint Logic Programming
	Underlying concepts
	The CLP(X) framework
	Comparison of CLP with LP

	Integrating Simplex with DPLL(T)
	DPLL(T)
	Existing linear arithmetic solvers
	A solver for quantifier-free linear arithmetic

