Constraint Logic Programming and
 Integrating Simplex with $\operatorname{DPLL}(\mathcal{T})$

Ali Sinan Köksal

December 3, 2010

Constraint Logic Programming
Underlying concepts
The $\operatorname{CLP}(\mathcal{X})$ framework
Comparison of CLP with LP

Integrating Simplex with $\operatorname{DPLL}(\mathcal{T})$
$\operatorname{DPLL}(\mathcal{T})$
Existing linear arithmetic solvers
A solver for quantifier-free linear arithmetic

Constraint logic programming

- Problem: designing programming systems to reason with and about constraints.
- CLP is a class of programming languages based on:
- Constraint solving
- The logic programming paradigm

Constraint programming

- Sketchpad (1963)

Interactive drawing system using static constraints

Logic programming paradigm

An example program in pure Prolog:

```
mother_child(trude, sally).
father_child(tom, sally).
father_child(tom, erica).
father_child(mike, tom).
sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).
parent_child(X, Y) :- father_child(X, Y).
parent_child(X, Y) :- mother_child(X, Y).
```

We can perform the query:

```
?- sibling(sally, erica).
Yes
```


$\operatorname{CLP}(\mathcal{X})$ framework

- The $\operatorname{CLP}(\mathcal{X})$ framework [JL87] is a scheme where \mathcal{X} can be instantiated with a suitable domain of discourse, such as \mathcal{R}, the algebraic structure consisting of uninterpreted functors over real numbers [JMSY92].

Structure of $\operatorname{CLP}(\mathcal{R})$ programs

- Arithmetic terms:
- Real constants and variables are arithmetic terms
- If t_{1} and t_{2} are terms, then $\left(t_{1}+t_{2}\right),\left(t_{1}-t_{2}\right),\left(t_{1} * t_{2}\right)$ are also arithmetic terms
- Terms:
- Uninterpreted constants, arithmetic terms and variables are terms
- If f is an n-ary uninterpreted functor and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term
- Constraints:
- If t_{1} and t_{2} are arithmetic terms, then $t_{1}=t_{2}, t_{1}<t_{2}$ and $t_{1} \leq t_{2}$ are constraints
- If not both t_{1} and t_{2} are arithmetic terms, then only $t_{1}=t_{2}$ is a constraint

Structure of $\operatorname{CLP}(\mathcal{R})$ programs (2)

- An atom is of the form

$$
p\left(t_{1}, t_{2}, \ldots, t_{n}\right)
$$

where p is a predicate symbol and t_{1}, \ldots, t_{n} are terms.

- A rule is of the form

$$
A_{0}:-\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}
$$

where each $\alpha_{i}, 1 \leq i \leq k$ is either a constraint or an atom.

- $\operatorname{ACLP}(\mathcal{R})$ program is a finite collection of rules.

CLP by example

The following program defines the relation $\operatorname{sumto}(n, s)$ where

$$
s=\sum_{1 \leq i \leq n} i
$$

for natural numbers n.

```
sumto(0,0).
sumto(N,S) :- N >= 1, N <= S, sumto(N-1,S-N).
```


CLP by example (2)

```
sumto(0,0).
sumto(N,S) :- N >= 1, N <= S, sumto(N-1,S-N).
```

- The query $\mathrm{S}<=3$, sumto (N, S) gives rise to three answers:

$$
(N=0, S=0),(N=1, S=1),(N=2, S=3)
$$

- Computation sequence for $(N=2, S=3)$:

$$
S \leq 3, \operatorname{sumto}(N, S)
$$

$$
\begin{gathered}
S \leq 3, N=N_{1}, S=S_{1}, N_{1} \geq 1, N_{1} \leq S_{1} \\
\text { sumto }\left(N_{1}-1, S_{1}-N_{1}\right)
\end{gathered}
$$

$$
\begin{aligned}
& S \leq 3, N=N_{1}, S=S_{1}, N_{1} \geq 1, N_{1} \leq S_{1} \\
& N_{1}-1= N_{2}, S_{1}-N_{1}=S_{2}, N_{2} \geq 1, N_{2} \leq S_{2} \\
& \text { sumto }\left(N_{2}-1, S_{2}-N_{2}\right)
\end{aligned}
$$

$$
S \leq 3, N=N_{1}, S=S_{1}, N_{1} \geq 1, N_{1} \leq S_{1}
$$

$$
N_{1}-1=N_{2}, S_{1}-N_{1}=S_{2}, N_{2} \geq 1, N_{2} \leq S_{2}
$$

$$
N_{2}-1=0, S_{2}-N_{2}=0 .
$$

Comparison to logic programming

- Can the power of CLP be obtained by making simple changes to LP systems [JM94]?
- In other words, can predicates in LP be regarded as meaningful constraints?

```
add(0, N, N).
add(S(N), M, S(K)) :- add(N, M, K)
```

- The query $\operatorname{add}(\mathrm{N}, \mathrm{M}, \mathrm{K})$, $\operatorname{add}(\mathrm{N}, \mathrm{M}, \mathrm{S}(\mathrm{K}))$ runs forever in a conventional LP system:
- A global test for the satisfiability of the two add constraints is not done by the LP machinery.

Constraint Logic Programming
Underlying concepts
The $\operatorname{CLP}(\mathcal{X})$ framework Comparison of CLP with LP

Integrating Simplex with $\operatorname{DPLL}(\mathcal{T})$
$\operatorname{DPLL}(\mathcal{T})$
Existing linear arithmetic solvers
A solver for quantifier-free linear arithmetic

Davis-Putnam-Logemann-Loveland (DPLL)

- DPLL is a decision procedure for the boolean satisfiability problem
- Modern DPLL-based SAT solvers feature:
- unit propagation
- heuristics for selecting decision variables
- 2-literal watching
- clause learning
- backjumping

Solvers for quantifier-free theories

Given a quantifier-free theory \mathcal{T}, a \mathcal{T}-solver decides the satisfiability of finite sets of atoms of \mathcal{T}.

Decision procedures for quantifier-free theories

- Decide a boolean combination Φ of atoms of \mathcal{T} by combining a SAT solver with a \mathcal{T}-solver.
- Transform Φ into Φ_{0} by replacing atoms $\phi_{1} \ldots \phi_{t}$ with propositional variables $p_{1} \ldots p_{t}$
- A valuation b for Φ_{0} is a mapping from propositional variables to $\{0,1\}$
- Define set of atoms Γ_{b} such that:
- $\Gamma_{b}=\left\{\gamma_{1} \ldots \gamma_{t}\right\}$
- $\gamma_{i}=\phi_{i}$ if $b\left(p_{i}\right)=1$
- $\gamma_{i}=\neg \phi_{i}$ if $b\left(p_{i}\right)=0$
- Φ is satisfiable if there exists b that satisfies Φ_{0} and such that Γ_{b} is consistent in \mathcal{T}.

$\operatorname{DPLL}(\mathcal{T})$

- $\operatorname{DPLL}(\mathcal{T})$ is a framework which leverages the DPLL procedure and a \mathcal{T}-solver.
- Solver must support:
- updating the state by asserting new atoms
- checking consistency of current state
- backtracking
- producing explanations for conflicts (an inconsistent subset of atoms asserted in current state)
- Solver can optionally implement theory propagation, but:
- it must produce an explanation 「 for an implied atom γ, where Γ is a subset of atoms asserted in current state such that $\Gamma \models \gamma$.

$\operatorname{DPLL}(\mathcal{T})$ example

Consider the following simple example formula Φ in quantifier-free linear arithmetic:

$$
(x+y \geq 1 \vee x+y \leq-5) \wedge(x=-1) \wedge(y=-2)
$$

Conventions

In the following, we assume that:

- The solver is initialized for a fixed formula Φ
- \mathcal{A} denotes the set of atoms occurring in Φ
- α denotes the set of atoms asserted so far.

Interface for \mathcal{T}-solver

We assume that the following API is implemented by the solver:

- Assert (γ) : assert atom γ in current state.
- if it returns ok, γ is inserted into α
- if it returns unsat $(\Gamma), \alpha \cup\{\gamma\}$ is inconsistent and $\Gamma \subseteq \alpha$ is an explanation.
- Check(): check whether α is consistent
- if it returns ok, α is consistent, and a new checkpoint is created.
- if it returns unsat $(\Gamma), \alpha$ is inconsistent and $\Gamma \subseteq \alpha$ is an explanation
- Backtrack(): backtrack to the last checkpoint
- Propagate(): perform theory propagation
- it returns a set $\left\{\left\langle\Gamma_{1}, \gamma_{1}\right\rangle, \ldots,\left\langle\Gamma_{t}, \gamma_{t}\right\rangle\right\}$ where $\Gamma_{i} \subseteq \alpha$ and $\gamma_{i} \in \mathcal{A} \backslash \alpha$, such that $\Gamma_{i} \models \gamma_{i}$ for $1 \leq i \leq t$.

Remarks on the interface for \mathcal{T}-solver

- Assert (γ) must be sound but need not be complete: it can return ok even if $\alpha \cup\{\gamma\}$ is inconsistent.
- Check() must be sound and complete.
\Longrightarrow Several atoms can be asserted in a single "batch"

Quantifier-free linear arithmetic

A quantifier-free linear arithmetic formula is a first-order formula with atoms:

- either propositional variables
- or of the form

$$
a_{1} x_{1}+\ldots+a_{n} x_{n} \bowtie b
$$

where a_{1}, \ldots, a_{n} and b are rational numbers, x_{1}, \ldots, x_{n} are real (or integer variables), and $\bowtie \in\{=, \leq,<,>, \geq, \neq\}$.

Linear-arithmetic solvers for $\operatorname{DPLL}(\mathcal{T})$

Common approach: solvers based on incremental versions of the Simplex method

- Implemented in Yices, Simplics, MathSat
- Solver state includes a Simplex tableau derived from assertions
- The tableau can be seen as a set of equalities

$$
x_{i}=b_{i}+\sum_{x_{j} \in \mathcal{B}} a_{i j} x_{j}, \quad x_{i} \in \mathcal{N}
$$

where \mathcal{B} and \mathcal{N} are disjoints sets of basic and non-basic variables.

- Additional constraints are imposed, such as non-negativity of slack variables

Incremental Simplex method: pivoting

- Pivot $\left(x_{r}, x_{s}\right)$: swap basic variable x_{r} and non-basic variable x_{s} such that $a_{r s} \neq 0$, by replacing

$$
x_{r}=b_{r}+\sum_{x_{j} \in \mathcal{N}} a_{r j} x_{j}
$$

with

$$
x_{s}=-\frac{b_{r}}{a_{r s}}+\frac{x_{r}}{a_{r s}}-\sum_{x_{j} \in \mathcal{N} \backslash\left\{x_{s}\right\}} \frac{a_{r j} x_{j}}{a_{r s}}
$$

and eliminating x_{s} from the rest of tableau by substitution.

Incremental Simplex method operations

- To assert an atom γ of the form $t \geq 0$:
- Normalize γ by substituting in t basic variables by non-basic ones.
- Check whether resulting atom $t^{\prime} \geq 0$ is satisfiable by maximizing t^{\prime} using the tableau.
- Asserting equalities and strict inequalities follow same principle
- To backtrack:
- Remove rows from the tableau

Performance issues in incremental Simplex solvers

Asserting and backtracking have significant cost, due to:

- pivoting in assertions
- frequent addition and removal of rows
- frequent creation and deletion of slack variables

Important remarks for performance

- Generating minimal explanations is critical
- Theory propagation must be done cheaply: Full propagation is too expensive, heuristic propagation is superior
- Zero detection is expensive
\Longrightarrow Convert $t \neq 0$ into $(t>0) \vee(t<0)$

A different solver for linear arithmetic

We now proceed to describe a solver for linear arithmetic [DdM06] with the following properties:

- It is still based on the Simplex method
- It reduces the overhead of the incremental Simplex approach

Preprocessing

Idea: avoid incremental Simplex methods by rewriting formula Φ into an equisatisfiable formula $\Phi_{A} \wedge \Phi^{\prime}$, where:

- Φ_{A} is a conjunction of linear equalities
- All atoms of Φ^{\prime} are elementary, i.e. of the form

$$
y \bowtie b
$$

where y is a variable, b is a rational constant, and $\bowtie \in\{=, \leq,<,>, \geq\}$.

Example transformation

Let Φ be the following formula:

$$
\begin{gathered}
x \geq 0 \wedge \\
(x+y \leq 2 \vee x+2 y-z \geq 6) \\
\wedge(x+y=2 \vee x+2 y-z>4)
\end{gathered}
$$

Introducing variables s_{1} and s_{2}, it is rewritten to $\Phi_{A} \wedge \Phi^{\prime}$ as:

$$
\begin{gathered}
\left(s_{1}=x+y \wedge s_{2}=x+2 y-z\right) \wedge \\
\left(x \geq 0 \wedge\left(s_{1} \leq 2 \vee s_{2} \geq 6\right) \wedge\left(s_{1}=2 \vee s_{2}>4\right)\right)
\end{gathered}
$$

Properties of the rewritten formula

- Formula Φ_{A} can be written in matrix form as:

$$
A x=0
$$

where A is an $m \times n$ matrix with linearly independent rows, and $x \in \mathbb{R}^{n}$.

- The matrix A is fixed at all times and represents the equations

$$
s_{i}=\sum_{x_{j} \in V} c_{j} x_{j}
$$

where V is the set of variables of the original formula Φ.

Properties of the rewritten formula (2)

- Checking satisfiability of Φ amounts to finding x such that $A x=0$ and x satisfies Φ^{\prime}.
\Longrightarrow It suffices to decide the satisfiability of a set of elementary atoms Γ in linear arithmetic modulo the constraints $A x=0$.
- If the elementary atoms are only equalities and non-strict inequalities, the problem consists of finding $x \in \mathbb{R}^{n}$ such that

$$
A x=0 \text { and } l_{j} \leq x_{j} \leq u_{j} \quad \text { for } j=1, \ldots, n
$$

where l_{j} is either $-\infty$ or a rational number, and u_{j} is either $+\infty$ or a rational number.

A basic solver

- We first consider a solver that handles only equalities and non-strict inequalities with real variables.
- The solver state includes:
- A tableau derived from A, which we can represent as:

$$
x_{i}=\sum_{x_{j} \in \mathcal{N}} a_{i j} x_{j} \quad x_{i} \in \mathcal{B}
$$

- Lower and upper bounds l_{i} and u_{i} for each x_{i}
- A mapping β assigning a rational value to each x_{i}
- Initially, $l_{j}=-\infty, u_{j}=+\infty, \beta\left(x_{j}\right)=0$ for all j.

Invariants for the mapping β

The mapping β always satisfies the following invariants:

- The bounds on non-basic variables are always satisfied, i.e.

$$
\forall x_{j} \in \mathcal{N}, l_{j} \leq \beta\left(x_{j}\right) \leq u_{j}
$$

- The mapping always satisfies the constraints $A x=0$

Main algorithm

- The main procedure is based on the dual Simplex algorithm and uses Bland's pivot-selection rule, which ensures termination.
- It assumes a total order on the problem variables.
- At a given moment, we assume that the invariants on β hold, but the mapping may not satisfy the bound constraints $l_{i} \leq \beta\left(x_{i}\right) \leq u_{i}$ for basic variables.
- Procedure Check() looks for a new β that satisfies all constraints.

Check() procedure

1: loop
2: \quad select smallest basic var. x_{i} s.t. $\beta\left(x_{i}\right)<l_{i}$ or $\beta\left(x_{i}\right)>u_{i}$
3: if there is no such x_{i} then
4: return SAT
5: else if $\beta\left(x_{i}\right)<l_{i}$ then
6: \quad select smallest non-basic var. x_{j} s.t.
7: $\quad\left(a_{i j}>0 \wedge \beta\left(x_{j}\right)<u_{j}\right) \vee\left(a_{i j}<0 \wedge \beta\left(x_{j}\right)>I_{j}\right)$
8: if there is no such x_{j} then return UNSAT
10: else
11: \quad PivotAndUpdate $\left(x_{i}, x_{j}, l_{i}\right)$
12: end if
13: \quad else if $\beta\left(x_{i}\right)>u_{i}$ then
14: select smallest non-basic var. x_{j} s.t.
15: $\quad\left(a_{i j}<0 \wedge \beta\left(x_{j}\right)<u_{j}\right) \vee\left(a_{i j}>0 \wedge \beta\left(x_{j}\right)>l_{j}\right)$
16: \quad if there is no such x_{j} then
17: return UNSAT
18: else
19: PivotAndUpdate $\left(x_{i}, x_{j}, u_{i}\right)$
20: end if
21: end if
22: end loop

Termination of Check()

Theorem
Procedure Check() always terminates.
Proof sketch:

- There is a unique tableau for any set of basic variables \mathcal{B}.
- There is a finite number of possible assignments β for base B_{t} at t-th iteration.
- The state of the solver at iteration t is the pair $\left\langle\beta_{t}, B_{t}\right\rangle$, and there are finitely many states reachable from S_{0}.
- If Check() does not terminate, the sequence of states must contain a cycle.
- One can show by contradiction that such a cycle cannot occur.

The correctness of the procedure is a consequence of this theorem.

Generating explanations

If an inconsistency is detected (say, at line 8 of Check()), then:

- There is a basic variable x_{i} s.t. $\beta\left(x_{i}\right)<I_{i}$
- For all non-basic variable x_{j}, we have:
$a_{i j}>0 \Longrightarrow \beta\left(x_{j}\right) \geq u_{j}$ and
$a_{i j}<0 \Longrightarrow \beta\left(x_{j}\right) \leq l_{j}$
- If we define $\mathcal{N}^{+}=\left\{x_{j} \in \mathcal{N} \mid a_{i j}>0\right\}$ and $\mathcal{N}^{-}=\left\{x_{j} \in \mathcal{N} \mid a_{i j}<0\right\}$, then, by the invariant for β : $\beta\left(x_{j}\right)=u_{j}$ for all $x_{j} \in \mathcal{N}^{+}$and $\beta\left(x_{j}\right)=I_{j}$ for all $x_{j} \in \mathcal{N}^{-}$
- We therefore have:

$$
\beta\left(x_{i}\right)=\sum_{x_{j} \in \mathcal{N}} a_{i j} \beta\left(x_{j}\right)=\sum_{x_{j} \in \mathcal{N}^{+}} a_{i j} u_{j}+\sum_{x_{j} \in \mathcal{N}^{-}} a_{i j} l_{j}
$$

Generating explanations (2)

- We have:

$$
\beta\left(x_{i}\right)=\sum_{x_{j} \in \mathcal{N}^{+}} a_{i j} u_{j}+\sum_{x_{j} \in \mathcal{N}^{-}} a_{i j} l_{j}
$$

- As $x_{i}=\sum_{x_{j} \in \mathcal{N}} a_{i j} x_{j}$ holds for all x s.t. $A x=0$:

$$
\beta\left(x_{i}\right)-x_{i}=\sum_{x_{j} \in \mathcal{N}^{+}} a_{i j}\left(u_{j}-x_{j}\right)+\sum_{x_{j} \in \mathcal{N}^{-}} a_{i j}\left(l_{j}-x_{j}\right)
$$

- We can then derive the implications:

$$
\bigwedge_{x_{j} \in \mathcal{N}^{+}} x_{j} \leq u_{j} \Longrightarrow \sum_{x_{j} \in \mathcal{N}^{+}} a_{i j}\left(u_{j}-x_{j}\right) \geq 0
$$

and

$$
\bigwedge_{x_{j} \in \mathcal{N}^{-}} x_{j} \geq l_{j} \Longrightarrow \sum_{x_{j} \in \mathcal{N}^{-}} a_{i j}\left(l_{j}-x_{j}\right) \geq 0
$$

Generating explanations (3)

- We have:

$$
\bigwedge_{x_{j} \in \mathcal{N}^{+}} x_{j} \leq u_{j} \Longrightarrow \sum_{x_{j} \in \mathcal{N}^{+}} a_{i j}\left(u_{j}-x_{j}\right) \geq 0
$$

and

$$
\bigwedge_{x_{j} \in \mathcal{N}^{-}} x_{j} \geq I_{j} \Longrightarrow \sum_{x_{j} \in \mathcal{N}^{-}} a_{i j}\left(I_{j}-x_{j}\right) \geq 0
$$

- Finally, we derive:

$$
\bigwedge_{x_{j} \in \mathcal{N}^{+}} x_{j} \leq u_{j} \wedge \bigwedge_{x_{j} \in \mathcal{N}^{-}} x_{j} \geq l_{j} \Longrightarrow x_{i} \leq \beta\left(x_{i}\right)
$$

- As we also have $\beta\left(x_{i}\right)<l_{i}$, this is inconsistent with $I_{i} \leq x_{i}$
- Therefore we have the (minimal) explanation:

$$
\Gamma=\left\{x_{j} \leq u_{j} \mid x_{j} \in \mathcal{N}^{+}\right\} \cup\left\{x_{j} \geq l_{j} \mid x_{j} \in \mathcal{N}^{-}\right\} \cup\left\{x_{i} \geq l_{i}\right\}
$$

Assertion procedures

The Assert () function relies on two functions AssertUpper ($x_{i} \leq c_{i}$) and AssertLower ($x_{i} \geq c_{i}$):

- AssertUpper $\left(x_{i} \leq c_{i}\right)$:

1: if $c_{i} \geq u_{i}$ then
2: return SAT
3: else if $c_{i}<I_{i}$ then
4: return UNSAT
5: else
6: $\quad u_{i}:=c_{i}$
7: if x_{i} non-basic and $\beta\left(x_{i}\right)>c_{i}$ then
8: Update $\left(c_{i}\right)$
9: end if
10: return OK
11: end if

Backtracking

- We only need to store:
- the value u_{i} before it is updated by AssertUpper
- the value l_{i} before it is updated by AssertLower
- In particular, we don't store successive β s on a stack: the last β obtained after a successful Check() is a model for all previous checkpoints.

Theory propagation

- Unate propagation
- very cheap to implement
- if bound $x_{i} \geq c_{i}$ is asserted, any unassigned atom $x_{i} \geq c^{\prime}$ with $c^{\prime}<c$ is implied.
- useful in practice
- Bound refinement
- Given a row of tableau:

$$
x_{i}=\sum_{x_{j} \in \mathcal{N}} a_{i j} x_{j}
$$

We can refine currently asserted bounds on x_{i} using bounds on non-basic variables

Example

- Initial state: $A_{0}=\left\{s_{1}=-x+y, s_{2}=x+y\right\}$

Example

- Initial state: $A_{0}=\left\{s_{1}=-x+y, s_{2}=x+y\right\}$
- Assert $x \leq 4$

Example

- Initial state: $A_{0}=\left\{s_{1}=-x+y, s_{2}=x+y\right\}$
- Assert $x \leq 4$
- Assert $-8 \leq x$

Example

- Initial state: $A_{0}=\left\{s_{1}=-x+y, s_{2}=x+y\right\}$
- Assert $x \leq 4$
- Assert $-8 \leq x$
- Assert $s_{1} \leq 1$

Handling strict inequalities

Lemma

A set of linear arithmetic literals Γ containing strict inequalities $S=\left\{p_{0}>0, \ldots, p_{n}>0\right\}$ is satisfiable iff there exists a rational number $\delta>0$ such that for all δ^{\prime} such that $0<\delta^{\prime} \leq \delta$, $\Gamma_{\delta}=\left(\Gamma \cup S_{\delta}\right) \backslash S$ is satisfiable, where $S_{\delta}=\left\{p_{1} \geq \delta, \ldots, p_{n} \geq \delta\right\}$.

- We can replace strict inequalities by non-strict ones if a small enough δ is known
- We treat δ symbolically instead of computing an explicit value

Handling strict inequalities (2)

- Bounds and assignments range over the set \mathbb{Q}_{δ} of pairs of rationals
- $(c, k) \in \mathbb{Q}_{\delta}$ is denoted by $c+k \delta$
- Define operations:

$$
\begin{aligned}
\left(c_{1}, k_{1}\right)+\left(c_{2}, k_{2}\right) & \equiv\left(c_{1}+c_{2}, k_{1}+k_{2}\right) \\
a \times(c, k) & \equiv(a \times c, a \times k) \\
\left(c_{1}, k_{1}\right) \leq\left(c_{2}, k_{2}\right) & \equiv\left(c_{1}<c_{2}\right) \vee\left(c_{1}=c_{2} \wedge k_{1} \leq k_{2}\right)
\end{aligned}
$$

where a is a rational number.

Defining δ

If $\left(c_{1}, k_{1}\right) \leq\left(c_{2}, k_{2}\right)$ holds in \mathbb{Q}_{δ}, then we can find $\delta_{0}>0$ such that

$$
c_{1}+k_{1} \varepsilon \leq c_{2}+k_{2} \varepsilon
$$

is satisfied by all positive $\varepsilon \leq \delta_{0}$. Define it as:

$$
\begin{array}{ll}
\delta_{0}=\frac{c_{2}-c_{1}}{k_{1}-k_{2}} & \text { if } c_{1}<c_{2} \text { and } k_{1}>k_{2} \\
\delta_{0}=1 & \text { otherwise }
\end{array}
$$

Defining δ for the general case

More generally, assume we have $2 m$ elements of \mathbb{Q}_{δ}, $v_{i}=\left(c_{i}, k_{i}\right), w_{i}=\left(d_{i}, h_{i}\right)$ for $1 \leq i \leq m$. If the m inequalities $v_{i} \leq w_{i}$ hold in \mathbb{Q}_{δ}, then there exists $\delta_{0}>0$ such that

$$
\begin{aligned}
c_{1}+k_{1} \varepsilon & \leq d_{1}+h_{1} \varepsilon \\
& \vdots \\
c_{m}+k_{m} \varepsilon & \leq d_{m}+h_{m} \varepsilon
\end{aligned}
$$

are satisfied by all positive $\varepsilon \leq \delta_{0}$. We can define:

$$
\delta_{0}=\min \left\{\left.\frac{d_{i}-c_{i}}{k_{i}-h_{i}} \right\rvert\, c_{i}<d_{i} \text { and } k_{i}>h_{i}\right\}
$$

Problem and solution conversion

- A problem with strict inequalities can be converted into another without strict inequalities
- Convert $x_{i}>l_{i}$ into $x_{i} \geq l_{i}+\delta=l_{i}^{\prime}$
- Convert $x_{i}<u_{i}$ into $x_{i} \leq u_{i}-\delta=u_{i}^{\prime}$
- The basic solver described previously will give an assignment β^{\prime} mapping variables to elements of \mathbb{Q}_{δ}, if the problem is satisfiable
- If $I_{j}^{\prime}=\left(c_{j}, k_{j}\right), u_{j}^{\prime}=\left(d_{j}, h_{j}\right), \beta^{\prime}\left(x_{j}\right)=\left(p_{j}, q_{j}\right)$, we already know that there exists $\delta_{0}>0$ such that

$$
c_{j}+k_{j} \varepsilon \leq p_{j}+q_{j} \varepsilon \leq d_{j}+h_{j} \varepsilon \quad \text { for } 1 \leq j \leq n
$$

holds for all positive $\varepsilon \leq \delta_{0}$.

- Define satisfying assignment $\beta\left(x_{j}\right)=p_{j}+q_{j} \delta_{0}$ for original problem

Integer and mixed integer problems

- The previously described algorithm is not complete if some variables must be integers.
- A branch and cut strategy is used to be complete for the integer case. It is the combination of:
- the branch and bound algorithm
- a cutting plane generation algorithm

Branch and bound

Consider the problem

$$
\begin{gathered}
A x=0 \\
l_{j} \leq x_{j} \leq u_{j} \text { for } 1 \leq j \leq n
\end{gathered}
$$

with the additional condition that x_{i} is an integer variable for $i \in I \subseteq\{1, \ldots, n\}$.

Branch and bound (2)

- Solve the linear programming relaxation, i.e. search for a solution in reals
- If relaxation is infeasible, the problem is infeasible too.
- If an assignment β is found that satisfies all integer constraints, we are done.
- If there exists $i \in I$ such that $\beta\left(x_{i}\right) \notin \mathbb{Z}$, then solve (recursively) the two subproblems:

$$
\begin{aligned}
& S_{0}:\left\{\begin{array}{l}
A x=0 \\
l_{j} \leq x_{j} \leq u_{j} \\
l_{i} \leq x_{i} \leq\left\lfloor\beta\left(x_{i}\right)\right\rfloor
\end{array} \quad \text { for } 1 \leq j \leq n \text { and } j \neq i\right. \\
& S_{1}:\left\{\begin{array}{l}
A x=0 \\
l_{j} \leq x_{j} \leq u_{j} \\
\left\lfloor\beta\left(x_{i}\right)\right\rfloor+1 \leq x_{i} \leq u_{i}
\end{array}\right.
\end{aligned}
$$

The need for a cutting plane generation algorithm

- If not all integer variables have an upper and a lower bound, branch and bound may not terminate.
- Example:

$$
1 \leq 3 x-3 y \leq 2
$$

This constraint is unsatisfiable if x and y are integers. A naïve branch and bound algorithm loops on this input.

- W.I.o.g. we assume that all integer variables are bounded.
- The bounds are typically too large, and cutting plane algorithms are needed to accelerate convergence.

Cuts

Assume β is a solution to the LP relaxation P of problem S, but not to S itself. A cut is a linear inequality

$$
a_{1} x_{1}+\ldots+a_{n} x_{n} \leq b
$$

that is not satisfied by β but is satisfied by any element in the convex hull of S.
The cut can be added as a new constraint to S, yielding a problem S^{\prime}

- that has the same solutions as S
- but whose LP relaxation P^{\prime} is strictly more constrained than P.

Deriving Gomory cuts

We have:

$$
\begin{aligned}
x_{i}-\beta\left(x_{i}\right) & =\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right) \\
x_{i}-\left\lfloor\beta\left(x_{i}\right)\right\rfloor & =f_{0}+\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
J & =\left\{j \in I \mid x_{j} \in \mathcal{N}^{\prime} \wedge \beta\left(x_{j}\right)=I_{j}\right\} \\
K & =\left\{j \in I \mid x_{j} \in \mathcal{N}^{\prime} \wedge \beta\left(x_{j}\right)=u_{j}\right\} \\
\mathcal{N}^{\prime} & =\mathcal{N} \cap\left\{x_{j} \mid I_{j}<u_{j}\right\}
\end{aligned}
$$

Deriving Gomory cuts (2)

We have:

$$
x_{i}-\left\lfloor\beta\left(x_{i}\right)\right\rfloor=f_{0}+\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right)
$$

which holds for all x that satisfies the problem S. Furthermore, for any such $x, x_{i}-\left\lfloor\beta\left(x_{i}\right)\right\rfloor$ is an integer and the following also hold:

$$
\begin{array}{rc}
x_{j}-l_{j} \geq 0 & \text { for all } j \in J \\
u_{j}-x_{j} \geq 0 & \text { for all } j \in K
\end{array}
$$

Deriving Gomory cuts (3)

We consider two cases:

- If $\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right) \geq 0$, then:

$$
f_{0}+\sum_{j \in J} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K} a_{i j}\left(u_{j}-x_{j}\right) \geq 1
$$

as $f_{0}>0$ and the left-hand side is an integer. Then we have:

$$
\sum_{j \in J^{+}} a_{i j}\left(x_{j}-l_{j}\right)-\sum_{j \in K^{-}} a_{i j}\left(u_{j}-x_{j}\right) \geq 1-f_{0}
$$

where $J^{+}=\left\{j \in J \mid a_{i j} \geq 0\right\}$ and $K^{-}=\left\{j \in K \mid a_{i j}<0\right\}$. Equivalently:

$$
\sum_{j \in J^{+}} \frac{a_{i j}}{1-f_{0}}\left(x_{j}-l_{j}\right)+\sum_{j \in K^{-}} \frac{-a_{i j}}{1-f_{0}}\left(u_{j}-x_{j}\right) \geq 1
$$

Deriving Gomory cuts (4)

We apply the same procedure for the other case, and combining the two cases, we obtain:

$$
\begin{aligned}
& \sum_{j \in J^{+}} \frac{a_{i j}}{1-f_{0}}\left(x_{j}-l_{j}\right)+\sum_{j \in J^{-}} \frac{-a_{i j}}{f_{0}}\left(x_{j}-l_{j}\right)+ \\
& \sum_{j \in K^{+}} \frac{a_{i j}}{f_{0}}\left(u_{j}-x_{j}\right)+\sum_{j \in K^{-}} \frac{-a_{i j}}{1-f_{0}}\left(u_{j}-x_{j}\right) \geq 1
\end{aligned}
$$

which is a mixed-integer Gomory cut: it is satisfied by any x that satisfies S, but it is not satisfied by the assignment β (as the left-hand side is equal to 0 in that case).

References

Eive Bruno Dutertre and Leonardo de Moura． Integrating Simplex with DPLL（T）．
Technical Report SRI－CSL－06－01，SRI International， 2006.
國 Joxan Jaffar and Jean－Louis Lassez．
Constraint logic programming．
In Proceedings of the 14th ACM SIGACT－SIGPLAN
symposium on Principles of programming languages，POPL
＇87，pages 111－119，New York，NY，USA，1987．ACM．
嗇 Joxan Jaffar and Michael J．Maher．
Constraint Logic Programming：A Survey．
J．Log．Program．，19／20：503－581， 1994.
嗇 Joxan Jaffar，Spiro Michaylov，Peter J．Stuckey，and Roland H．C．Yap．
The $\operatorname{CLP}(R)$ language and system．
ACM Trans．Program．Lang．Syst．，14：339－395，May 1992.

