Randomized Model Finder

Difficult to solve ? Let's try to guess...

Model Finding Basics

First Order Logic Formula

- Predicate
- Functions
- Interpretation
 - (Finite) Domain
 - Interpretation of predicates and functions
- Model: Interpretation that satisfies some FOL formulas

Why model finding ?

- Artificial Intelligence
- Constraint satisfaction problems
- Disproof a formula
- Show non respect of a specification

How to find model?

- Exhaustive search
- SEM: Search using constraint propagation method
- MACE: Translating « instanciated » FOL formulas into propositional clauses, solved by a SAT-Solver
- KODKOD: Takes into account partial instance

TPTP

- A language to write FOL formulas and propositional clauses
- Annotations
 - Kind of formula (conjecture, axioms)
 - Name
- Huge library spanning across several domains used to test and compare automatic reasoning tools.

TPTP

□ Formulas:

- **F** := **F** & **F** | ![x]. **F** | ?[x].**F** | ... | **A**
- A := Predicate($\mathbf{T}_1, ..., \mathbf{T}_n$)
- **T** := Symbol($\mathbf{T}_1, \dots, \mathbf{T}_n$)

Example: [H1,H2] : (q(H1,H2) < = >H1 = H2)

Solver (naive)

- 1. Pick an interpretation /
- 2. Evaluate / on input formulas
- 3. If *I* satisfies all formulas \rightarrow output(*I*)
- If the max number of iterations has been reached → terminates
- 5. Go to (1)

Why randomize it ?

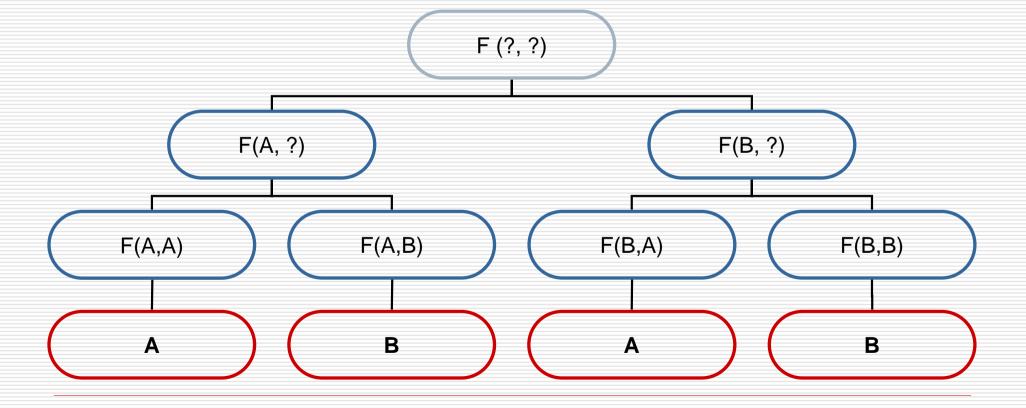
- □ Finding models takes time...
- □ ... and space
- Exponential complexity makes enumeration impossible

Possibility to find a model but not to proove their inexistance

Improve your chances...

- Since we can't look at all the interpretations, we have to select the most promising ones.
- Selection based on a cost function and a heuristic to navigate through the search space

How cheap is your interpretation ?


Depth of first « broken » atom
Number of « broken » atoms

Idea: if the cost of / is zero, then your formula is satisfied.

Reduce » model finding to optimizing a function over an high dimension discrete search space

Interpretation

- Function interpretation is encoded as a list of Elements
- Predicate interpretation is encoded as a list of Boolean
- Interpretation: encoded as a vector

Navigating in the search space

Particle Swarm Optimization

Particles moving around with some initial speed. The minima they find is used to generate speeds for the next iteration.

Local search