
Instruction-level Reverse Execution for Debugging

Tankut Akgul and Vincent J. Mooney III

Technical Report GIT-CC-02-49
Georgia Institute of Technology

Abstract

Reverse execution provides a programmer with the ability to return a program to
a previous state in its execution history. The ability to execute a program in reverse
is advantageous for shortening software development time. Conventional techniques
for reverse execution rely on saving a state into a record before the state is destroyed.
State saving introduces both memory and time overheads during forward execution.

Our proposed method introduces a reverse execution methodology at the assembly
instruction level with low memory and time overheads. The methodology generates
from a program a reverse program by which a destroyed state is almost always re-
generated rather than being restored from a record. This significantly reduces state
saving.

The methodology has been implemented on a PowerPC processor with a custom
made debugger. As compared to previous work all of which heavily use state saving
techniques, the experimental results show 2.5X to 400X memory overhead reduction
for the tested benchmarks. Furthermore, the results with the same benchmarks show
an average of 4.1X to 5.7X reduction in execution time overhead.

1

1 Introduction

As human beings are quite prone to making mistakes, it is very difficult for a programmer
to write an error-free program without going through a debugging cycle. For this reason,
debugging is an important and inevitable part of software development.

Locating bugs by just looking at source code is quite difficult. Consequently, a run-time
interaction with the program is very useful for debugging. Unfortunately, many of the bugs
in programs do not cause errors immediately, but instead the bugs show their effects much
later in program execution. For this reason, even the most careful programmer equipped
with a state-of-the-art debugger might well miss the first occurrence of a bug and thus might
have to restart the program. Furthermore, for difficult to find bugs, this process might
have to be repeated multiple times. Even worse, for intermittent bugs due to rare timing
behaviors, the bug might not reappear right away when the program is restarted.

Reverse execution provides the programmer with the ability to return to a particular
previous state in program execution. By reverse execution, program re-executions can be
localized around a bug in a program. When the programmer misses a bug location by over-
executing a program, he/she can roll back to a point where the processor state is known to
be correct and then re-execute from that point on without having to restart the program.
This eliminates the requirement to re-execute unnecessary parts of the program every time
a bug location is missed, thus potentially reducing the overall debugging time significantly.

In this report, a novel reverse execution methodology in software is described. The de-
scribed methodology is unique in the sense that it provides reverse execution at the assembly
instruction-level granularity and yet still has reasonable memory and time overheads when
the program is being executed. Note that in the rest of this report, the word “instruction”
refers to an assembly instruction.

In Section 2, the main challenges of reverse execution are explained and the motivation
behind this report is stated. In Section 3, related work is presented. In Sections 4 and 5, the
approach of this report is introduced. The experimental results are presented in Section 6.
Finally, Section 7 concludes the report.

2 Background and Motivation

An execution of a program T on a processor P can be represented by a transition among a
series of processor states S = (S0, S1, S2, ...). From this representation, instruction-level
reverse execution of a program can be defined as follows:

Definition 2.1 Instruction-level Reverse Execution: Reverse execution of a program T running on

a processor P can be defined as taking P from its current state Si to a previous state Sj (0 ≤ j < i)

by executing a set of instructions which reverses the effect of instructions in T . The closest achievable

distance between Si and Sj without any forward execution determines the granularity of reverse execu-

tion. If state Sj is allowed to be as early as one instruction before state Si, then the reverse execution

is said to be instruction-level reverse execution. 2

The simplest approach for obtaining a previously attained state is saving that state
before it is destroyed. However, saving a state during execution of a program introduces two
overheads: memory and time. A solution to reduce memory and time overheads would be

2

to decrease the frequency of state saving during program execution. However, this prevents
an immediate return (i.e., a return without any forward execution) to an arbitrary point in
execution history where state is not saved. Therefore, in applying state saving, there usually
exists a tradeoff between the closest previous state that can be restored without any forward
execution and memory/time overheads due to state saving.

Performance and memory constraints or lack of compiler support usually forces assembly
language programming of some software components such as small scale embedded applica-
tions, firmware for consumer electronics, DSP libraries and operating system modules such
as schedulers, high performance I/O routines or device drivers. For instance, the majority of
boot code for the computer system of the Pathfinder Spacecraft was written in assembly lan-
guage because it was critical for the computer to boot up very quickly in case of a failure [26].
Therefore, during debugging of such software components, programmers have to be involved
in instruction-level program execution. Furthermore, in implementing a language construct
such as a pointer to an integer, sometimes the compiler generates assembly different from
what the programmer expected. These reasons are why most of the debugger tools for soft-
ware contain assembly-level execution views. Thus, reverse execution at the instruction-level
granularity turns out to be very helpful when debugging these sorts of software components.

During debugging of programs written either in a high-level or in a low-level programming
language, programmers typically use a single-stepping facility to locate bugs. It is not an
uncommon circumstance that programmers miss a bug location by executing just one more
step over the next statement or instruction in the program. In such a case, instruction-level
reverse execution provides an extremely fast backup capability.

However, due to the tradeoff between memory/time overheads and the closest previous
state that can be restored, providing instruction-level state recovery by state saving can
translate into very high memory and time overheads during execution of a program. There-
fore, our goal is to achieve reverse execution at the native instruction level with low memory
and time overheads, which will open the way for addition of a missing feature, instruction-
level reverse execution, to state-of-the-art debuggers.

3 Related Work

Reverse execution has been researched in several contexts. In this section, we will mention
previous work according to different application areas of reverse execution and also according
to different techniques applied.

Zelkowitz provides a state restoration capability by inserting trace statements into the
programming language [30]. Each trace statement includes an option which indicates either
a condition or a label. Program state is captured starting from a trace statement until the
condition indicated by the trace statement is satisfied or until the label indicated by the
trace statement is reached. However, the programmer has to anticipate which parts of the
program he or she might have to re-execute and then has to insert trace statements in those
program parts beforehand.

Agrawal et al. provide a statement-level state restoration capability of a program written
in a high-level programming language [2]. They statically associate with each assignment
statement a set of variables, called a change-set, which is modified by that statement. Then,

3

during the execution, the associated variables in the change-set are recorded (saved to mem-
ory) for rollback. However, obviously, although this approach provides a statement-level
state restoration capability, it might cause large memory and time overheads during pro-
gram execution, especially with programs that modify the state frequently.

Reverse execution is also applied in so-called replay techniques for efficient debugging
of nondeterministic sequential or parallel programs using either hardware [4, 25] or soft-
ware [11, 20, 23, 24]. In a replay technique, first, the state of a program is saved at a coarser
granularity during execution of the program and then the program state at a finer granular-
ity is reconstructed by replaying the program using previously saved runtime information.
In hardware approaches, state saving is handled by hardware with inflexibility and high cost
but with little or no performance overhead. On the other hand, in software approaches,
state saving is handled by software with flexibility and low cost but with high performance
overhead. A typical drawback of these replay techniques is that since the recorded trace
keeps only partial information about program state, execution can be restarted only at the
beginning of a time interval in execution history but not at an arbitrary program point.

Reverse execution finds its application in a limited sense in the area of debugging opti-
mized code as well [1, 17, 29]. Hennessy introduces the term “currency” of a variable. A
variable is current at a program point if the value of the variable at that program point
is the same as the variable’s expected value which is deduced from the source code. Since
code optimizations such as code motion and dead variable elimination may move or remove
assignments to variables in the object code, the value of a variable at a certain point in the
optimized code may not be equal to the value of the variable at the corresponding point in
the unoptimized code, which causes the variable to be “noncurrent” at that program point.
In such a case, the current value of the variable has to be recovered to provide the user with
a consistent view of the program being debugged. This recovery operation is where reverse
execution comes into play. A typical recovery technique in this field is to reevaluate noncur-
rent variables using appropriate definitions of those variables in the program. However, since
the main focus in this area has been on the determination of whether a variable is current
or not at a program point rather than on the recovery of a noncurrent variable, the recovery
techniques applied in this area are generally very restrictive and ineffective. For instance,
Wismuller reports that only 2-5% of all encountered noncurrent variables can be recovered
in his benchmarks [29].

Floyd makes use of reverse execution or backtracking approach in the area of nondeter-
ministic algorithms [13]. A nondeterministic algorithm is an algorithm which may come up
with different solutions to a problem at each run of the algorithm. However, the solution is
not reached by a random process but by intelligently and incrementally constructing a right
path which leads to a success. In Floyd’s approach, whenever a nondeterministic algorithm
enters a path leading to a dead end, the algorithm state at the most recent point where a
decision is made is restored and alternative solutions are sought from that point on. In this
way, all possible solutions out of a nondeterministic algorithm can be obtained, which essen-
tially converts a nondeterministic algorithm into a deterministic one. This technique turns
out to be very useful for theorem proving in artificial intelligence as well. Floyd achieves
state restoration by defining a reverse operation for each operation in a nondeterministic al-

4

gorithm. However, except for constructive operations such as “x = x + 1,” reverse operations
are realized by applying state saving.

Reverse execution is also used in computer science education where students can easily
navigate back and forth through well-known algorithms to understand the behavior of such
algorithms. For this purpose, the common technique applied is program animation [6, 9].
Program animation constructs a virtual machine with a reversible set of instructions. Since
these instructions are reversible, the program can be run backwards. However, in program
animation, a program is usually interpreted, which slows down the animation considerably,
and makes it impossible to execute the program using native machine instructions, not even in
the forward direction. Moreover, since reversible instructions are usually constructed as stack
operations, a significant amount of stack memory may be required in program animation.

Two other application areas of reverse execution are optimistic or speculative computa-
tion [14, 15, 18] and fault tolerance [8, 19]. A computation is optimistic if incorrect compu-
tation is allowed during execution. In parallel executions, tasks usually have to block due
to synchronization requirements on shared data. In optimistic parallel executions, blocking
of the tasks on shared data is prevented and the tasks are allowed to execute independently,
which potentially improves the execution performance but at the same time allows incor-
rect computation. Then, errors caused by possible incorrect computations are recovered by
rolling back the computation of erroneous tasks to a point in time where state is known
to be correct. Similarly, reverse execution for fault tolerance is performed by rolling back
in case software errors occur, which is usually seen in places such as database transaction
systems [5, 16].

Rolling back computations or transactions is usually achieved by periodic or incremental
state saving. In periodic state saving [12], the whole processor state is recorded periodically
at certain checkpoints during simulation. Then, a previous state at a checkpoint can be
recovered by restoring that state from the record. However, in this method, a previous state
at an arbitrary point that is not a checkpoint cannot be immediately recovered, which results
in a coarser granularity reverse execution. If the checkpointing interval is reduced to provide a
finer granularity reverse execution, memory and time overheads of state saving are increased.
Moreover, recording the whole processor state at each checkpoint causes redundancy because
some portion of the processor state may be kept unchanged throughout several checkpoints.
In incremental state saving [28], instead of recording the whole processor state, only the
modified parts of a state are recorded. However, in programs where the modified state
space is large, memory and time overheads of incremental state saving might again exceed
affordable limits.

Carothers et al. introduce another approach for optimistic parallel simulations [7]. This
approach is source transformation. In source transformation, the source code (e.g., in C)
is transformed to a reversible source code version excluding destructive statements such as
direct assignments. For destructive statements, state saving is applied. Consequently, the
execution time and memory requirement of the transformed code are increased. Source
transformation does not provide reverse execution at the instruction-level granularity, but
instead at the source code granularity.

5

In the next section, we will give an overview of how we achieve an instruction-level
reverse execution of a program under consideration. Then, the details of our approach will
be explained in Section 5.

4 Overview of our Approach

Our approach is mainly based on regenerating a previously destroyed state rather than
restoring the state from a record. When state regeneration is not possible, however, we
recover a destroyed state by state saving. Therefore, our solution is a hybrid solution between
state regeneration and state saving. In this section, we will explain how we achieve state
regeneration. We will also describe our state saving method in Section 4.3.

Suppose that an execution of a program T on a processor P causes P to attain the
series of states S = (S0, S1, S2, ...) where the distance between two consecutive states
is one instruction. Now, assume that we can generate another program RT , the reverse of
T , such that when a specific portion of RT is executed in place of T when P is at a state
Si = (PCi, Mi, Ri), the state of P can be brought to a previous state Sj = (PCj, Mj, Rj)
(0 ≤ j < i). In other words, RT recovers a previously destroyed state. Then, the execution
of T can be reversed by executing RT in place of T . However, practically, it might be hard
to implement such a program RT . This is due to the following reasons:

(1) Typically, processors include auxiliary hardware usually not accessible by the instruc-
tions directly. The processors usually manipulate this kind of hardware implicitly.
Therefore, it is typically hard to recover indirectly modified state in this kind of hard-
ware. As an example, consider the overflow register of a processor. The overflow
register is written indirectly by an operation such as “c = a + b” if an overflow occurs
during such an operation. However, many processors do not specify an instruction
to directly write to the overflow register which makes it hard to recover the overflow
register.

(2) Generally, writing a value to the program counter either by a branch instruction or by
direct modification causes an immediate jump to the location designated by the written
value. Therefore, as soon as RT were to recover the program counter, the execution of
RT would immediately be broken. This suggests that the program counter should be
recovered only at the end of the execution of a specific portion of RT and just before
the user switches back to forward execution. However, since it is not known a priori
what program part the user will reverse execute (i.e., which portion of RT the user
will run), it is impractical to recover the program counter inside RT .

(3) If an instruction modifies a memory location, the instruction encoding only tells us the
modified address but not the physical location actually being modified in the memory
hierarchy (i.e., L1 cache, L2 cache or main memory). Without the knowledge of the
physical location actually being modified, it is typically hard to recover the exact
physical memory state.

Therefore, let us define a processor state S ′ = (M ′,R′) which excludes the program
counter (PC) value and which includes only directly modified memory (M ′) and directly

6

modified register (R′) values (i.e., M ′ and R′ only include the memory locations and reg-
isters that appear as operands of the instructions of T). Moreover, let us define M ′ to
interchangeably represent either processor cache or main memory, whichever is used for
keeping a program value at a certain time.

Given our definition of state S ′, we now introduce an instruction-level reverse program
as follows:

Definition 4.1 Instruction-level Reverse Program: Suppose that a processor P attains the series

of states S ′ = (S′
0, S′

1, S′
2, ...) during its execution of a program T where between a state S ′

i ∈ S′

and the preceding state S ′
i−1 ∈ S′, there exists only one instruction that directly modifies a memory or

a register value. Now, suppose that another program RT exists such that when a specific portion of

RT is executed in place of T when P is at a state S ′
i = (M ′

i , R
′
i), the state of P can be brought to a

previous state S ′
j = (M ′

j , R
′
j) (0 ≤ j < i). If RT contains an executable portion for changing the state

of P from any state S ′
i ∈ S′ to any other previous state S ′

j ∈ S′ (j < i) for any possible state sequence

S′ during execution of T , then RT is called the instruction-level reverse program of T . 2

Assuming that we can generate an instruction-level reverse program RT of T , we can
recover all memory and register values that are directly modified by T for every possible
execution of T . However, since the program counter value carries important debugging
information, we still have to provide a means for restoring the program counter value. We
solve this problem by leaving the recovery of the program counter value to the debugger
tool. The debugger tool associates the address of each instruction in T with the beginning
address of the corresponding portion in RT which reverses the effect of that instruction. In
this way, when a part of T is reverse executed by executing the corresponding portion in
RT , the debugger tool restores the value of the program counter by using the connection
between the addresses in T and RT . Similarly, we handle the recovery of indirectly modified
memory/register values which have an effect on T ’s state by the help of the debugger tool.
For more information about recovering indirectly modified memory/register values, please
refer to the Appendix.

In order to be able to generate an instruction-level reverse program RT for a program
T running on a processor P , we should first relate the states in a particular sequence S ′

attained by P to the instructions in T .

Definition 4.2 The Relation of a State Sequence to an Instruction Sequence: The state sequence

S′ = (S′
0, S′

1, S′
2, ...S′

n) during an execution of a program T on a processor P can be associated with

a set of instructions in T which completes in a sequence I = (α1, α2, ... αn) where αi ∈ I changes

the state of P from S ′
i−1 ∈ S′ to S′

i ∈ S′. Note that since a state S ′
i ∈ S′ includes neither the program

counter value nor indirectly modified memory and register values, the sequence I does not contain any

branch instructions (which modify the program counter value) or the instructions that only indirectly

modify memory or register values. 2

Now, we will define another term, reverse instruction group, as follows:

Definition 4.3 Reverse Instruction Group (RIG): Suppose that one could generate a group of one

or more instructions denoted by RIGi for an instruction αi ∈ I such that if RIGi is executed with

7

P being at state S ′
i ∈ S′, the state of P can be brought back to state S ′

i−1 ∈ S′. In other words,

RIGi can undo the effect of αi on P ’s state. We state that RIGi is a group consisting of one or more

instructions because multiple instructions may be needed to reverse the effect of αi. 2

Then, the effect of the complete sequence I in Definition 4.2 can be reversed by executing
the corresponding RIGs in an order opposite to the completion order of I, that is, by gener-
ating a sequence such as IRIG = (RIGn, RIGn−1, ..., RIG1) where a reverse instruction
group RIGi ∈ IRIG reverses the effect of αi ∈ I (1 ≤ i ≤ n).

Therefore, in this report, we introduce a static algorithm, the reverse code generation
(RCG) algorithm, which generates a RIG for each instruction (excluding the branch in-
structions and the instructions that only indirectly modify memory and register values) in
a program T and combines the generated RIGs to make these RIGs complete in an order
opposite to the completion order of the instructions in T . Since the instruction sequence I
that may result from an execution of T may vary according to dynamic control flow of T ,
the RCG algorithm combines the RIGs by binding the RIG sequence to be executed during
reverse execution to the dynamic control flow information of T .

Since inter-procedural control flow information is hard to capture statically (e.g., due to
indirect function calls), the RCG algorithm is mainly intra-procedural. That is, the RCG
algorithm combines the RIGs to generate the reverse versions of the procedures/functions
in a program rather than to generate the instruction-level reverse program directly. Then,
the RCG algorithm combines the reverse versions of the procedures/functions by a glue code
which may employ state saving (see Section 4.9).

Note, however, that a perfect separation of a procedure/function F from other proce-
dures/functions within a program may not always be possible because there may be calls
to other procedures/functions within the body of F . Therefore, in such a case, the RCG
algorithm first divides F into sub-procedures/sub-functions at the assembly level which are
separated from each other according to calls to other procedures/functions within F . Then,
each sub-procedure/sub-function is treated as if it were a standalone procedure/function.
We call these sub-procedures/sub-functions program partitions.

Listing 1 shows the pseudo code illustrating the main function of the RCG algorithm.
The RCG algorithm first calls a function, Init RCG(), which generates program partitions
from a program and prepares other necessary data structures (line 1 of Listing 1). Then,
the RCG algorithm enters a main loop (line 2) where it analyzes each program partition
assembly instruction by assembly instruction in the order the instructions are placed by the
compiler (lexical order). After an instruction is read, the RCG algorithm executes a function,
Find CF(), which gradually obtains the intra-partitional control flow information while the
program is being scanned (line 6). Then, if the instruction that has been read directly
modifies a memory or a register value, the RCG algorithm checks whether the instruction
is inside a loop. If the instruction is not inside a loop, the RCG algorithm directly calls a
function named Gen RIG() (line 11). Gen RIG() is responsible for the generation of a RIG
for the instruction under consideration. On the other hand, if the instruction is inside a loop,
the RIG generation for the instruction may require special handling which is performed by
Loop Gen() function called at line 9. Loop Gen() which will be explained in Section 4.7.1
basically calls Gen RIG(); however, Gen RIG() may not generate a complete RIG in a single

8

Listing 1 The main function of the RCG algorithm
Input: A program T
Output: An instruction-level reverse program RT for T
begin

1 Init RCG()
2 for all program partition Fi ∈ T do

3 cur instr = address of the first instruction of Fi

4 while there are unread instructions in Fi do

5 α = Read instruction(cur instr) /*read the instruction pointed to by cur instr*/
6 Find CF()
7 if α directly modifies a memory location or a register then

8 if α is in a loop L then

9 RIGα = Loop Gen(α, iteration(L))
10 else

11 RIGα = Gen RIG(α)
12 end if

13 if RIGα is complete then

14 Combine RIGs(RIGα)
15 end if

16 end if

17 if (α is in a loop L) ∧ (end of L is reached) then

18 if (L requires another traversal) then

19 cur instr = address of the first instruction of L
20 else

21 cur instr = address of the next instruction in Fi

22 end if

23 else

24 cur instr = address of the next instruction in Fi

25 end if

26 end while

27 Combine Partitions()
28 end for

end

traversal of the loop in which the instruction resides. Therefore, Loop Gen() ensures the
completion of a RIG for the instruction under consideration by requesting multiple traversals
over the loop body (see Section 4.7.1). Finally, if a complete RIG is generated, another
function, Combine RIGs(), combines the generated RIG with the previously generated RIGs.
(line 14). At the end of the main loop, when the reverse version of the program partition that
is currently being analyzed is completed, the RCG algorithm connects the reverse version
of the current program partition to the reverse versions of the previously analyzed program
partitions by calling a function named Combine Partitions() (line 27).

In the following sections, we will describe the functions that are called by the main
function of the RCG algorithm.

9

4.1 Init RCG(): Building the initial data structures of the RCG

algorithm

Since the RCG algorithm operates on each program partition separately, the first thing
to do is to determine the program partitions from the instructions of the program under
consideration.

The RCG algorithm determines the program partitions in a program by constructing
a partitioned control flow graph, PCFG=(N ,E,start,exit), for each program partition in
the program. N is the set of nodes, E is the set of edges representing the flow of control
between the nodes, and start and exit are the unique entry and exit nodes of a PCFG,
respectively. Each node in a PCFG represents a basic block (BB). A basic block is a single
entry, single exit block of a maximal number of consecutive instructions. Since a PCFG
construction is performed over assembly instructions, a BB in a PCFG may have at most
two outgoing edges, one for the target path and the other for the fall-through path of a
conditional branch instruction ending that BB (i.e., we assume that a multi-way branch
in a high-level programming construct, such as a C “switch” statement, is expressed by a
combination of two-way branches at the assembly level).

Listing 2 Init RCG(): Building the initial data structures of the RCG algorithm
Input: A program T
Output: The PCFGs for the program partitions in T and the CG for T
begin

1 i = 0
2 repeat

3 PCFGi = φ /*initialize PCFGi to be empty*/
4 PCFGi += start block
5 Label Edges(start block)
6 repeat

7 α = Read the next instruction()
8 if end of current BB is reached then

9 Add current BB to PCFGi

10 Label Edges(current BB)
11 end if

12 until (α = “call”) or (α = “return”)
13 PCFGi += exit block
14 Grow CG()
15 i = i+1
16 until end of the program is reached

end

Listing 2 shows the pseudo code for the function Init RCG(). Init RCG() builds a PCFG
for each program partition in the program under consideration by reading the instructions
of the program in a loop (lines 6 to 12 of Listing 2). Init RCG() starts the construction
of PCFGi by inserting a start block at the beginning of PCFGi (line 4) and by calling a
function Label edges() which labels the outgoing forward edge of the start block (line 5).
Edge-labeling, which will be explained in Section 5.1, is performed to assist in the determi-
nation of intra-partitional control flow information and the generation of the RIGs. Then, in
the loop, Init RCG() adds BBs to PCFGi until a “call” instruction (i.e., an instruction that

10

is used to call a procedure/function) or a “return” instruction (i.e., an instruction that is
used to return from a procedure/function call) is encountered in the program being analyzed.
After a new BB is added to PCFGi, Init RCG() calls Label edges() to label the outgoing
forward edges of the newly added BB (line 10). When Init RCG() encounters a “call” or
a “return” instruction in the program being analyzed, Init RCG() ends the construction of
PCFGi by adding an exit block to the end of PCFGi (line 13). The instruction just after
the call or the return instruction, on the other hand, starts a new program partition and thus
a new PCFG. After a PCFG is constructed, Init RCG() calls Grow CG() which gradually
constructs another directed graph, a call graph (CG), for the program under consideration
(line 14). The CG is used for obtaining the inter-partitional control flow information and
will be explained in Section 4.9.

4.2 Find CF(): Finding the intra-partitional control flow infor-

mation

In this section, we give an overview of the function Find CF() (called from line 6 of Listing 1),
namely, we will outline how the RCG algorithm obtains the control flow information of a
program partition under consideration.

As explained in Section 4.1, each node in the PCFG of a program partition designates a
BB. The important property of a BB is that the instructions within a BB always complete
in lexical order. In other words, the completion order of the instructions within the BBs is
not dependent on any condition. This lack of dependence automatically fixes the ordering of
the corresponding RIGs in the reverse code. Therefore, the PCFG construction reduces the
needed intra-partitional control flow information to the information of control flow among
the BBs of a program partition only.

A confluence point of edges encountered in the PCFG of a program partition is the
only point where a decision has to be made about the control flow during reverse execution.
Therefore, the only information required about the control flow between the BBs of a program
partition is the information which reveals under which condition a confluence point (or a join
point) in a PCFG is dynamically reached along a particular incoming edge to that confluence
point.

The incoming edge along which a confluence point is dynamically reached is decided by
the control flow predicates that are associated with each incoming edge to that confluence
point. Let us illustrate this with the following example.

Example 4.1 Consider the function foo shown in Figure 1(a) that is written in the C programming

language. The assembly listing (for the PowerPC 860) and the PCFG of foo are shown in Figure 1(b)

and Figure 1(c), respectively. When the RCG analysis arrives at point P shown in the figure, it is

necessary to know along which incoming edge BB4 will dynamically be reached in order for the RCG

algorithm to generate the appropriate branch instructions which will reverse execute foo backwards

from P. The edge to be taken to reach BB4 is decided by the conditional branch instruction at the end

of BB1 which causes the flow of control to be divided into two separate paths before reaching P. The

predicate expression of this conditional branch instruction is shown as r10 > 100 in Figure 1(c). If the

value of the predicate expression r10 > 100 is true, then P is reached along one incoming edge (from

11

int foo(x) {
 int a, b, c = 3;
 b = x | 15;
 a = x / c;
 if (a > 100) {
 b = a + 1;
 c = b - x;
 } else
 c = x - b;
 b = c * a;
 return (b);
}

li r11, 3
ori r12, r3, 15
divw r10, r3, r11
cmpi r10, 100
bg L1
sub r11, r3, r12
b L2

L1: addi r12, r10, 1
sub r11, r12, r3

L2: mullw r12, r11, r10

 blr

r11 = 3
r12 = r3 | 15
r10 = r3 / r11

r10 > 100

r12 = r10 + 1
r11 = r12 – r3

r11 = r3 – r12

r12 = r11 × r10

(c) (b) (a)

true false

BB1

BB3 BB2

BB4 P

P '

start

exit

Figure 1: (a) A simple program in C. (b) Corresponding assembly instructions. (c) Corre-
sponding PCFG.

BB3); however, if the value of the complementary predicate expression r10 ≤ 100 is true, then P is

reached along the other incoming edge (from BB2). 2

Therefore, to determine the dynamically taken incoming edge to a confluence point P ,
one needs to find the following two items:

(1) The predicate expression Υi associated with each incoming edge ei to P such that when
the value of Υi for an edge ei becomes true, that edge is taken to reach the confluence
point P . Here, the index i varies from one to n where n is the number of incoming
edges to point P .

(2) The predicate expression Υtrue, among the predicate expressions found in (1), that
becomes true during a specific iteration or execution arriving at the confluence point P .

To find (1), Find CF() uses special labels assigned to the edges of the PCFG describ-
ing the program partition under consideration. As will briefly be mentioned in Section 4.3
shortly and then will be described in more detail in Section 5.3.2, edge labels also assist
in finding reaching definitions which are essential for RIG generation. Note that we could
also have used a standard control dependency graph (CDG) [22] analysis to determine the
predicate expressions; however, due to the desire to detect the predicate expressions and
reaching definitions together in an efficient way, edge-labeling is preferred over a CDG anal-
ysis. We introduce the edge-labeling algorithm and then describe the predicate expression
determination in Sections 5.1 and 5.2, respectively.

To find (2), we follow two possible methods. The first method is to save the predicate
values during forward execution of a program partition. In this first method, it is sufficient
to save the values of n−1 of the n predicate expressions found in (1). Because if none of the
n − 1 predicate expressions happen to be true, then the remaining nth predicate expression

12

is guaranteed to be true. For instance, in Example 4.1, since there are only two predicate
expressions (namely, r10 > 100 and r10 ≤ 100) that are associated with the two incoming
edges to point P, saving the value of only one of the predicate expressions is sufficient to
determine which edge is taken to reach P. The drawback of this method is that, obviously,
state saving of predicate values causes some memory and time overheads during forward
execution of a program partition.

The second method to find (2) is to reevaluate the predicate expressions during reverse
execution. In this second method, it is again sufficient to reevaluate the values of n−1 of the
n predicate expressions found in (1) due to the same reason given in the explanation of the
first method. As an example for the second method, if the predicate expression r10 > 100 –
see Figure 1(c) – is chosen to be reevaluated, the value of r10 > 100 can be found once again
at point P by executing the compare instruction “cmpi r10, 100” during reverse execution.
In this second method, there is no time nor memory overhead encountered during forward
execution of the program partition under consideration. However, if the value of any variable
used in a predicate expression to be reevaluated (e.g., the value of r10 in the expression
r10 > 100) has already been destroyed before reaching the reevaluation point, then that
destroyed value must be recovered during reverse execution before the predicate expression
can be reevaluated. This requirement may cause a slower reverse code to be generated
as compared to the code generated by using the first method. The amount of possible
performance degradation of the reverse code depends on how many destroyed variables need
to be recovered in order to reevaluate the predicate expression under consideration.

Both methods explained in the previous two paragraphs are equally applicable. Since
our primary concern is to reduce memory and time overheads of forward execution, the
second method seems to be more preferable in most cases over the first method. Therefore,
we use the second method as a default method. However, we still provide the programmer
with an option that minimizes a cost function whose main parameters are memory and time
overheads of forward execution and the speed of reverse execution.

4.3 Gen RIG(): Generating a reverse instruction group

Gen RIG() function (called from lines 9 and 11 of Listing 1) involves the generation of a
RIG for every instruction that directly modifies a register or a memory location in a program
partition.

Suppose that a definition δdestroy destroys the value D of a variable (a directly modified
register or memory location) V at a program partition point as shown in Figure 2. Let us
name the program point just before δdestroy as P. To recover D, one needs to know at what
point in the program partition D might be assigned to V . This is exactly the same problem
as finding the definitions of V reaching point P.

Gen RIG() follows a more efficient technique than the common technique of using bit-
vectors to determine reaching definitions at a program partition point [22]. The main reason
for the increased efficiency is that Gen RIG() does not require an iterative solution of data-
flow equations. First, Gen RIG() employs a method called value renaming which refers to
giving a different name to every definition of a directly modified register or memory location.
Value renaming is same as the renaming operation in the well-known static single assignment
(SSA) form generation [10]. By value renaming, different definitions of a variable can easily

13

P

δ1 δ3

path 4

δ2

path 3

path 2

path 1

δdestroy

µ

D ε {D1, D2, D3}
Re-executing δ1 recovers D for path 1
Re-executing δ2 recovers D for paths 2 and 3
Re-executing δ3 recovers D for path 4
Extracting V out of µ recovers D for paths 3 and 4

V = D1
V = D2

V = D3

…= V…

V = …

Figure 2: Recovering a destroyed variable.

be distinguished from one another. Then, Gen RIG() uses the labels on the edges of the
PCFG to efficiently find reaching definitions at each program partition point. The details
of how value renaming is performed and how reaching definitions are determined will be
described in Sections 5.3.1 and 5.3.2, respectively.

Each statically reaching definition δi of V at point P might correspond to the instance
where D is actually assigned to V (Figure 2). The definition that corresponds to the actual
assignment instance is the definition that dynamically reaches point P. Therefore, recovering
D means recovering the definition of V that dynamically reaches point P.

The definition of V that dynamically reaches point P depends on the dynamically taken
path to P. However, the path that will actually be taken is typically not known prior to
program execution. Therefore, we use the following technique to recover D: we generate
sets, each of one or more instructions, where each set recovers one or more definitions of V
statically reaching P along at least one path. For instance, referring to Figure 2, we can
generate a set which recovers δ1. This set indeed recovers D if path 1 is dynamically taken.
Similarly, we can generate another set which recovers δ2. This second set indeed recovers D
if either path 2 or path 3 is dynamically taken. We generate as many sets as necessary
to cover all possible paths to δdestroy from the definitions of V reaching P. If more than one
set is generated, we tie the sets together via conditional branch instructions. The predicates
of the conditional branch instructions carry the dynamic control flow information of the
program as outlined in Section 4.2. Therefore, the correct set to be executed during reverse
execution is automatically selected by these predicates. If a predicate is also destroyed before
δdestroy, then, in the same way, we generate the sets which recover that predicate. The sets
that recover the reaching definitions of V , the conditional branch instructions (if any) that

14

are used to gate these sets and the instructions (if any) that are generated to recover the
predicates all together constitute a RIG for δdestroy.

Let us now describe how a set of instructions which we will denote by ζ can be generated
to recover at least one definition of V reaching P. There are three techniques that are followed
to generate a ζ: the redefine technique, the extract-from-use technique and the state saving
technique.

4.4 The redefine technique

The redefine technique is to put into ζ the instruction αi which computes Di at the definition
site δi statically reaching point P(Figure 2). If any one of the variables that is used for
computing Di is also destroyed, then the instruction which recovers that variable must be
inserted before αi in ζ and this must be applied recursively for all other modified variables
in the dependency chain.

The redefine technique can potentially recover only one definition of V reaching P: the
definition it redefines. Note that, however, the external value of an input variable (e.g.,
a global variable or an input argument) of a partition is certainly not defined within the
partition but comes from outside of the partition. Therefore, the external values of a partition
cannot be recovered by the redefine technique.

The following example illustrates how the redefine technique works.

Example 4.2 The redefine technique: Consider the instruction which overwrites the value of register

r12 in BB4 in Figure 3 (we need the overwritten value of r12 because the overwritten value is used both

in BB2 and BB3). Let us name this instruction as α and the analysis points just before α and just

after α as P and P′, respectively. There are two different definitions of r12 reaching P on two different

paths: “r12 = r10 + 1” and “r12 = r3 | 15”. Therefore, the value of r12 at point P is either

“r10 + 1” or “r3 | 15”. Moreover, neither r10 nor r3 is modified after being used to define r12 and

before point P′. Therefore, the destroyed value of r12 can be recovered on one path by executing the

set “r12 = r10 + 1”, and it can be recovered on the other path by executing the set “r12 = r3 | 15”.

2

r11 = 3
r12 = r3 | 15
r10 = r3 / r11

r10 > 100

r12 = r10 + 1
r11 = r12 – r3

r10 = r11 + 1
r11 = r3 – r12

r12 = r11 × r10

true false

BB1

BB3 BB2

BB4 P

P '

start

exit

Figure 3: An example PCFG.

15

4.5 The extract-from-use technique

The extract-from-use technique is to put into ζ an instruction β which extracts the destroyed
value of V out of a use µ (including a possible use of V by δdestroy itself) on the path(s)
between δdestroy and any definition of V reaching P (Figure 2). However, again, if any other
variable in β which is used for extracting V is also destroyed, then an instruction which
recovers that variable must be inserted before β in ζ and this must be applied recursively
for all other modified variables in the dependency chain.

As opposed to the redefine technique, the extract-from-use technique can recover multiple
definitions (δ2 and δ3 in Figure 2) of V reaching P. Moreover, since the external value of
an input variable of a partition may be used within the partition, the input values to a
partition might still be recovered by using the extract-from-use technique. However, the
extract-from-use technique is less likely to be applicable than the redefine technique because
there might not always be a use µ on a path to δdestroy, and, even if a use is available, µ’s
operation might not always allow such an extraction of the value of V . For example, the
instruction “r3 = r1 / r2” might prevent the extraction of r1 or r2 since the result of
the division operation might be truncated due to the limited precision r3 can represent. In
general, operations such as “integer add”, “integer subtract” and “integer multiply” allow
extraction of values provided that the result of any of these operations is not truncated due
to an overflow/underflow. A “shift” operation is also reversible if bits are not lost due to a
shift-out. On the other hand, operations such as “integer divide” and all other floating point
calculations do not allow extraction of values due to a possible loss of precision on the result.
The decision on whether or not to use the extract-from-use technique on the operations
that might not be reversible in special situations such as overflow/underflow or shift-out
is left to the programmer. For example, the programmer may use compiler warnings, the
overflow/underflow detection logic of the processor or overflow/underflow detection code to
ensure that the program is free of overflow/underflow situations.

The following example illustrates how the extract-from-use technique works.

Example 4.3 The extract-from-use technique: Consider again the instruction which overwrites the

value of register r12 in BB4 in Figure 3. After the two definitions of r12 reaching P, there are two

uses of r12 on each path: “r11 = r12 − r3” and “r11 = r3 − r12”. Moreover, neither r11 nor

r3 is modified between the points of uses and point P′. These subtractions are performed as integer

operations and thus they are reversible provided that their results are not truncated. Thus, if the point

P′ is reached passing through the use “r11 = r12 − r3”, the destroyed value of r12 can be obtained

by executing the set “r12 = r11 + r3”; if P′ is reached passing through the use “r11 = r3 − r12”,

then the destroyed value of r12 can be obtained by executing the set “r12 = r3 − r11”. 2

4.6 The state saving technique

The RCG algorithm applies the redefine and the extract-from-use techniques in a combina-
tion to come up with the smallest RIG. However, due to the limitations of these techniques
described in the previous subsections, we may not be able to generate all of the sets neces-
sary to cover all paths to δdestroy (Figure 2). Even worse, as in the case of memory aliasing
which will be described in Section 5.3.1, we may not be able to find the statically reaching

16

add r9, r3, r4

…

save r9
restore r9

…

…

Original program Reverse program

Stack-like memory

…

memory
pointer

Figure 4: A diagram which illustrates the state saving method of the RCG algorithm.

definitions of V at all. In such circumstances, the RCG algorithm resorts to the state saving
technique which is always applicable.

In general, we save a state by inserting a push-like instruction into the original code just
before δdestroy. The inserted instruction saves the state (e.g., r9 in Figure 4) that is being
modified by δdestroy into a free memory location that is pointed to by a memory pointer
(usually a register) and moves the memory pointer to the next free location. Then, in the
reverse program, a pop-like instruction is generated which moves the memory pointer to the
next value to be restored and restores the saved value from memory.

A push-/pop-like instruction refers to an instruction which works in the same way as an
ordinary push/pop instruction; however, a push-/pop-like instruction can work on any mem-
ory pointer, while a push/pop instruction can work only on the stack pointer. For instance,
PowerPC 860 provides store-update and load-update instructions which can be used as push-
like and pop-like instructions, respectively. Ordinary push and pop instructions are not con-
sidered for state saving in order to not possibly corrupt the stack. If the target architecture
does not support pop-like/push-like instructions which automatically increment/decrement
a memory pointer, save and restore operations are handled by using ordinary store and load
instructions and by incrementing/decrementing a dedicated memory pointer explicitly.

4.7 An example of RIG generation

In the previous three subsections, we explained the three methods we use to generate a set
which recovers at least one definition of the variable under consideration. We also stated
that a RIG is nothing but a combination of those sets which cover all possible paths to the
destruction point. In this section, we give an example of a complete RIG generation by using
the PCFG shown in Figure 3.

Example 4.4 RIG generation: In Examples 4.2 and 4.3, we gave 4 different sets each of which
recover the value of r12 along a particular path. Let us now use some of these sets to generate a
complete RIG for recovering the value of r12. Let us pick “r12 = r10 + 1” to recover r12 along the
left path to point P and “r12 = r3 − r11” to recover r12 along the right path to point P in Figure 3.
Since all paths are covered, these two sets are enough to generate a RIG. We should now combine these
two sets by using a conditional branch instruction which determines along which path P is reached. The
predicate of this conditional branch instruction is r10 > 100. However, we cannot use this predicate
as it is because the value of r10 is destroyed in BB2. Therefore, we should first recover r10. We can
recover r10 by two successive applications of the redefine technique: we first redefine “r11 = 3” and

17

then redefine “r10 = r3/r11” (r11 is redefined because it is destroyed as well). Note, however, that
since our aim is to recover r12 only, we should use a temporary register rt instead of r11 and r10 not to
destroy the values of r11 and r10 at point P . Therefore, a RIG for recovering r12 can be generated as
follows:

li rt, 3
divw rt, r3, rt

cmpwi rt, 100
ble L1
addi r12, r10, 1
b L2

L1: sub r12, r3, r11

L2: ...

2

Listing 3 Gen RIG(): Generate a RIG
Input: An instruction α
Output: A RIG, RIGα, for α
begin

1 RIGα = φ
2 for all t = a register/memory location directly modified by α do

3 C = ∞
4 D = Find Reaching Defs(t, α)
5 if all definitions are statically known then

6 P = Paths(D,t)
7 U = the set of uses of t (with reversible operators) along the paths in P
8 M = set of all subsets (combinations of elements) of U
9 for all Z ∈ M do

10 RIGt = φ
11 Ps = Cover(Z)
12 for all µi ∈ Z do

13 RIGt = Extract from use(t, µi, RIGt)
14 end for

15 for all path pj ∈ P − Ps do

16 RIGt += Redefine(t, pj , RIGt)
17 end for

18 if sizeof(RIGt) < C then

19 RIGm = RIGt

20 C = sizeof(RIGt)
21 end if

22 end for

23 if C == ∞ then

24 RIGm = State save(α)
25 end if

26 else

27 RIGm = State save(α)
28 end if

29 RIGα += RIGm

30 end for

end

18

Listing 3 shows the pseudo code for the generation of a RIG (with minimum size cost,
C) for an instruction α. To find the minimum cost RIG, we apply the extract-from-use
technique (line 13) and the redefine technique (line 16) for different paths starting from
reaching definitions of t (if a reaching definition cannot be statically found, we save state –
line 27). For this purpose, we process all different uses (with reversible operators) and/or
definitions on different paths, where each use/definition covers a set of one or more paths.
If the cost of the final RIG is infinity, which means neither the extract-from-use technique
nor the redefine technique can recover t, we apply the state saving technique (line 24).

4.7.1 Handling loops

As mentioned before, reverse code generation for a loop requires additional passes over the
loop body for the recovery of some instructions within the loop. This section explains the
reason behind multiple traversals.

A variable modified by an instruction α within a loop L may show a transient behavior
at the early iterations of L until the values that come from outside of L are propagated into
the loop body. Thus, the code that reverses the effect of α may be different for different
instances of α (i.e., for the instances due to different loop iterations). Consider the following
example.

Example 4.5 Figure 5 shows a loop with four instructions. The values obtained by the target

operands of the instructions at successive iterations of the loop are also shown in the figure. As seen

from the figure, it requires three loop iterations until a pattern is observed in the values obtained by the

target operand of the first instruction. The values obtained by this operand are affected by the values

input to the loop and are totally unrelated at the early instances of the first instruction in the loop.

Therefore, it is necessary to reverse the effect of each such instance of the first instruction separately.

2

li r1, 0 // r1 = 0
li r2, 3 // r2 = 3
li r3, 1 // r3 = 1

L1: addi r1, r2, 2 // r1 = r2 + 2
mulli r2, r3, 3 // r2 = r3 × 3
addi r3, r3, 1 // r3 = r3 + 1
b L1 // goto L1

r1 = 0, 5, 5, 8, 11, 14, …

r2 = 3, 3, 6, 9, 12, 15, …

r3 = 1, 2, 3, 4, 5, 6, …

transient
behavior

regular pattern:
r1(n) = r1(n-1) + 3

transient
behavior

regular pattern:
r2(n) = r2(n-1) + 3

transient
behavior

regular pattern:
r3(n) = r3(n-1) + 1

Figure 5: A simple loop.

Listing 4 shows the algorithm snippet for reverse code generation within loops. In order
to capture the transient behavior explained, Loop Gen() calls Gen RIG() at each traversal
of L for a single instance of α (line 1 of Listing 5). In other words, at the first traversal,
Loop Gen() generates a set of instructions, ζ1, which reverses the effect of the first instance
of α; at the second traversal, it generates another set of instructions, ζ2, which reverses the
effect of the second instance of α; and so on.

19

Listing 4 Loop Gen(): Reverse code generation within loops
Input: An instruction α in a loop L, current traversal count t over L
Output: A RIG for α
begin

1 ζ = Gen RIG(instance(α, t))
2 RIGα += ζ
3 if ζ uses instructions from within L then

4 return RIGα

5 end if

6 if t == 3 then

7 RIGα = State save(α)
8 return RIGα

9 end if

end

Since the instructions within L repeat exactly, if a set of instructions generated to reverse
the effect of an instance of α makes use of the instructions within L only, then that set can
be used to reverse the effect of all the later instances of α as well. In this way, Loop Gen()
can decide on when to stop the traversals over L.

Ideally, the traversals over L should be repeated until Loop Gen() can construct a set
that makes use of the instructions within L only. However, we limit the maximum number of
traversals over a loop body to three not only to limit the time cost of the RCG algorithm but
also to limit the length of the reverse code generated for α. This number is arbitrarily chosen
and can be increased at the expense of having a larger reverse program. If a set cannot be
constructed within three traversals over L, we apply state saving to generate a RIG which
reverses the effect of all the instances of α (line 7). In case state saving can be avoided, on
the other hand, the generated sets of instructions at each traversal (i.e., the sets from ζ1 up
to ζ3) are combined together to produce a RIG for α (line 2). The set of instructions to be
executed within the RIG during a specific instruction-level reverse execution is determined
by the help of a loop counter which distinguishes among different loop iterations.

The following example illustrates reverse code generation for loops.

Example 4.6 Figure 6 shows a symbolic version of the generated RIG for the first instruction α in
the loop of Figure 5. Figure 6 also shows the loop unrolled three times where each unrolled iteration
corresponds to one of the traversals of the RCG algorithm over the loop body.

At the first traversal of the loop, Gen RIG() finds the reaching definition of the destroyed register
r1 as “r1 = 0” at point P1. Then, Gen RIG() generates the set ζ1 as “r1 = 0” which reverses the
effect of the first instance of α (i.e., δ4) by using the redefine technique.

At the second traversal of the loop, the definition of r1 to be recovered is the definition that reaches
P2. This definition is “δ4 : r1 = r2 + 2” which comes from within the loop this time. In order to
recover r1 from δ4, the RCG algorithm needs the value of r2. However, r2 is destroyed by δ5 between
δ4 and P2. The destroyed definition of r2 is “δ2 : r2 = 3” which comes from outside of the loop.
Therefore, Gen RIG() first puts into ζ2 the instruction “rt = 3” which restores the value of r2 into a
temporary register rt using the redefine technique (rt is used instead of r2 to preserve the current value
of r2). Then, the Gen RIG() puts into ζ2 the instruction “r1 = rt + 2” which recovers the destroyed
value of r1.

20

li r1, 0 // δ1: r1 = 0
li r2, 3 // δ2: r2 = 3
li r3, 1 // δ3: r3 = 1
li rLC, 0 // rLC = 0
addi r1, r2, 2 // δ4: r1 = r2 + 2
mulli r2, r3, 3 // δ5: r2 = r3 × 3
addi r3, r3, 1 // δ6: r3 = r3 + 1
addi rLC, rLC, 1 // rLC = rLC+1
addi r1, r2, 2 // δ7: r1 = r2 + 2
mulli r2, r3, 3 // δ8: r2 = r3 × 3
addi r3, r3, 1 // δ9: r3 = r3 + 1
addi rLC, rLC, 1 // rLC = rLC+1
addi r1, r2, 2 // δ10: r1 = r2 + 2
mulli r2, r3, 3 // δ11: r2 = r3 × 3
addi r3, r3, 1 // δ12: r3 = r3 + 1
addi rLC, rLC, 1 // rLC = rLC+1
…

if (rLC = = 0)
 r1 = 0
else if (rLC = = 1) {
 rt = 3
 r1 = rt + 2
} else {
 rt = r3 – 1
 rt = rt – 1
 rt = rt × 3
 r1 = rt + 2
}

li r1, 0 // r1 = 0
li r2, 3 // r2 = 3
li r3, 1 // r3 = 1
li rLC, 0 // rLC = 0

L1: addi r1, r2, 2 // r1 = r2 + 2
mulli r2, r3, 3 // r2 = r3 × 3
addi r3, r3, 1 // r3 = r3 + 1
addi rLC, rLC, 1 // rLC = rLC + 1
b L1 // goto L1

α

RIG for α :

loop unrolled three times:

P1

P2

P3

Figure 6: A diagram which illustrates reverse code generation for loops.

At the third traversal of the loop, we are at point P3. The reaching definition of r1 at P3 is
“δ7 : r1 = r2 + 2”. The definition of r2 used in δ7 is “δ5 : r2 = r3 × 3” and is destroyed by
δ8 before reaching P3. Therefore, we have to recover r2 before recovering r1. However, r3 as used in
δ5 does not reach point P3, either. Moreover, r3 has been overwritten twice after being used in δ5:
once by δ6 and once by δ9. Thus, Gen RIG() first puts into ζ3 the instructions “rt = r3 − 1” and
“rt = rt − 1” which restore the value of r3 into a temporary rt by using the extract-from-use technique
twice (once on δ9 and once on δ6). Then, Gen RIG() puts into ζ3 the instruction “rt = rt × 3”
which restores the value of r2 into rt by using the redefine technique. Finally, Gen RIG() puts into
ζ3 the instruction “r1 = rt + 2” which recovers the value of r1. Since ζ3 is constructed using
instructions only from within the loop, ζ3 indeed reverses the effect of the later instances of α as well.
Therefore, for this example, it is sufficient to traverse the loop three times to generate a RIG for α
without state saving. As seen in Figure 6, the set (ζ1 or ζ2 or ζ3) to be executed within the generated
RIG during instruction-level reverse execution is determined by a loop counter (rLC) which is inserted
into the original loop.

Note that the generated reverse code in this example is unoptimized. However, the reverse code

can be easily optimized by a separate pass using standard optimization techniques such as constant

propagation or common subexpression elimination. 2

The technique described in this section is applied in a straightforward way to the nested
loop structures as well wherein the passes over the nested loops are completed starting from
the innermost loop going to the outermost loop.

4.8 Combine RIGs(): Combining the reverse instruction groups

The function Combine RIGs() (called from line 14 of Listing 1) combines a RIG with all
the previously generated RIGs to generate an up-to-date, given the RIGs generated so far,

21

reverse version of the program partition under consideration. The pseudo code for the
Combine RIGs() function is given in Listing 5.

Listing 5 Combine RIGs(): Combining the reverse instruction groups
Input: A RIG, RIGα, generated for an instruction α
Output: A linked list of RIGs
begin

1 if α is beginning of a basic block BBk then

2 n = |IncomingEdges(BBk)|
3 if n > 1 then

4 for z = 1 to n − 1 do

5 Generate a set C of conditional branch instructions with the predicates determined by Find CF()
6 Link C to the top of the reverse code
7 end for

8 else if BBk is a target of a conditional branch instruction β in the original code then

9 Generate an unconditional branch instruction ub
10 Link ub to the top of the reverse code
11 end if

12 end if

13 Link RIGα to the top of the reverse code

end

As we mentioned in the beginning of Section 4, the generated RIGs should be placed
in a way to make the RIGs execute in an order opposite to the completion order of the
instructions in the original program partition. We know that the instructions within a BB
complete in lexical order; therefore, placing the RIGs in the order opposite to the lexical
order of the original BB is sufficient to generate the reverse of that BB. This implies that the
RIGs generated for the BBs are placed in a bottom-up fashion in the reverse code (line 13 of
Listing 5). In other words, if a basic block BBi in the program partition under consideration
has a sequence of instructions IBBi

= (α1, α2, α3, . . . αn), and if the corresponding RIGs
generated for BBi are RIGBBi

= {RIG1, RIG2, RIG3, . . . RIGn}, then the reverse of BBi,
designated as RBBi, consists of the sequence IRBBi

= (RIGn, RIGn−1, RIGn−2, . . . RIG1).
Note that since a generated RIG, RIGk (1 ≤ k ≤ n) in IRBBi

, may contain branch instructions
(see Example 4.4), an RBB may not necessarily be a single basic block, but instead may
be a combination of multiple basic blocks. The following example shows how the RBBs are
constructed from the BBs of a program partition.

Example 4.7 Construction of the RBBs: Figures 7(a) and 7(b) show the PCFG of foo and the

RBBs generated for reverse foo, respectively. The RCG algorithm generates the reverse of each BB

in foo by combining the generated RIGs in bottom-up placement order in reverse foo. While the

reverse of BB1, BB2 and BB3 (namely, RBB1, RBB2 and RBB3) are constructed each as a single BB,

the reverse of BB4, RBB4, consists of three separate BBs. RBB4 is separated into three BBs because

the reverse of the instruction “r12 = r11 × r10” in BB4 consists of multiple instructions two of which

are branches. Note that since the initial values of r10, r11 and r12 are input to foo (and thus the

redefine technique is not applicable) and since these initial values are not used in foo (and thus the

extract-from-use technique is not applicable either), the initial values of r10, r11 and r12 are recovered

22

in RBB1 by the state saving method described in Section 4.6. Figure 7(c) shows the PCFG of foo

instrumented with the state saving instructions. 2

RBB2
r11 = 3

r12 = r3 | 15
r11 = 3

restore r10
restore r12
restore r11

r10 > 100

r12 = r3 | 15 r12 = r10 + 1

true false

RBB1

RBB3

RBB4

r11 = 3
r12 = r3 | 15
r10 = r3 / r11

r10 > 100

r12 = r10 + 1
r11 = r12 – r3

r11 = r3 – r12

r12 = r11 × r10

true false

BB1

BB3 BB2

BB4

start

exit

save r11
r11 = 3
save r12

r12 = r3 | 15
save r10

r10 = r3 / r11

r10 > 100

r12 = r10 + 1
r11 = r12 – r3

r11 = r3 – r12

r12 = r11 × r10

true false

BB1

BB3 BB2

BB4

start

exit

(b) (c) (a)

Figure 7: (a) PCFG of foo. (b) RBBs of reverse foo. (c) PCFG of instrumented foo.

4.8.1 Constructing the Reverse Program Partitions

To generate the reverse version of a program partition, the RBBs generated for that program
partition should be combined together in an appropriate way. Once again, this combina-
tion should satisfy our argument that the RIGs should execute in the order opposite to the
completion order of the instructions in the original program. Combine RIGs() achieves this
by combining the RBBs via the inverted versions of the edges in the original program par-
tition. Consequently, a confluence point of incoming edges in a program partition typically
becomes a fork point of outgoing edges in the reverse version of that program partition, and
vice versa.

Suppose that a confluence point Po in the original program partition becomes a fork
point Fr in the reverse program partition. Depending on the number of incoming edges
to Po (or outgoing edges from Fr), Combine RIGs() inserts at Fr one or more conditional
branch instructions which determine which edge to take at Fr during reverse execution. As
described in Section 4.2, Find CF() associates with each incoming edge of Po a predicate
expression which determines along which edge Po is reached. Consequently, the predicate
expressions associated with the incoming edges of Po are directly used as the predicates of
the conditional branch instructions inserted at Fr. The values of these predicates can either
be saved or reevaluated as explained in Section 4.2.

Recall from Section 4.2 that since the predicate expressions found at Po are mutually
exclusive, it is sufficient to save or reevaluate only n − 1 of the n predicate expressions
associated with n incoming edges of Po. Therefore, at the corresponding fork point Fr in the
reverse program partition, Combine RIGs() generates n− 1 conditional branch instructions,
each using one of the n − 1 predicate expressions found at Po (lines 3 to 6 of Listing 5).

23

Due to linear orientation of code in memory, the target of one of the n outgoing edges
from Fr immediately follows Fr in address space. Let us name this outgoing edge as e. Since
it is inefficient to generate a conditional branch whose target address is the next address, it is
not appropriate to generate a conditional branch corresponding to e. Therefore, among the
n predicate expressions found at Po, the predicate expression we leave out is always the one
that is associated with the incoming edge of Po whose inverted version is e (see Example 4.8).

On the other hand, suppose that a fork point Fo of two edges in the original program
partition becomes a confluence point Pr of two edges in the reverse program partition (recall
from Section 4.1 that a fork point can have at most two outgoing edges at the assembly
level). In this case, it is necessary to establish a link between the source of each joining
edge and the confluence point Pr in the reverse program partition. Note that as the RCG
algorithm analyzes the instructions on the fall-through path of Fo before the instructions on
the target path of Fo (due to lexical order scanning of the instructions), the reverses of the
instructions on the fall-through path are generated before the reverses of the instructions
on the target path. To keep the bottom-up placement order, Combine RIGs() places the
reverses of the instructions on the fall-through path below the reverses of the instructions on
the target path. Thus, the reverses of the instructions on the fall-through path of Fo always
precede Pr in the reverse program partition, which establishes an automatic link between
them. Therefore, the remaining part is to provide the link between Pr and the source of
the joining edge that is the inverted version of the edge on the target path of Fo. This link
is established by inserting an unconditional branch at the source of this joining edge in the
reverse program partition (lines 8 to 10 of Listing 5).

The following example illustrates how the RBBs are combined to generate a reverse
version of a program partition.

Example 4.8 Combining the RBBs: Figure 8 shows the PCFGs of foo and reverse foo together.
Also seen in the figure are the assembly listings of the instrumented foo (i.e., instrumented with state
saving instructions) and reverse foo. Since the RBBs are combined with the inverted versions of the
edges in the PCFG of foo, the confluence point designated as Po in the PCFG of foo becomes a fork
point designated as Fr in the PCFG of reverse foo, and the fork point designated as Fo in the PCFG
of foo becomes a confluence point designated as Pr in the PCFG of reverse foo. Consequently, a
conditional branch instruction is inserted at point Fr (lines 3 to 6 of Listing 5) and an unconditional
branch instruction is inserted at the head of one of the joining edges at Pr (lines 8 to 10 of Listing 5). The
predicate of the conditional branch inserted at Fr can be determined by observing the following facts:

(1) As already shown in Example 4.1, the predicate expression associated with the left incoming edge
of Po is r10 > 100 and with the right incoming edge of Po is r10 ≤ 100. Consequently, control
should be directed from point Fr to RBB3 if r10 > 100 is true and to RBB2 if r10 ≤ 100 is true.

(2) Since the predicate expressions in (1) are mutually exclusive (i.e., they cannot be true at the same
time), using only one of the predicate expressions is sufficient to determine the dynamically taken
edge to Po (and thus the edge to be taken out of Fr).

(3) Note that due to the bottom-up placement order, RBB2 is placed below RBB3; therefore, RBB3
follows point Fr in address space.

(4) We know that a conditional branch instruction directs the control to its target address if the
predicate of the conditional branch is true; otherwise, execution continues with the instruction
after the conditional branch.

24

reverse_foo instrumented foo

target path

r11 = 3
r12 = r3 | 15 r11 = 3

restore r10
restore r12
restore r11

r10 > 100

r12 = r3 | 15 r12 = r10 + 1

r10 ≤ 100

true false

RBB1

RBB3 RBB2

RBB4

conditional
branch

unconditional
branch

cmpi r10, 100
bg L1
addi r12, r10, 1
b L2

L1: ori r12, r3, 15
L2: cmpi r12, 100

ble L3
li r11, 3
ori r12, r3, 15
b L4

L3: li r11, 3
L4: lwzu r10, -4(r9)

lwzu r12, -4(r9)
lwzu r11, -4(r9)

conditional
branch

unconditional
branch RBB2

RBB3

RBB1

RBB4

Fo

target path
fall-through

path

start

exit

fall-through
path

BB1 r11 = 3
r12 = r3 | 15
r10 = r3 / r11

r10 > 100

start

li r9, 0x0
stwu r11, 4(r9)
li r11, 3
stwu r12, 4(r9)
ori r12, r3, 15
stwu r10, 4(r9)
divw r10, r3, r11
cmpi r10, 100
bg L1
sub r11, r3, r12
b L2

L1: addi r12, r10, 1
sub r11, r12, r3

L2: mullw r12, r11, r10

 blr

r12 = r11 × r10

exit

r11 = r3 – r12 r12 = r10 + 1
r11 = r12 – r3

BB4

BB2 BB3

The PowerPC 860 instructions “stwu” and “ lwzu” are used as push-like and pop-like
instructions with r9 being used as a memory pointer for state saving

BB3

BB2

BB4

BB1

PCFG of foo PCFG of reverse_foo

Po

Fr

Pr

Figure 8: A diagram which illustrates the combination of the RBBs.

Therefore, from (1) to (4), the predicate of the conditional branch at Fr is determined as r10 ≤ 100.
The value of this predicate expression is dynamically determined by executing a compare instruction
“cmpi r10, 100” in reverse foo (i.e., by reevaluating the predicate value during reverse execution).

Note that due to the bottom-up placement order described, an unconditional branch instruction is

placed only at the point that corresponds to the target address of the conditional branch instruction in

foo (the other edge simply falls through, i.e., RBB2 is directly followed in address space by RBB1). 2

4.9 Combine Partitions(): Combining the reverse program parti-

tions

After generating the reverse version of a program partition, Combine Partitions() (called
from line 27 of Listing 1) combines the reverse version of that program partition with the
other reverse program partitions that have already been generated. In order to achieve

25

this, Combine Partitions() must know the control flow information between the program
partitions.

4.9.1 Grow CG(): Determining inter-partitional control flow

Since the PCFG construction is performed for each program partition separately, each PCFG
designates the control flow within a particular program partition only. In other words, a
PCFG does not contain any edges which show the flow of control between the program
partitions. Therefore, the control flow information between the program partitions is deter-
mined by a call graph, CG=(N ,E, s, t), which is built by the function Grow CG() mentioned
in Section 4.1. The set N of CG is the set of nodes designating the program partitions in
the program and the set E of CG is the set of edges designating the flow of control between
those partitions. The notations s and t designate the unique entry and exit nodes of the
CG. Note that since an indirect call (i.e., use of a function pointer) whose target program
partition is statically unknown may potentially invoke any high-level (or unpartitioned) pro-
cedure/function in the program under consideration (we assume a function pointer can only
point to the beginning address of a high-level procedure/function but not to an arbitrary
address), Grow CG() inserts an edge from a program partition F to every other program
partition that F may call if F makes an indirect call whose target program partition is stat-
ically unknown. To learn from which address(es) a program partition can be immediately
reached and thus to be able to move the control backwards to a source address, Grow CG()
annotates an edge eij ∈ E from a program partition Fi to another program partition Fj with
the address of the instruction in Fi that transfers control from Fi to Fj.

Listing 6 shows the pseudo code of Grow CG(). Grow CG() adds a new node to the
CG for a program partition when a PCFG is built for that program partition (see line 14
of Listing 2). After a new node nj is generated for a program partition Fj, Grow CG()
checks the program partitions which are immediately reachable from Fj. For every program
partition Fk which is immediately reachable from Fj and for which a PCFG (and thus a node
in the CG) is generated, Grow CG() adds an edge ejk from the node of Fj to the node of Fk

and annotates ejk with the address of the instruction transferring control from Fj to Fk (lines
2 to 5 of Listing 6). For every other program partition which is immediately reachable from
Fj but for which a node has not yet been generated, Grow CG() sets a pending edge (lines
6 and 7 of Listing 6). Then, Grow CG() checks whether Fj has pending incoming edges
set for it. If Fj has pending incoming edges, Grow CG() adds to the CG all the pending
incoming edges that are set for Fj and annotates those edges appropriately (lines 10 to 15
of Listing 6).

Example 4.9 Call graph construction: An example program and the corresponding CG are shown

in Figure 9. The example program consists of three high-level functions main, g and h where main

calls g and g makes an indirect call to a high-level function which is not statically known. Since main

and g both contain call instructions, Init RCG partitions main into two parts (m1 and m2), and g into

two parts (g1 and g2) by constructing the corresponding PCFGs (see Listing 2). The edges in the CG

show the transfer of control between the program partitions and are annotated with the addresses of

the instructions transferring control between the partitions. Note that the indirect function call in g1

may potentially call g1 itself, m1 and h but not g2 nor m2 because the beginning addresses of g2 and

m2 do not correspond to the beginning address of any high-level function in the original program. 2

26

Listing 6 Grow CG(): The CG construction algorithm
Input: A program partition Fj for which a PCFG has been generated
Output: A node nj in the CG with a set of edges connected to nj

begin

1 Add a node nj to CG for Fj

2 for all Fk immediately reached from Fj do

3 if (nk = node of(Fk)) 6= NULL then

4 Add to the CG an edge ejk from nj to nk

5 Annotate ejk

6 else

7 Set ejk as pending
8 end if

9 end for

10 if nj has a pending incoming edge then

11 for all eij from ni to nj do

12 Add to the CG an edge eij from ni to nj

13 Annotate eij

14 end for

15 end if

end

m1

m2

g1

g2

h

void main(void) {

 if (…)
 g(); // call g

…
}

void g(void) {

void (* fp)(void); // define a func. ptr.
…
fp=… // set the func. ptr.

 (* fp)(); // call by the func. ptr.
…

}

void h(void) {
 …

}

m1

m2

g1

g2

h

A0

A2

A1

A3

A4

A1

A2 A2

A0 A2

A3

A3

A4

s

t

A0

Figure 9: An example call graph (CG).

4.9.2 Using the CG to combine the reverse program partitions

Combine Partitions() combines the reverse program partitions by systematically inverting
the edges in the CG of the original program T when generating the reverse program RT .
Consequently, in RT , Combine Partitions() inserts branch or jump instructions at those
points which correspond to the destination locations of the edges in the CG of T .

Listing 7 shows the pseudo code for Combine Partitions(). Combine Partitions() consists
of five parts (namely, a, b, c, d and e). Parts a to c are related to the program partitions
that are immediately reached from multiple static locations in T . Parts d and e, on the
other hand, are related to the program partitions that are immediately reached from a single
static location each. If a program partition F is immediately reached from a single static

27

location whose address is A in the program under consideration (i.e., there is a single edge
coming to the node of F in the CG and that edge has an annotation A), then in the reverse
code, the address RA corresponding to A is the unique address to which the control has to
be directed after the reverse of F , RF , is executed. This is easily handled by inserting at
the end of RF an unconditional branch instruction whose target address is RA (line e.1 of
Listing 7). However, if a program partition F is immediately reached from multiple static
locations (i.e., there are multiple edges coming into the node of F in the CG), the location
from which F is immediately reached during a specific execution of the program and thus
the corresponding location in the reverse code to which the control should be directed after
executing RF cannot be obtained statically. Therefore, in such a case, Combine Partitions()
applies a dynamic technique, called the stack-tracing technique, to find the location to which
the control should be directed after executing RF . We will describe the stack-tracing tech-
nique in the following paragraphs.

The stack-tracing technique

The stack-tracing technique can simply be described as saving the statically unknown return
addresses of reverse partitions into a stack at runtime. During reverse execution, the saved
addresses are popped back from the stack to provide return from a reverse partition.

Let us assume that a subset ΦF of the program partitions in the program under consid-
eration are immediately reached from multiple static locations. We will designate the set
of the reverses of these program partitions as ΦRF . Thus, the remaining partitions in the
program are immediately reached from a single static location each. Also, assume that there
are a total of n locations from which control reaches the program partitions in ΦF . We will
designate the addresses of these n locations as ΦA = {A0, A1, . . . An−1} where a subscript
shows the unique array index associated with a particular address. We will also designate the
corresponding n addresses in the reverse code as ΦRA = {RA0, RA1, . . . RAn−1}. Therefore,
after executing the reverse of a program partition F ∈ ΦF during instruction-level reverse
execution, control should be directed to an address RAid if and only if the control has reached
F from the corresponding address Aid during forward execution (Aid ∈ ΦA, RAid ∈ ΦRA).

The addresses to which the control should be transferred from a reverse program partition
in ΦRF during a specific reverse execution of the program under consideration can be found
by saving the addresses in ΦRA into a runtime stack during forward execution. In other
words, whenever a transfer from an address Ai in ΦA to a partition Fj in ΦF occurs during
forward execution, one can save the corresponding reverse address RAi in ΦRA to provide
a return from the reverse of Fj to address RAi during reverse execution. However, in a
typical processor with a 32-bit address bus (e.g., PowerPC 860), each address is 32-bits in
length. In other words, a total of 232 different addresses can be accessed through the address
bus. On the other hand, in a typical program, the total number of addresses in ΦRA and
thus the maximum array index in ΦRA is typically much less than 232. Therefore, instead
of saving the addresses themselves, the stack-tracing technique saves the array indices of
those addresses and then matches the saved indices to the addresses in ΦRA. In this way,
the memory requirement for keeping track of the addresses may be reduced.

To possibly reduce the memory requirement further, the indices that are consecutively
encountered during program execution and that have the same value (which may happen

28

Listing 7 Combine Partitions(): Combining the reverse program partitions
a. At each address Aj ∈ ΦA where a recursive call is made or might be made (we say “might be made” as

Aj might be the address of an indirect call site), insert the instructions which perform the following:

1 check the top entry in M
2 if the flag of the top entry is ‘0’ then

3 if the index of the top entry is j then

4 push a new entry with a flag ‘1’ and a counter ‘2’ over the top entry in M
5 else

6 push a new entry with a flag ‘0’ and an index j over the top entry in M
7 end if

8 else /*the flag of the top entry is ‘1’*/
9 check the entry below the top entry as well

10 if the index of the entry below the top entry is j then

11 increment the counter of the top entry by one
12 else

13 push a new entry with a flag ‘0’ and an index j over the top entry in M
14 end if

15 end if

b. At any other address Aj ∈ ΦA, insert the instructions which perform the following:

1 push over the top entry in M an entry which has a flag ‘0’ and an index j

c. At the end of each program partition RF ∈ ΦRF , insert the instructions which perform the following:

1 check the top entry in M
2 if the flag of the top entry is ‘0’ then

3 extract the index id of the top entry and pop the top entry from M
4 else

5 decrement the counter of the top entry by one
6 extract the index id of the entry below the top entry
7 if the counter has reached zero then

8 pop the top two entries from M
9 end if

10 end if

11 find in X the address RAid
∈ ΦRA at the offset id × |A| from B and branch to RAid

d. At the end of each reverse program partition RF /∈ ΦRF of which forward program partition F is
called indirectly from a unique address Ak ∈ ΦA, insert the instructions which perform the following:

1 check the top entry in M
2 if the flag of the top entry is ‘0’ then

3 if the index of the top entry is k then

4 pop the top entry from M
5 end if

6 else /*the flag of the top entry is ‘1’*/
7 check the entry below the top entry as well
8 if the index of the entry below the top entry is k then

9 decrement the counter of the top entry
10 if the counter has reached zero then

11 pop the top two entries from M
12 end if

13 end if

14 end if

15 execute an unconditional branch to the corresponding address RAk ∈ ΦRA in the reverse code

e. At the end of each reverse program partition RF /∈ ΦRF of which forward program partition F is
immediately reached from an address A /∈ ΦA, insert the instructions which perform the following:

1 execute an unconditional branch to the corresponding address RA /∈ ΦRA in the reverse code

29

with recursive function calls) are compressed into two memory locations by the stack-tracing
technique. The first memory location holds the repeating index value and the second memory
location holds a counter which shows how many times the index value repeats. Thus, the
stack-tracing technique keeps the following two data structures to keep track of the addresses
from which the control is transferred to the program partitions in ΦF .

The first data structure is to keep the associated array indices of the addresses from
which control dynamically reaches the program partitions in ΦF during a specific execution
of the program. For this purpose, the stack-tracing technique uses a memory space M which
is accessed like stack. We choose the length of an entry in M to be sixteen bits. Each entry
is a 1-bit flag concatenated with a 15-bit value. Depending on the value of the flag bit, the
15-bit value designates either the array index j of an address Aj ∈ ΦA (if the flag bit is ‘0’)
or a counter value (mentioned in the previous paragraph) which tells how many consecutive
index values the next entry in M represents (if the flag bit is ‘1’). When an entry is to be
made into M , the last entry in M is checked for a possible compression opportunity of the
new entry (see line a.1 of Listing 7). In order to prevent an accidental compression of the
first entry into M , which may happen if the irrelevant memory value just before M indicates
a valid index which is same as the first entry into M , the stack-tracing technique initially
inserts into M an entry with a flag ‘0’ and a dummy index which cannot be equal to the
index of any address in ΦA (or ΦRA).

The second data structure is to keep all the addresses in ΦRA to one of which the control
can immediately be directed after executing a reverse program partition in ΦRF . Hence, the
indices recorded in M can be matched to the addresses kept in this second data structure.
For this purpose, the stack-tracing technique uses an array X in which all the addresses
RA0 to RAn−1 are consecutively stored starting from a base address, say, B. Therefore, an
address RAj (0 ≤ j ≤ n − 1) is placed at a byte offset j × |A| from B where |A| is the
length (in bytes) of an address on the target processor and j is the index corresponding to
RAj (and thus to Aj). Note that obviously, X is constructed after the reverse program is
generated and the addresses in ΦRA are resolved.

Then, the stack-tracing technique inserts instructions both into the original and the
reverse code to invert the control flow between the program partitions that are immediately
reached from multiple static locations. The instructions inserted into the original code
handle the bookkeeping task by saving the dynamically encountered indices into M and
apply the mentioned compression for repeating index values (parts a and b of Listing 7).
The instructions inserted into the reverse code, on the other hand, retrieve the saved indices
from M , match the retrieved indices to the addresses stored in X and transfer the control
to the dynamically found addresses in this way (parts c and d of Listing 7).

Example 4.10 Combining the reverse versions of the program partitions: Figure 10 illustrates how
Combine Partitions() combines the reverse versions of the program partitions. A sample function call
history and the corresponding reverse function call order of the example program given in Figure 9 are
shown in Figure 10. According to the sample function call history, the program under consideration is
forward executed starting from the beginning of m1 until the end of m2. Then, this execution is reversed
by executing the corresponding reverse program starting from the beginning of rm2 (the reverse of m2)
until the end of rm1 (the reverse of m1). The reverse function call sequence is marked with timestamps
which indicate the instances when the control is transferred between the reverse functions.

30

m1

m2

g1

g2

h

A1

A2 A2

A0 A2

A3

A3

A4

f = 0, i = 3

f = 0, i = 4

f = 1, c = 2

f = 0, i = 2

f = 0, i = 0

f = 1, c = 2

stack M Call graph

m1

g1

g1

h

g2

g2

m2

Forward and reverse function call orders

rm1 rm2 rg1 rg2 rh RA0 RA1 RA2 RA3 RA4

time instance /
targets of branches

1 RA3 RA2
2 RA3 RA2
3 RA4 RA2
4 RA2
5 RA2 RA2
6 RA0 RA2

blr blr blr b RA2

rm2

rg2

rg2

rh

rg1

rg1

rm1

1

2

3

4

5

6

f: flag, c: counter, i: index, blr: branch to link register, b: unconditional branch

reverse functions

fi
ll

 o
rd

er

f = 0, i = -1

dummy index

A0

s

t

Figure 10: An example of combining the reverse program partitions.

Since functions m2, g1 and g2 can be immediately reached from multiple static locations, Com-
bine Partitions() inserts indirect branch (branch to link register) instructions to the end of the corre-
sponding reverse functions rm2, rg1, rg2 where the target addresses of these indirect branch instructions
are determined dynamically. On the other hand, since function h is immediately reached from a single
static location, an unconditional branch instruction with the hard-coded target address RA2 of the
unique call location of h (the end of g1) is inserted to the end of the corresponding reverse function
rh (line e.1 of Listing 7). Figure 10 also shows a table which indicates the dynamically and statically
determined addresses of the branch instructions and at what timestamp instances those addresses are
determined.

The final state of the data structure M at the end of forward execution of the program is shown in
Figure 10. Initially, M contains a dummy index entry to prevent the compression of the first valid entry
into M . At the end of function m1, when a call is made to function g1, the index ‘0’ of the address A0

(which is the address of the call location) is entered into M with a flag of ‘0’ which indicates that the
entry is an index value (line a.6). Then, at the end of function g1, a recursive call is made to g1, and
the index ‘2’ of the address A2 is entered with a flag ‘0’ over the previous entry in M (line a.6). When
the call point at the end of g1 is reached again, the index ‘2’ is supposed to be entered into M again;
however, since the index ‘2’ repeats, a counter ‘2’ with a flag ‘1’ is entered into M instead (line a.4).
Similar steps are followed to enter the rest of the indices into M .

During reverse execution, the stack-tracing technique determines the target addresses of the indirect

branch instructions at the end of the reverse functions by checking the entries in M . At the end of the

reverse function rm2, the top entry in M is checked (line c.1). Since the top entry represents a counter

31

value, the counter value ‘2’ is decremented by one (line c.5) and the index ‘3’ of the entry below the

top entry is extracted (line c.6). Then, the address RA3 corresponding to the extracted index ‘3’ is

found in X and an indirect branch is executed to the found address RA3 which is the beginning address

of rg2 (line c.11). When the end of rg2 is reached during reverse execution, the top entry in M is

checked (line c.1). Since the top entry is again a counter value, the counter value, which is now ‘1’, is

decremented by one (line c.5) and the index ‘3’ of the entry below the top entry is extracted (line c.5).

However, since the counter has reached ‘0’, the top two entries in M are popped this time (line c.8).

Then, the address RA3 corresponding to the extracted index ‘3’ is found in X and an indirect branch is

executed to the found address RA3. Similar steps are followed during the rest of the reverse execution,

which results in the correct ordering of the reverse function calls shown in Figure 10. 2

4.10 Summary of the overall RCG algorithm

The overall RCG algorithm is summarized in the flowchart in Figure 11. The RCG algorithm
first constructs a PCFG with labeled edges for every program partition in a program and
constructs the CG of the program (Box 1 in Figure 11). Then, the RCG algorithm enters a
main loop where the instructions of each program partition are read one after another and
the reverse program is built. At a confluence point of two or more edges in the PCFG of the
program partition currently being analyzed, the algorithm finds the predicate expressions
which control via which incoming edge the confluence point will be reached dynamically
(Group 1 in Figure 11).

After an instruction is read, the RCG algorithm checks whether the instruction directly
modifies a register or a memory value. If yes, the RCG algorithm generates a RIG for the
read instruction. If the instruction is outside a loop, the RCG algorithm generates the RIG
by calling Gen RIG() directly (Box2); otherwise, the RCG algorithm calls Loop Gen() to
generate a RIG for the instruction (Group2).

After a RIG is generated for an analyzed instruction, that RIG is written into the reverse
program partition that is currently being constructed (Box 3). As described in Section 4.7.1,
some instructions within a loop require more than one pass over the loop body (excluding
the initial pass over the whole program to generate the PCFGs and the CG) before reverse
code can be generated for those instructions without state saving. Therefore, if an analyzed
instruction is inside a loop and the generation of a RIG which does not use any state saving
for reversing the analyzed instruction requires another pass over the loop body, the RCG
algorithm traverses the loop body once more provided that the total number of passes over
the loop body will not exceed three.

When the construction of the current reverse program partition is completed, the RCG
algorithm connects the constructed reverse program partition to the rest of the reverse
program (Box 4).

5 Filling in the Details of the RCG Algorithm

In this section, we present the detailed descriptions of the PCFG edge-labeling algorithm,
predicate expression determination and the generation of the RIGs which have been omitted
in the overview of the RCG algorithm in Section 4. If a detailed understanding of the RCG
algorithm is not required, the reader may skip this section and move directly to Section 6.

32

Does � directly modify a
physical location?

End of program partition?

End of program?

Write RIG� into the reverse program
partition

Start

End

Construct the PCFGs of the program partitions, build the CG, label the edges of
the PCFGs and go to the beginning of the program under consideration

Connect the reverse program partition to the
rest of the reverse program

Determine the predicate
expressions

yes Is current point a
confluence point?

Group 1: Find_CF()

Go to the beginning
instruction of L

Is � within a loop L and
end of L reached?

#traversals(L) < 3

Read an instruction �

Does ζ use instructions
from within L only?

Is � within a loop L?

Is L to be traversed
once more?

Generate RIG � for
� with state saving

Generate RIG� for �

Box 2: Gen_RIG()

Box 1: Init_RCG()

Box 3: Combine_RIGs()

Box 4: Combine_Partitions()

no

yes

no

yes
no

yes

no

no yes

yes

no

yes
no

yes no

Generate a RIG, ζ, for the
current iteration instance of �

Add ζ to RIG �

yes

Group 2: Loop_Gen()

Figure 11: A high-level flowchart of the RCG algorithm.

33

5.1 PCFG edge-labeling algorithm

As mentioned before, PCFG labeling is performed for determining control flow predicates
and reaching definitions in an efficient way at a particular program point. Edge labeling
is performed by the function Label edges() which is called by Init RCG() on lines 5 and 10
of Listing 2. Label edges() assigns a special label to every forward edge in the PCFG of a
program partition. Backward edges are not considered because giving labels to backward
edges helps neither in the determination of the predicate expressions nor reaching definitions.

Each label assigned to an edge indicates the union of one or more closed intervals on
a bounded nonnegative integer number axis. We name an interval [x,y] as a control flow
interval (CFI) and assign the interval [x,y] to an edge according to the structure of the
program (distinct edges can be assigned the same intervals). As the name CFI implies,
each interval specifies (or encodes) a region of control flow in the PCFG where each region
of control flow consists of all the BBs and forward edges that reside under only one of the
branches (true branch or false branch) out of a conditional branch instruction in the PCFG.
Therefore, each conditional branch instruction (except a conditional branch instruction which
is the source of a backward edge) defines two control flow regions (i.e., true region and false
region) which are separated from one another by that conditional branch instruction. To
better understand the control flow regions, consider the following example.

Example 5.1 Control flow regions: Figure 12 shows an example PCFG in which the control flow

regions are marked. In the figure, the edge from BB2 to the exit block falls into the true region of

the conditional branch instruction cb1 at the end of BB2. On the other hand, BB3, BB4 and the edges

connected to BB3 fall into the false region of cb1. As the definition of a control flow region implies,

control flow regions can be nested. For instance, in Figure 12, the false region of cb2 is nested under

the false region of cb1; therefore, the false region of cb1 constitutes a higher level than the false region

of cb2. 2

By separating the PCFG of a program partition into a hierarchical structure of control
flow regions, the condition under which a specific edge is dynamically visited can be bound to
the predicates of the conditional branch instructions that separate those control flow regions.

We choose to bound the integer number axis between zero and 2t − 1 where t is an
integer that should be greater than the maximum number of nested conditional branches
in a program partition body. An unsigned 4-byte integer can represent an integer number
axis bounded between zero and 232 − 1. Therefore, within an unsigned 4-byte integer, a
maximum of 31 nested conditional branches can be accommodated, a level of nestedness
which can hardly ever be seen in a program partition. Therefore, for all practical purposes,
bounding the integer number axis between zero and 232 − 1 will be more than enough for
Label edges() to function correctly. The code for handling greater than 31 nested conditionals
is a special case which will rarely, if ever, be invoked.

Listing 8 shows the operations Label edges() performs on the edges of the BBs in a PCFG.
In Listing 8, the notation Lin

i,j (Lout
i,j) designates the label of the jth incoming (outgoing) for-

ward edge ∈ InFwdEdges (∈ OutFwdEdges) of a basic block BBi. Please note that a label
Lin

i,j or Lout
i,j consists of a set of one or more intervals or CFIs. Label edges() assigns to the

outgoing edge of the start block the label [0,2t − 1] which indicates all of the bounded non-
negative integer number axis (line 2 of Listing 8). If BBi is not the start block, Label edges()

34

addi: add immediate

lwz: load word

stw: store word

cmpi: compare immediate

blt: branch if less than

bgt: branch if greater than

subi: subtract immediate

b: unconditional branch

cb: conditional branch

BB1

BB2

BB3

BB4

start

addi r2, r1, 8

lwz r4, 0(r2)

cmpi r4, 97

blt exit

cmpi r4, 122

bgt exit

subi r4, r4, 32

stw r4, 0(r2)

addi r2, r2, 4

b loop exit

cb1

cb2
true

false

true

false

Figure 12: An example PCFG that shows the control flow regions.

first calculates the union of the labels of the incoming forward edges of BBi where the union
operation is performed on the intervals indicated by the labels of the incoming forward edges
(line 4). After the union operation, if BBi has two outgoing forward edges, Label edges()
divides each interval designated by the union of the incoming forward edge labels into two
equal portions. Then, Label edges() assigns the union of the lower portions (coming from
each interval) as a label Lout

i,1 to the outgoing forward edge on the fall-through path (lines 5,
6 and 7). The union of the upper portions, on the other hand, is assigned as a label Lout

i,2

to the outgoing forward edge on the target path (lines 5, 6 and 8). If BBi has only one
outgoing forward edge, Label edges() assigns the union of the incoming forward edge labels
to that edge without any change (lines 5, 9 and 10). The following example illustrates the
edge-labeling algorithm.

Example 5.2 Edge-labeling algorithm: Figure 13 shows the PCFG of Figure 12 with its edges

labeled. For this example, the parameter t shown in Listing 8 is chosen as 8. Therefore, the outgoing

edge of the start block is given the label [0,255]. Since BB1 has only one outgoing forward edge, [0,255]

is assigned to BB1’s outgoing forward edge without any change. BB2 has two outgoing forward edges;

therefore, [0,255] is divided into two equal portions [0,127] and [128,255] and each portion is assigned

to one of the outgoing edges. BB3 has two outgoing forward edges as well. Therefore, Label edges()

divides the label [0,127] of the incoming edge of BB3 into two equal portions [0,63] and [64,127] and

assigns each portion to one of the outgoing forward edges of BB3. Since BB4 has no outgoing forward

edge, no labeling occurs for BB4. All the CFIs formed are shown in Figure 14. Note that in this example,

each label consists of a single interval. 2

35

Listing 8 Label edges(): The PCFG edge-labeling algorithm
Input: A basic block BBi

Output: A Label for each outgoing forward edge of BBi

begin

1 if BBi = start block then

2 Lout
i,1 = [0,2t − 1] /*note that t is a global constant; typically, t = 32*/

3 else

4
⋃n

k=1[xk ,yk] =
⋃|InFwdEdges(BBi)|

j=1 Lin
i,j

5 for k = 1 to n do

6 if |OutFwdEdges(BBi)| = 2 then

7 Lout
i,1 ∪= [xk ,(xk + yk + 1)/2 - 1]

8 Lout
i,2 ∪= [(xk + yk + 1)/2,yk]

9 else if |OutFwdEdges(BBi)| = 1 then

10 Lout
i,1 ∪= [xk ,yk]

11 end if

12 end for

13 end if

end

5.2 Predicate expression determination

Predicate expression determination is performed by the function Find CF() which is called
by the main function of the RCG algorithm (see line 6 of Listing 1). We gave an overview
of this function in Section 4.2. Now, we will give the details behind the predicate expression
determination.

A confluence point P in a PCFG is dynamically reached via an incoming edge e if
the innermost control flow region in which e resides is dynamically visited. Therefore, the
predicate expression Υ which, when true, causes P to be reached via an incoming edge e will
simply be an appropriate combination of the predicates of the relevant conditional branch
instructions which cause the innermost control flow region which contains e to be visited.
However, a simplification can be made in Υ in certain cases: Suppose that a particular
conditional branch instruction, say cb, defines two control flow regions Rtrue (that is under
the true branch of cb) and Rfalse (that is under the false branch of cb). Suppose further that
Rtrue (or Rfalse) encapsulates the innermost control flow region in which a particular edge
e coming to P resides. Therefore, in order for e to be visited passing through cb during a
specific execution of the program under consideration, the predicate of cb must take the true
(or false) value. However, if (1) no other edge coming to P is reached through cb or (2) if
the other edges coming to P that are also reached through cb reside only in Rtrue (or Rfalse)
as well, then the predicate of cb does not play a role in the separation of the condition that
causes P to be visited via e from the conditions that cause P to be visited via the other
incoming edges. This is because of the following reason: in both cases (1) and (2) above,
if P is reached via an incoming edge that is reached through cb, then we definitely know
that the predicate of cb is true (or false); otherwise, we definitely know that cb has not been
evaluated at all. Therefore, in either case (1) or (2), the predicate of cb can be removed from
the predicate expressions determined for the incoming edges that are reached through cb.

Since the edge labels encode control flow regions, determination of the hierarchy of the
control flow regions in which e resides and thus the relevant conditional branch instructions

36

[0,255]

[128,255] [0,127]

[0,255]
BB1

BB2

BB3

BB4

start

addi r2, r1, 8

lwz r4, 0(r2)

cmpi r4, 97

blt exit

cmpi r4, 122

bgt exit

subi r4, r4, 32

stw r4, 0(r2)

addi r2, r2, 4

b loop
exit

[64,127] [0,63]

Figure 13: An example PCFG with labeled edges.

63 64 127 128 0 255

cb1

cb2 true

false true

false cb: conditional branch

CFI 3 CFI 2 CFI 1

Figure 14: The control flow intervals for the PCFG in Figure 13.

to use can be accomplished very easily by using the edge labels. Consider the following
example.

Example 5.3 Control flow predicate determination: Suppose that we want to find the predicate

expressions which control via which incoming edge the exit block in Figure 13 will be reached dynami-

cally. The incoming edge labels of the exit block are [64,127] and [128,255] for the left and the right

incoming edges, respectively. As seen in Figure 14, [64,127] corresponds to the CFI where the predicate,

r4 < 97, of the conditional branch cb1 (“blt exit” in Figure 13) is false and the predicate, r4 > 122,

of the conditional branch cb2 (“bgt exit” in Figure 13) is true. On the other hand, within [128,255],

only the predicate r4 < 97 is true. Therefore, the exit block will dynamically be reached via the left

incoming edge if the predicate r4 < 97 is false and the predicate r4 > 122 is true. On the other hand,

the exit block will dynamically be reached via the right incoming edge if the predicate r4 < 97 is true.

Since the CFI which corresponds to the false value of the predicate r4 > 122 is not spanned by any of

the incoming edge labels, the value of predicate r4 > 122 is irrelevant in this case (i.e., a simplification

in the predicate expressions can be applied here). Therefore, the predicate expression associated with

37

the right incoming edge will be r4 < 97, and the predicate expression associated with the left incoming

edge will be the complementary predicate expression r4 ≥ 97. 2

Note that since backward edges are not labeled, the predicate expressions which deter-
mine whether a loop will dynamically be reached via an incoming backward edge or a forward
edge cannot be found by the method explained. Therefore, in such a case, we follow another
approach which we call the loop counter approach. Before explaining the loop counter ap-
proach, it would be appropriate to make the definitions of some basic terms about a loop as
we will use these terms during the explanation of the loop counter approach.

Definition 5.1 Loop: In a PCFG, a loop is a strongly connected component (SCC) of the PCFG. A

SCC is a subgraph GS = (NS ,ES) of the PCFG, such that there exists a path from every node in NS

to every other node in NS. A loop header Nlh ∈ NS is a node with an incoming edge from a node

which is not in NS . Since a loop may be entered from multiple points, a loop may have more than

one loop header. A loop preheader Nlp /∈ NS is a node which is an immediate predecessor of a loop

header node. A loop is associated with a unique backward edge eb ∈ ES which defines that loop. This

backward edge is the outermost backward edge within the loop. A loop tail Nlt ∈ NS is a node which

is the source of the backward edge eb. 2

Since a loop can only be entered through a loop header, finding how a loop is reached
is equivalent to finding how a loop header is reached. Thus, we only consider loop header
blocks. We assume that a loop header block has n incoming backward edges designated as
Eb = {eb1 , eb2 , . . . , ebn

} (n ≥ 1) and m incoming forward edges designated as
Ef = {ef1

, ef2
, . . . , efm

} (m ≥ 1). Since each loop is associated with a unique backward
edge, each incoming backward edge in Eb belongs to a different a loop.

Then, the loop counter approach works as follows. Find CF() assigns a dedicated loop
counter to each loop defined by each backward edge in Eb. We will designate these loop
counters as LC = {LC1, LC2, LC3, . . . , LCn}. At each preheader of each loop, Find CF()
inserts an instruction which initializes the corresponding loop counter to zero; and at the loop
tail block of each loop, Find CF() inserts an instruction which increments the corresponding
loop counter by one. Furthermore, at the reverse version of the loop tail block of each loop,
Find CF() inserts an instruction which decrements the corresponding loop counter by one.
Therefore, during forward execution, if a loop header block is reached along an incoming
forward edge of that block, all the loop counters in LC must have a value of zero; otherwise,
at least one of the loop counters in LC must have a value which is greater than zero. Thus,
if there is only one forward edge coming to the loop header block, that forward edge is
associated with the predicate expression Υf=(LC1 == 0 ∧ LC2 == 0 ∧ . . . ∧ LCk == 0);
and if there is more than one forward edge coming to the loop header block, then each
predicate expression that is associated with each forward edge (by the explained method
in the beginning of this subsection) is ANDed with the predicate expression Υf . Each
backward edge ebi

∈ Eb (1 ≤ i ≤ n) of the loop header block, on the other hand, is
associated with a predicate expression LCi > 0 where LCi is the loop counter dedicated to
the loop containing ebi

.
Note that a loop counter LC associated with a loop L is preferably kept as a register in

order to minimize memory and time overheads during forward execution. If a free register

38

cannot be found to keep LC, an occupied register which is not used within L is freed up
by spilling the value in the register into memory at each preheader of L (i.e., just before
L is entered). Then, at the beginning of each BB to which there is an exit from L, the
spilled value is written back to the register used as LC. However, if a suitable occupied
register cannot be found, LC is kept in memory. We illustrate the loop counter approach in
Example 5.7 in Section 5.4.

5.3 Details of reverse instruction group generation

In this section, we will give a detailed description of how, given an instruction α, Gen RIG()
generates a RIG able to reverse the effects of instruction α.

We mentioned in Section 4.3 that in order to recover the value of a variable destroyed by
an instruction α, the first thing to do is to find out the reaching definitions for the variable at
the program point just before α (line 4 of Listing 3). This is because the definition destroyed
by α is indeed equal to one of the reaching definitions at a specific execution of the program
under consideration. We also mentioned in Section 4.3 that Gen RIG() applies a technique
called value renaming to find the reaching definitions easily. Therefore, let us now explain
the value renaming operation of Gen RIG() and then explain how reaching definitions are
determined by Gen RIG().

5.3.1 Value renaming

Value renaming is the assignment of a different name to every definition of a variable (i.e.,
a directly modified register or memory location). By value renaming, Gen RIG() can easily
distinguish different definitions reaching a particular point in a PCFG.

In our approach, different renamed values are designated by rj
i and mj

k for registers and
memory locations, respectively. Here, i (i = 0, 1, 2, . . .) and k (k = 0, 1, 2, . . .) indicate
the physical locations, and j (j = 0, 1, 2, . . .) indicates the unique index of a particular
renamed value (renamed during program analysis). Index j = 0 is always used to refer to
the initial value of a register or a memory location. Let us give an example of how register
values are renamed in our approach:

Example 5.4 Value renaming for registers: Consider the following instruction sequence:

addi r2, r1, 8 //r2 = r1 + 8
addi r2, r2, 4 //r2 = r2 + 4

The initial values of the registers are given the names r0
1 and r0

2 for r1 and r2, respectively. Then,

the first instruction generates a new value designated by r1
2 by using the values r0

1 and ‘8’. After that,

the second instruction generates another value designated by r2
2 using the values r1

2 and ‘4’. 2

Renaming memory values is not as easy as renaming register values. This is because a
memory location being written by an instruction is not always apparent within the instruc-
tion encoding, which is the case for indirect addressing (please note that even if a memory
location being written by an instruction is not apparent within the encoding of the instruc-
tion, that memory is still directly modified by the instruction if the instruction encoding

39

Saved registers

Locals

Return arguments

Return address

Globals

Frame pointer

Stack pointer
A function

frame

Base address

Low addresses

High addresses

Input parameters

Figure 15: A typical memory organization made by a compiler.

includes at least one operand which is used to point to the modified memory location). Con-
sequently, it might be hard to determine whether two memory stores made by two different
instructions are to a same location or not. Fortunately, there is a way to distinguish the
target memory location of an unambiguous memory store from the other stores even if the
written location is not apparent within the instruction encoding.

Figure 15 shows a memory organization made by a typical compiler. The addresses of
all local stores within a program partition can be expressed as a summation of the value of
the frame pointer (or the stack pointer if the frame pointer is not available as a dedicated
register) and the offset used for the store. The addresses of global stores in a program can
be expressed in a similar way, but by using the base address of the global data section of
the executable code in place of the frame pointer [3]. The important point here is that the
base address of the global data section is fixed throughout the execution of a program and
the value of the frame pointer is fixed throughout the execution of a program partition.
Therefore, knowing the offset value used for a memory store is sufficient for distinguishing
the target location of that memory store from the target locations of the other memory stores
in the intra-procedural analysis of the RCG algorithm.

The offset values used for unambiguous memory stores (e.g., those for ordinary variables,
pointers with statically known targets and arrays with statically known indices) are statically
apparent in an executable code. This means that the locations of unambiguous memory
stores can be determined statically and, thus, value renaming can be done for those memory
stores without any problem. However, the offset values of ambiguous memory stores (e.g.,
those for pointers aliased to statically unknown variables or arrays with statically unknown
indices) are not statically apparent. If an offset value in a memory store cannot be found
statically, we still assign a distinct name to the stored value as if that value were written into
a physical memory location that had never been accessed before; however, to be conservative,
we assume that the memory store is capable of changing the value of any memory location.
The following example illustrates how value renaming is performed for memory locations.

40

Example 5.5 Value renaming for memory locations: Consider the following instruction sequence:

stw r2, 4(r4) //mem[r4 + 4] = r2

stw r5, 8(r5) //mem[r5 + 8] = r5

The first instruction writes the contents of r2 into the memory location at the address r4 + 4 and

the second instruction writes the contents of r5 into the memory location at the address r5 + 8. If

these are local accesses, r4 will be sp+offset1 and r5 will be sp+offset2 where sp is the stack pointer

and offset1 and offset2 are the offsets of r4 and r5 from the stack pointer. Therefore, the first memory

store will be to the address sp+offset1+4, while the second will be to the address sp+offset2+8. If,

for instance, offset1 and offset2 are found to be ‘12’ and ‘8’, respectively, then the two renamed values

for the target operands will be m1
0 and m2

0, respectively: in other words, both memory stores will be

to the same memory location. On the other hand, if, for instance, offset1 and offset2 are found to be

‘12’ and ‘4’, respectively, then the two renamed values will be m1
0 and m1

1, instead. In other words, the

two memory stores will be to distinct memory locations. However, if the values of offset1 and offset2

cannot be determined statically, then the two renamed values will be m1
0 and m1

1 (i.e., we will name the

written values as if they were written into distinct memory locations) and the physical locations indexed

as m0 and m1 will be behaved as if they might coincide with any physical memory location. 2

5.3.2 Determination of reaching definitions

Reaching definitions at a program partition point are determined by Find Reaching Defs()
which is called by Gen RIG() on line 4 of Listing 3. Find Reaching Defs() finds reaching
definitions in a program partition using the labels on the forward edges of the PCFG of that
program partition. Therefore, the RCG algorithm labels all the forward edges of the PCFG
under consideration prior to reaching definition determination.

Fields/Records r1 r5 m1 m2

CFI 1

CFI 2

CFI 3

 …

…

Figure 16: The renaming table structure.

To determine reaching definitions, Find Reaching Defs() should associate all the defini-
tions encountered during the analysis of a program partition with the locations where those
definitions are encountered. Since at most one definition can reach a point from an innermost
control flow region, it is sufficient to associate a definition with the innermost control flow
region in which that definition is made. For this purpose, a table called the renaming table
is kept by Find Reaching Defs() (Figure 16). The renaming table has a record for every
physical location (e.g., r1, r2, m1, . . .) that has been modified in a program partition up to

41

the instruction currently being analyzed. As more locations are modified, more records are
added to the renaming table dynamically. Every record in the renaming table has a field
for each CFI produced in a program partition body. Initially, all the fields in a newly added
record in the renaming table contain the initial value of the corresponding physical location.
The field(s) to be used for an entry when analyzing a basic block BBi is (are) determined
by applying the following rule:

[x1, y1] ∪ [x2, y2] ∪ . . . [xn, yn] =
|InFwdEdges(BBi)|⋃

j=1

Lin
i,j (1)

Fields 7→ {c|xk ≤ L(c) ∧ U(c) ≤ yk, 1 ≤ k ≤ n, c ∈ CFIs}

L(c) and U(c) designate, respectively, the lower and upper bounds of a CFI (as stated at
the beginning of this section, CFI calculation has been done already by an initial pass over
the program partition). According to the above rule, a renamed value generated within BBi

is written into the renaming table fields that correspond to the CFIs spanned by the labels
on all incoming forward edges of BBi.

However, applying rule (1) alone does not handle everything necessary for the determi-
nation of reaching definitions as explained. In addition to rule (1), Gen RIG() performs
two more actions: First, as stated in Section 5.3.1, we assume that an ambiguous memory
store (e.g., using an ambiguous pointer) may change any memory location. Due to this as-
sumption, a renamed value generated for an ambiguous memory store and entered into some
renaming table field(s) according to rule (1) deletes the entries in the same field(s) of the
records belonging to other memory locations. Second, as mentioned before in Section 5.1,
the edge-labeling algorithm allows the assignment of the same labels to distinct edges in a
PCFG. This happens when distinct edges merge together at a confluence point in the PCFG,
and after that, they diverge again. If there are two renamed values of a variable where one
of the renamed values is given before a confluence point in the PCFG and the other is given
after the confluence point, the latter may overwrite the former in the renaming table. This is
because both of the renamed values might have to be entered into the same fields due to the
assignment of same labels to the edges before and after the confluence point. Consequently,
at a point where both definitions reach there statically, the latter definition might hide the
former definition. In order to prevent this situation, when the analysis reaches a confluence
point P in the PCFG of a program partition, Gen RIG() combines the distinct definitions
of a variable reaching P under a new pseudo definition. The pseudo definition is renamed
as any other ordinary definition and is entered to the renaming table fields that correspond
to the CFIs spanned by the labels on all the forward edges joining at P . However, as will
be described in the next subsection, the combined reaching definitions are not completely
thrown away but are represented by the pseudo definition in another data structure instead.

At a loop header block where a backward edge joins with a forward edge, Gen RIG()
delays the generation of the pseudo definitions due to the confluence of these edges until the
whole loop is analyzed by Gen RIG(). However, since backward edges are not labeled, edge
labels cannot be used directly to find the loop carried definitions. Therefore, at the end of
each pass over a loop body, Gen RIG() carries the definitions reaching the end of the loop

42

tail block to the target of the backward edge of the loop. The pseudo definitions are similar
in concept to the pseudo assignments of φ-functions in the SSA form generation; however,
in the RCG algorithm, no prior search for the places of the φ-functions takes place [22].

Finally, reaching definitions at a point P during the analysis can be determined simply
by querying the renaming table fields at P . If P is the entrance of a basic block BBi, the
statically reaching definition of a variable V along an incoming forward edge ej of BBi is
the definition in the renaming table fields corresponding to the CFIs that are spanned by
the label on ej. If P is inside BBi, on the other hand, the statically reaching definition of V
is the definition in the renaming table fields which correspond to the CFIs spanned by the
labels on all of the incoming forward edges of BBi (we speak of a unique statically reaching
definition of V along an ej or within a BBi because multiple definitions are merged under
a pseudo definition at confluence points and are represented by that pseudo definition). Let
us now give an example of how reaching definitions are determined using edge labels and the
renaming table.

 r1

CFI 1 0
1r , 1

1r , 3
1r , 4

1r

CFI 2 0
1r , 2

1r , 3
1r

(c)

(b)

(a)

1
1r 2

1r

4
1r

P1

P2

cb1

cb2

true false

[0,255]

[0,127] [128,255]

true
[128,255]

false
[0,127]

[0,127] [128,255]

[0,127] [128,255]

BB1

BB2 BB3

BB4

BB5 BB6

127 128 0 255

cb1 false true

cb: conditional branch

CFI 2 CFI 1

cb2 false true

3
1r

start

exit

Figure 17: (a) A simple PCFG. (b) Corresponding CFIs. (c) Corresponding renaming table.

Example 5.6 Determination of reaching definitions: Consider the PCFG in Figure 17(a). Suppose

that the RCG analysis is currently at the program point shown as P2 in Figure 17(a) and we want

to determine reaching definitions of register r1 at P2. The CFIs and the renaming table generated

for this PCFG are shown in Figures 17(b) and 17(c), respectively (note that the renaming table shows

the entries that are generated up until the current point P2). For clarity, overwritten entries are also

shown in the renaming table. When the analysis reaches the definition in BB2, a new value, r1
1, is

generated for r1 and is entered into the renaming table field which corresponds to the CFI spanned

43

by the label on the incoming edge of BB2: CFI 1. Same operation is repeated for the definitions in

BB3 and BB5 with the corresponding renamed values r2
1 and r4

1, respectively. When the confluence

point P1 is reached, Gen RIG() combines definitions of r1 reaching P1 under a pseudo definition that

is renamed as r3
1, and then Gen RIG() enters r3

1 into the renaming table fields which correspond to

the CFIs spanned by the labels on the joining edges at P1: CFI 1 and CFI 2. When P2 is reached,

Gen RIG() queries the renaming table and finds the entries corresponding to the CFI fields spanned by

the labels on the incoming edges at point P2. The entry corresponding to the left incoming edge (that

of CFI 1) designates that the reaching definition of r1 via the left incoming edge is r4
1. On the other

hand, the entry corresponding to the right incoming edge (that of CFI 2) designates that the reaching

definition of r1 via the right incoming edge is r3
1 which represents r1

1 and r2
1 together. These definitions

are indeed definitions of r1 reaching point P2. However, note that if r1
1 and r2

1 were not combined

under the pseudo definition r3
1, r4

1 would hide the reaching definition r1
1 at P2 since r1

1 would have

already been overwritten by r4
1. 2

5.3.3 Recovery of a destroyed variable

After finding the reaching definition for a variable that is modified by an instruction α,
Gen RIG() generates a RIG which reverses the effect of α by recovering the reaching defini-
tion found for the variable. This recovery is handled by the help of a directed acyclic graph
(DAG), DAG=(N ,E). Gen RIG() adds nodes and edges to the DAG both for the renamed
values of the operands of α (or for the definitions made and used by α) and for the pseudo
definitions which are generated at the confluence points. These nodes and edges together
specify the relationship (or the data dependency) of a destroyed reaching definition with the
other definitions generated in the program partition. Using this relationship, Gen RIG() can
recover the reaching definitions of the variable modified by α. The sets N and E of DAG
include the following:

• N={R,M} where R and M are the sets of renamed register and memory values,
respectively.

• There is a directed edge eij ∈ E from node ni ∈ N to node nj ∈ N designated
by ni → nj if (1) ni and nj are the renamed values for target and source operands
of an instruction α, respectively, or (2) ni is a renamed memory value and nj is a
renamed register value determining the location of ni, or (3) ni and nj are the renamed
values for a pseudo definition and a combined definition under that pseudo definition,
respectively.

Therefore, a node is inserted into the DAG for each definition in the program partition
under consideration. Multiple definitions of a variable statically reaching a confluence point
are merged under another node in the DAG: the node of the pseudo definition that represents
those multiple statically reaching definitions. At a later confluence point in the program
partition, a pseudo definition of a variable may again be merged with other pseudo or normal
definitions of that variable reaching that confluence point.

Gen RIG() also applies some annotations on particular nodes and edges in the DAG to
provide the necessary information for the recovery of a destroyed value: in cases (1) and

44

(2) above, node ni is annotated with the address of α to show for which instruction ni is
generated. In case (3) above, node ni is annotated by a special select (S) operator to show
that ni is generated for a pseudo definition. Also, since a pseudo definition cannot be directly
used to recover a destroyed value (but one of the combined definitions represented by that
pseudo definition can be), in case (3) above, the condition (or the predicate expression)
under which the pseudo definition ni will be equal to the renamed value nj is attached as an
annotation to the edge eij from node ni to node nj.

A node ni in the DAG can have at most one of the following attributes at a point P :
killed, available and partially-available. Node ni is killed at P if the value of ni does not reach
P ; ni is available at P if the value of ni reaches P along all paths; and ni is partially available
at P if the value of ni reaches P along some path controlled by a predicate expression (i.e.,
ni is the value of a combined definition).

Suppose that an instruction αdest destroys the value D of a variable V at a program
partition point. Let us name the point just before and after αdest as P and P ′, respectively.
In order to recover D, Gen RIG() tries to find the reaching definition of V at point P
by calling Find Reaching Defs() at line 4 of Listing 3 (remember that in case there are
multiple reaching definitions of V at point P , these definitions are represented by a unique
pseudo definition due to the merging operation). A definition cannot be found only if the
corresponding entry/entries was/were deleted in the renaming table due to an ambiguous
memory store (see Section 5.3.2). In this case, Gen RIG() recovers D by generating state
saving instructions. If a definition can be found, on the other hand, Gen RIG() finds in the
DAG the node that corresponds to the found reaching definition. Suppose that the found
node is ni. Since D is destroyed by αdest, node ni is killed at point P ′. Now, if one or both
of the following are true at P ′, Gen RIG() can recover ni by generating the appropriate
instructions.

(a) All nj’s, where there exists an edge ni → nj, are available and ni and nj’s are the
values of the operands of an instruction α.

(b) An nj, for which there exists an edge nj → ni, is available and all nk’s, nk 6= ni, for
which there exists an edge nj → nk, are available as well. Moreover, ni, nj and all nk’s
are the values of the operands of an instruction β which allows ni to be extracted out
of β.

If (a) holds, ni can be recovered at P ′ by executing α without any change (i.e., by the
redefine technique). On the other hand, if (b) holds, ni can be recovered at P ′ by extracting
ni out of β (i.e., by the extract-from-use technique). In addition, if any node nj that is
needed for recovering ni is partially-available (i.e, nj is the value of a combined definition),
controlled by a predicate expression Υ, then ni might be partially recovered at P ′ (the
predicate expression Υ is obtained by the annotations on the edges coming to nj in the
DAG). To recover ni totally, ni must be partially-recoverable for all values of Υ. In this
case, the reverse code for recovering ni will be gated by Υ. If Υ is destroyed itself, the nodes
determining Υ’s value must be recovered as well. Finally, note that these actions can be
applied recursively, that is, if a node nj that is required to recover ni is killed, then ni might
still be recovered by recovering nj first. If the recovery of a node requires the knowledge

45

of the value of an external input of the program partition under consideration, Gen RIG()
generates state saving instructions to recover the killed node.

5.4 Putting it all together

In this section, we summarize the detailed operations of the RCG algorithm presented
throughout Section 5.

To determine the intra-partitional control flow, the RCG algorithm uses predicate ex-
pressions which are determined for each edge coming to a confluence point (see Section 4.2).
Predicate expressions for forward edges coming to a confluence point are determined by using
the labels assigned to those edges (see Section 5.1). The predicate expressions for backward
edges coming to a confluence point, on the other hand, are determined by the loop counter
approach introduced in Section 5.2.

The RCG algorithm generates a RIG for an instruction α such that the RIG recovers the
variable(s) directly modified by α. In order to recover a directly modified variable, the RCG
algorithm uses a DAG (see Section 5.3.3). First, the RCG algorithm finds in the DAG the
node for the reaching definition of the directly modified variable (for the determination of
this node, see Section 5.3.2). Since α overwrites this definition, the node of this definition is
killed. Then, in the DAG, the RCG algorithm constructs nodes and edges for the operands
of α. Finally, the RCG algorithm tries to recover the killed node by using the other available
nodes in the DAG (i.e., the nodes that have been constructed for the instructions scanned
before α). For a loop, the RCG algorithm should not use the available nodes that are
constructed for the instructions outside of the loop. If the only available nodes that can be
used for the recovery of the killed node are the nodes that are constructed for the instructions
outside of the loop, the RCG algorithm postpones the recovery to the next iteration of the
loop provided that the total passes over the loop will not exceed three. If the loop has already
been traversed three times, the RCG algorithm generates a RIG which employs state saving
(see Section 4.7.1).

Let us illustrate the generation of an instruction-level reverse program with the example
program shown in Figure 18.

Example 5.7 Instruction-level reverse program generation: Figures 19 and 20 show the renaming
table and the DAG, respectively, that are constructed after two passes over the loop body (excluding
the first pass over the whole program to generate the PCFG the CFIs and the CG) in the PCFG of
Figure 18. The renaming table shows the analysis timestamps adjacent to a renamed value when that
renamed value is generated (timestamps are shown in parentheses in Figure 18). The timestamp value
increments by one after each instruction in a program partition is scanned. For clarity, the overwritten
entries are again shown in the renaming table (Figure 19).

As an example, consider the analysis point reached after scanning “lwz r4, 0(r2)” at timestamp ‘2’.
The analysis first finds the reaching definition of r4, r0

4, by querying the renaming table fields which
correspond to the CFIs spanned by the incoming edge label [0,255]. Then, the newly generated value of
r4, r1

4, is entered into the same fields according to the rule described in Section 5.3.2: the result can be
seen in all the r1

4(2) entries in Figure 19. Next, a node for r1
4 is constructed in the DAG and is connected

to the node m0
0 (m0 designates the memory location at r1+8). Finally, r0

4 should be recovered. Since
r0
4 is an input to F and F has no instruction associated with r0

4, r0
4 has to be recovered by state saving.

Therefore, r0
4 can be recovered by the load instruction “lwz r4, mem2” where mem2 is the location

46

[0,255]

[128,255] [0,127]

[0,255]

(1)

(2), (11)

(4), (13)

(6), (15)

(7), (16)

(8), (17)

(9), (18)

(3), (12)

(5), (14)

(20)

(#): a timestamp in the analysis

cb: conditional branch

BB1

BB2

BB3

BB4

cb2

cb1

start

addi r2, r1, 8

lwz r4, 0(r2)

cmpi r4, 97

blt exit

cmpi r4, 122

bgt exit

subi r4, r4, 32

stw r4, 0(r2)

addi r2, r2, 4

b loop
exit

[64,127] [0,63]

(10), (19)

(0)

Figure 18: An example PCFG.

 r1 r2 r4 m0 m1

CFI 1
0

1r (0)

0
2r (0)

1
2r (1)

2
2r (9)

3
2r (18)

4
2r (19)

0
4r (0)

1
4r (2)

2
4r (7)

3
4r (11)

4
4r (16)

0
0m (0)

1
0m (8)

2
0m (19)

0
1m (0)

1
1m (17)

2
1m (19)

CFI 2
0

1r (0)

0
2r (0)

1
2r (1)

2
2r (10)

4
2r (19)

0
4r (0)

1
4r (2)

2
4r (10)

3
4r (11)

4
4r (19)

0
0m (0)

1
0m (10)

2
0m (19)

0
1m (0)
2
1m (19)

CFI 3
0

1r (0)

0
2r (0)

1
2r (1)

2
2r (10)

4
2r (19)

0
4r (0)

1
4r (2)

2
4r (10)

3
4r (11)

4
4r (19)

0
0m (0)

1
0m (10)

2
0m (19)

0
1m (0)
2
1m (19)

Figure 19: The renaming table for the PCFG of Figure 18.

where r0
4 is saved in F . However, since “lwz r4, mem2” is not an instruction within the loop, the

loop condition mentioned in Section 4.7.1 is violated (i.e., r4 is recovered only for the first iteration of
the loop); therefore, another pass over the loop body is necessary. When the analysis reaches the same
point at timestamp ‘11’, the value of r4 to be recovered is now r2

4. Fortunately, r2
4 can be recovered

by using internal instructions this time: r2
4 has an incoming edge from m1

0. Although, m1
0 is available,

r1
2, the other node m1

0 is connected to, is killed. However, condition (b) given in Section 5.3.3 holds
for r1

2 and thus r1
2 can be recovered into a temporary register rt by using the available node r2

2 and
with staying in the loop. The instruction for recovering r1

2 will then be “subi rt, r2, 4” which extracts
r1
2 out of the addition instruction “addi r2, r2, 4” (the instruction “addi r2, r2, 4” is found by the

address annotation on r2
2). Now, condition (b) given in Section 5.3.3 holds for r2

4 as well, and r2
4 can

be recovered for the rest of the iterations of the loop by executing the instruction “lwz r4, 0(rt).” A
loop counter (rLC) inserted into the original code is used for differentiating between the loop iterations
as explained in Section 4.7.1. Similar steps are followed for the generation of the RIGs for the other
instructions as well.

After generating a RIG, the RCG algorithm connects the RIG to the previously generated RIGs by

the function Combine RIGs() (see line 14 of Listing 1). Figure 21 shows the modified code on the left

47

0
4r

0
0m

1
4r

2
4r

1
0m

3
4r

4
4r

3
2r

2
0m 2

1m 4
2r

S: Annotation for the select operator (address annotations are not shown).
Nodes generated within the loop are encircled (dotted: first pass, solid: second pass).

1
2r

0
1r

2
2r

S S S

2
2r

rLC = = 0

rLC = = 0

rLC = = 0

rLC > 0

rLC > 0

rLC > 0

0
2r

1
1m

0
1m

2
2r is drawn as two separate nodes for clarity (i.e., those two nodes are the same node).

Figure 20: The DAG for the PCFG of Figure 18.

start

cmpi r4, 122
bgt exit

subi r4, r4, 32
stw r4, 0(r2)
addi r2, r2, 4

addi rLC,, rLC, 1
b loop

stw r2, mem1
addi r2, r1, 8

li rLC, 0
stw r4, mem2

lwz r4, 0(r2)
cmpi r4, 97

blt exit

exit

subi rLC,, rLC, 1
subi r2, r2, 4
addi rt, r4, 32
stw rt, 0(r2)

addi r4, r4, 32

lwz r2, mem1

cmpi rLC, 0
bne L1

lwz r4, mem2
b L2

subi rt, r2, 4
lwz r4, 0(rt)
cmpi rLC, 0
bne loop

exit

loop

start

L1

L2

BB1

BB2

BB3

BB4

RBB1

RBB4

RBB2

bne: branch if not equal

Figure 21: The original PCFG (left) and the reverse PCFG (right).

and the corresponding reverse code on the right. As explained before in Section 4.8, RIGs are placed in

bottom-up order, and at the boundaries of the BBs, the edges of the original PCFG are simply inverted

by generating the appropriate branch instructions in the reverse code. Consequently, a join point of

edges in the original PCFG typically becomes a fork point of edges in the reverse PCFG, and vice versa.

Note, however, that in this example, since the reverse of BB3 in Figure 21 happens to be empty (since

BB3 does not include any instruction that directly modifies a register or a memory location), the inverted

versions of the two incoming edges of the exit block in the original PCFG go to the same point in the

reverse PCFG. Therefore, these inverted edges are merged together into a single edge. If this were not

the case, a conditional branch instruction of which predicate is determined as explained in Section 5.2

would be inserted at the end of the start block in the reverse code. 2

48

Execute forward Step forward Execute backward Step backward

Memory
window

Breakpoint
window

Register
window

Source
window

Figure 22: The GUI of the debugger tool.

6 Experimental Results

We tested the RCG algorithm on an evaluation board with a PowerPC (MPC860) proces-
sor. In order to test reverse execution on a debugging session, we implemented a low-level
debugger tool with a graphical user interface (GUI) that provides debugging capabilities
such as breakpoint insertion, single stepping, register and memory display (Figure 22). The
debugger runs on a PC with Windows 2000. The PC is connected to the PowerPC board
via a Background Debug Mode (BDM) interface [21].

The benchmark programs we used for our experimentation are a Fibonacci number gen-
erator (FNG) with 100 iterations, a selection sort (SSort) with 10 inputs, a 3 by 3 matrix
multiplication (MMult) and a random number generator (RNG) with 100 iterations. FNG
generates a Fibonacci series which includes 100 numbers. FNG does not write the gener-
ated numbers into memory, but calculates the numbers in a local variable. SSort sorts 10
numbers which are input to SSort in an array. SSort is an in-place sort algorithm. In other
words, the numbers in the input array are sorted within the input array. This means that
SSort does not allocate any additional temporary storage to sort the input data. MMult
multiplies two 3 by 3 integer matrices that are input to MMult as arrays and writes the re-
sulting matrix into another array. Finally, RNG generates 100 pseudo random numbers in a
sequence. Similar to FNG, RNG does not use main memory to keep the generated numbers.
All of the benchmarks are written in the C programming language. In order to compile the
benchmarks for the PowerPC 860, we used a compiler from Tasking, Inc. [27]. Note that
we compiled each benchmark using standard optimizations such as common subexpression
elimination, constant propagation, constant folding, dead code elimination, strength reduc-
tion and global register allocation. Therefore, in our experimentation, the RCG algorithm
generates an instruction-level reverse program for each benchmark by using optimized as-
sembly code as input to the RCG algorithm. Table 1 depicts the size of each benchmark in
terms of the total number of lines of C and the total number of assembly instructions.

In order to compare the performance of the RCG algorithm against the previous state sav-
ing techniques, we had to expand the previous techniques to support instruction-level reverse
execution. Some of the previous techniques introduced in Section 3 are not applicable for

49

Table 1: The sizes of the benchmarks.

 FNG SSort MMult RNG

#C lines 12 16 18 14

#assembly instructions 15 37 59 35

instruction-level reverse execution at all (e.g., source code transformation). The applicable
ones, once expanded to support instruction-level reverse execution, are converted into either
saving the modified processor state before each instruction (i.e., incremental state saving)
or saving the modified processor state before each destructive instruction (i.e., incremental
state saving for destructive instructions).

Table 2: Memory overheads.

 FNG SSort MMult RNG

ISS 1.6 kB 1.9 kB 1.9 kB 8.8 kB

ISSDI 1.2 kB 1.5 kB 1.1 kB 5.6 kB

RCG algorithm 0.004 kB 0.6 kB 0.2 kB 0.8 kB

Table 3: Time overheads.

 FNG SSort MMult RNG

ISS 109 % 107.3 % 132.4 % 146.4 %

ISSDI 85.4 % 90.7 % 84.3 % 100.8 %

RCG algorithm 13.4 % 38.9 % 28.6 % 20.6 %

Tables 2 and 3 show memory and time overhead results of the RCG algorithm, the
ordinary incremental state saving (ISS) and incremental state saving for only destructive
instructions (ISSDI). The memory overhead measurements were performed in the following
way: For ISS and ISSDI, we calculated the program points where state saving is needed
with each benchmark and we instrumented each benchmark with memory store instructions
which save state at the calculated points. Then, we applied the RCG algorithm to each
original benchmark in order to obtain the modified benchmarks instrumented with state
saving instructions at necessary points for the RCG algorithm as well. For time overhead
measurement, we used the decrementer counter of the PowerPC 860 processor (the PowerPC
860 provides a decrementer counter which is decremented by one at a certain number of
processor cycles). First, we ran each benchmark without any instrumentation and noted
the execution time (in number of processor cycles) using the change in the decrementer
counter. Then, we ran modified benchmarks instrumented only with the necessary state
saving instructions and noted the execution time (in number of processor cycles) in the same

50

0

5

10

ISS 1.6 1.9 1.9 8.8
ISSDI 1.2 1.5 1.1 5.6

0.004 0.6 0.2 0.8

FNG SSort MMult RNG

RCG algorithm

1X 1X

1.33X 1.27X 1.73X
400X 3.17X 9.5X 11X

1.9 1.9

 8.8

1.5 1.1

 5.6

 0.6 0.2
 0.8

1.6 1.2
 0.004

1X 1X

1.57X

M
em

or
y

O
ve

rh
ea

d
(K

B
)

Figure 23: Memory overhead comparison.

0
50

100
150
200

ISS 109 107.3 132.4 146.4
ISSDI 85.4 90.7 84.3 100.8
RCG algorithm 13.4 38.9 28.6 20.6

FNG SSort MMult RNG
13.4

109
85.4

107.3
90.7

38.9

132.4

84.3

28.6

146.4

100.8

20.6

8.13X

1.28X

1X

2.76X

1.18X
1X 1X 1X

1.57X

4.63X 7.11X
1.45X

T
im

e
O

ve
rh

ea
d

(%
)

Figure 24: Time overhead comparison.

way. Finally, we calculated the time overhead for each benchmark by taking the differences
between the noted execution times with instrumentation and the noted execution times
without instrumentation.

Figures 23 and 24 show memory and time overhead comparisons, respectively, between
the RCG algorithm, ISS and ISSDI. The results indicate that the RCG algorithm achieves
from 3.17X to 400X and from 2.5X to 300X reduction in memory overhead as compared
to ISS and ISSDI, respectively (Figure 23). Furthermore, the RCG algorithm achieves an
average of 5.7X and 4.1X reduction in execution time of the benchmarks when compared
to ISS and ISSDI, respectively (Figure 24). For the RCG algorithm, the relatively higher
memory and time overheads that result from the measurements with SSort as compared to
measurements with the other benchmarks are mainly due to ambiguous memory stores SSort
uses. These ambiguous memory stores happen because the individual array elements that
SSort overwrites during a sort operation depends on the initial ordering of the array elements.
On the other hand, memory and time overheads encountered with the RCG algorithm during
the execution of FNG only come from the loop counter inserted within the FNG loop. For
this reason, a much bigger (300X - 400X) overhead reduction is achieved with the RCG
algorithm as compared to previous approaches.

51

7 Conclusion

In this report, a new reverse execution methodology for programs is introduced. To realize
reverse execution, the methodology generates a reverse program from an input program by
a static analysis at the assembly level. The methodology is new because state saving can
be largely avoided even with programs including many destructive instructions. This cuts
down memory and time overheads introduced by state saving during forward execution of
programs. Moreover, the methodology provides instruction by instruction reverse execution
at the assembly instruction level without ever requiring any forward execution of the pro-
gram. In this way, a program can be run backwards to a state as close as one assembly
instruction before the current state.

Since generation of the reverse program is performed from the assembly instructions of
a program, the methodology introduced in this report provides reverse execution capability
for programs without source code. Also, since both the forward code and the reverse code
are executed in native machine instructions, these executions can be performed at full speed
of the underlying hardware.

References

[1] A. Adl-Tabatabai and T. Gross. Detection and recovery of endangered variables caused
by instruction scheduling. In Proceedings of the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation, pages 13–25, 1993.

[2] H. Agrawal, R. A. DeMillo, and E. H. Spafford. An execution backtracking approach
to program debugging. IEEE Software, 8(3):21–26, May 1991.

[3] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, MA, 1986.

[4] D. F. Bacon and S. C. Goldstein. Hardware-assisted replay of multiprocessor programs.
Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging, pub-
lished in ACM SIGPLAN Notices, 26(12):194–206, December 1991.

[5] B. K. Bhargava. Concurrency control in database systems. Knowledge and Data Engi-
neering, 11(1):3–16, 1999.

[6] M. R. Birch, C. M. Boroni, F. W. Goosey, S. D. Patton, D. K. Poole, C. M. Pratt, and
R. J. Ross. Dynalab. ACM SIGCSE Bulletin, 27(1):29–33, March 1995.

[7] C. Carothers, K. Perumalla, and R. Fujimoto. Efficient optimistic parallel simulations
using reverse computation. ACM Transactions on Modeling and Computer Simulation,
9(3), July 1999.

[8] K. M. Chandy and C. V. Ramamoorthy. Rollback and recovery strategies for computer
programs. IEEE Transactions on Computers, 21(6):546–556, June 1972.

52

[9] P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi. Reversible execution and
visualization of programs with Leonardo. Journal of Visual Languages and Computing
(JVLC), 11(2):125–150, April 2000.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently com-
puting static single assignment form and the control dependence graph. ACM Trans-
actions on Programming Languages and Systems, 13(4):451–490, October 1991.

[11] S. I. Feldman and C. B. Brown. IGOR: A system for program debugging via reversible
execution. In Workshop on Parallel and Distributed Debugging, pages 112–123, 1988.

[12] J. Fleischmann and P.A. Wilsey. Comparative analysis of periodic state saving tech-
niques in time warp simulators. In Proceedings of the Ninth Workshop on Parallel and
Distributed Simulation, pages 50–58, 1995.

[13] R. W. Floyd. Nondeterministic algorithms. Journal of the ACM, 14(4):636–644, October
1967.

[14] R. M. Fujimoto. Time warp on a shared memory multiprocessor. Transactions of the
Society for Computer Simulation International, 6(3):211–239, July 1989.

[15] F. Gomes. Optimizing Incremental State Saving and Restoration. PhD thesis, Depart-
ment of Computer Science, University of Calgary, 1996.

[16] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

[17] J. Hennessy. Symbolic debugging of optimized code. ACM Transactions on Program-
ming Languages and Systems, 4(3):323–344, July 1982.

[18] D. A. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7(3):404–425, July 1985.

[19] Y.-H. Lee and K. G. Shin. Design and evaluation of a fault tolerant multiprocessor using
hardware recovery blocks. IEEE Transactions on Computers, 33(2):113–124, February
1984.

[20] B. P. Miller and J. Choi. A mechanism for efficient debugging of parallel programs.
In Proceedings of the SIGPLAN’88 Conference on Programming Language Design and
Implementation, pages 135–144, 1988.

[21] Motorola Inc. MPC860 PowerQUICC Users Manual, 1998.
http://e-www.motorola.com/brdata/PDFDB/docs/MPC860UM.pdf.

[22] Steve S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco, CA, 1997.

53

[23] R. H. B. Netzer and M. H. Weaver. Optimal tracing and incremental reexecution for
debugging long-running programs. In Proceedings of the ACM SIGPLAN’94 Conference
on Programming Language Design and Implementation, pages 313–325, 1994.

[24] D. Z. Pan and M. A. Linton. Supporting reverse execution of parallel programs. In
Workshop on Parallel and Distributed Debugging, pages 124–129, 1988.

[25] R. Sosic. History cache: Hardware support for reverse execution. Computer Architecture
News, 22(5):11–18, December 1994.

[26] Steven Stolper. Questions and answers about the Mars Pathfinder, October 1997.
http://www.quest.arc.nasa.gov/mars/ask/about-mars-path/.

[27] Tasking Inc. Tasking C/C++ Compiler Datasheet, 2001.
http://www.tasking.com/products/PPC/ppc-ds21.pdf.

[28] D. West and K. S. Panesar. Automatic incremental state saving. In Proceedings of the
Tenth Workshop on Parallel and Distributed Simulation, pages 78–85, 1996.

[29] R. Wismuller. Debugging of globally optimized programs using data flow analysis. In
Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design
and Implementation, pages 278–289, 1994.

[30] M. V. Zelkowitz. Reversible Execution as a Diagnostic Tool. PhD thesis, Department
of Computer Science, Cornell University, 1971.

54

APPENDIX A

We have already stated that the generated reverse code only recovers memory or register
values that are directly modified by the instructions and have explained how this is performed
in the report. The remaining memory and register values that are not recovered by the
generated reverse code are those values that are indirectly modified by the instructions. In
this Appendix, we answer how we take care of the effects of indirectly modified memory and
register values.

A value modified by an instruction is directly modified if the memory location or the
register holding the value appears as an operand of the instruction; otherwise, the value
modified by the instruction is indirectly modified. As an example, while the target operand
of an “xor” instruction is directly modified by the “xor” instruction, a branch condition
register may be indirectly modified by a “compare” instruction even if the branch condition
register may not be an operand of the “compare” instruction.

Let us designate the set of instructions of a processor P with I. We define a set, say E
(E ⊂ I), of instructions of P such that the outcome of an instruction in E does not depend
on any indirectly modified memory location or register but only on that instruction’s source
operands which are directly modified by other instructions in I. The set of instructions
outside of E, designated as E ′ (E ′ ⊂ I), on the other hand, are affected by indirectly
modified memory and/or register values.

Example A.1 Consider ordinary integer addition and conditional branch instructions. The outcome

of an ordinary integer addition instruction such as “add r1, r2, r3” in a program is only affected by the

values of r1 and r2 both of which are directly modified by other instructions in the program. Therefore,

an “add” instruction is an element of E. On the other hand, the outcome of a conditional branch

instruction such as “bne target” may depend on the value of a branch condition register which might

be indirectly modified by a compare instruction. Therefore, a conditional branch instruction may be

included in E ′. 2

Thus, we can omit the reverse code generation for the recovery of indirectly modified
values if we can correctly undo the instructions in E ′.

Therefore, the instructions in E ′ are specially treated as follows: Let us assume that
the outcome of an instruction α depends on the value V of an indirectly modified memory
location or register. Also, assume that an instruction, say β, computes V indirectly. Then,
whenever α is to be reverse executed alone, the debugger tool reevaluates V by re-executing
the instruction β in the background. If the instruction β has dependencies on other memory
and/or register values, those register and memory values are recovered into temporaries prior
to reevaluation of V . Let us explain this in the following example:

Example A.2 Consider the following instruction sequence (the numbers in the parentheses show the
program points):

(1)
cmp r12, 100
(2)
bg L1
(3)

55

The outcome of the conditional branch instruction depends on the value of the branch condition

register which does not appear as a source operand of the conditional branch instruction and which

is indirectly modified by the compare instruction. Whenever the programmer reverse executes the

program from point (3) to point (2) (i.e., the conditional branch instruction is reverse executed but the

compare instruction is not), the debugger tool re-executes the compare instruction in the background.

This guarantees that when the program is forward executed from point (2) on, the outcome of the

conditional branch instruction will always be the same, even if the value of the branch condition register

has been modified prior to reverse execution. 2

56

