
CSL Technical Report SRI-CSL-06-01 • May 23, 2006

Integrating Simplex with DPLL(T)

Bruno Dutertre and Leonardo de Moura

This report is based upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHD030010. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of DARPA or the Department of Interior National Business
Center (DOI-NBC).

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

We present a new Simplex-based linear arithmetic solver that can be integrated efficiently in the
DPLL(T) framework. The new solver improves over existing approaches by enabling fast back-
tracking, supporting a priori simplification to reduce the problem size, and providing an efficient
form of theory propagation. We also present a new and simple approach for solving strict inequal-
ities. Experimental results show substantial performance improvements over existing tools that use
other Simplex-based solvers in DPLL(T) decision procedures. The new solver is even competitive
with state-of-the-art tools specialized for the difference logic fragment.

Contents

1 Introduction 4

2 Background 6
2.1 Solvers for DPPL(T) . 6
2.2 Existing Simplex Solvers for DPLL(T) . 7
2.3 Performance . 8

3 A Linear-Arithmetic Solver for DPLL(T) 11
3.1 Preprocessing .11
3.2 Basic Solver .12

3.2.1 Main Algorithm . 13
3.2.2 Generating Explanations .15
3.2.3 Assertion Procedures .16
3.2.4 Backtracking .16
3.2.5 Theory Propagation .17
3.2.6 Example .17

3.3 Strict Inequalities .18

4 Integer and Mixed Integer Problems 20
4.1 Branch and Bound .20
4.2 Gomory Cuts .21

4.2.1 Derivation of a Gomory Cut .22
4.2.2 A Stronger Gomory Cut .24

5 Experiments 26

6 Conclusion 31

1

List of Figures

2.1 Impact of Theory Propagation in Simplics .10

3.1 Auxiliary procedures .12
3.2 Check procedure .13
3.3 Assertion procedures .16
3.4 Example .17

5.1 Ario 1.1 vs. New Solver .27
5.2 BarcelogicTools vs. New Solver .28
5.3 CVC Lite 2.0 vs. New Solver .28
5.4 MathSAT 3.3.1 vs. New Solver .29
5.5 Simplics vs. New Solver .29
5.6 Yices vs. New Solver .30

2

List of Tables

5.1 Experimental results: Summary .27

3

Chapter 1

Introduction

Decision procedures for quantifier-free linear arithmetic determine whether a boolean combination
of linear equalities, inequalities, and disequalities is satisfiable. Several tools for solving this prob-
lem rely on the DPLL(T) approach [11]: they combine boolean satisfiability solvers based on the
Davis-Putnam-Logemann-Loveland (DPLL) procedure, and arithmetic solvers capable of deciding
the satisfiability of conjunctions of linear constraints. Results of a first satisfiability modulo the-
ories (SMT) competition, comparing several of these tools, are presented in [3]. In thedifference
logic fragment of linear arithmetic, that is, if all the constraints are of the formxi − xj ≤ b,
specialized solvers such as Barcelogic [14] or Slice [19] use graph algorithms such as the Bellman-
Ford algorithm. For general linear arithmetic, existing tools rely either on Fourier-Motzkin elimina-
tion [8] (used by CVClite [2], CVC [18], SVC [4]) or on Simplex methods [7] (used by MathSat [6],
ICS [10], Simplics, Yices, ARIO [17]). In practice, Fourier-Motzkin elimination explodes on many
problems and Simplex is generally superior. The worst-case complexity of Simplex is exponential
but this worst case is rarely encountered in practice. On the other hand, Fourier-Motzkin elimination
tends to generate a very large number of intermediate inequalities which causes it to often fail by
running out of memory.

The common methods for integrating a Simplex solver with DPLL rely on incremental versions
of Simplex such as described in [15, 9, 12, 1]. A tableau is constructed and updated incrementally:
rows are added as DPLL proceeds and are later removed when DPLL bactracks. These frequent
addition and removal of rows and the related bookkeeping have a significant cost. For example,
backtracking may require pivoting operations. This report presents a simpler and more efficient
Simplex-based solver that considerably reduces this overhead. The approach relies on transforming
the original formulaΦ into an equisatisfiableΦ′ such that the satisfiability ofΦ′ is decided by solving
a series of problems of the form

find x ∈ Rn such thatAx = 0 andli ≤ xi ≤ ui for i = 1, . . . , n,

where the matrixA is fixed andli andui are bounds onxi that may vary with each problem. Variants
of Simplex can efficiently solve problems in this form. This report describes such a variant designed
to be efficient in the DPLL(T) context: it has low backtracking overhead and enables a simple but
useful form of theory propagation. Furthermore, the new approach makes it possible to simplify
the problem a priori by eliminating irrelevant variables. This pre-simplification leads to substantial
performance improvements on many examples from the SMT-LIB benchmarks.

4

We first give an overview of the DPLL(T) approach and discuss some lessons learned from
our tools Yices and Simplics. Our new solver relies on a simplex-based procedure for real linear
arithmetic described in details in Chapter 3. Extension to integer and mixed-integer problems is
discussed in Chapter 4, and experimental results are presented in Chapter 5.

5

Chapter 2

Background

Given a quantifier-free theoryT , a T -solver is a procedure for deciding whether a finite sets of
atoms ofT is satisfiable. IfΦ is a formula built by boolean combination of atoms ofT , then the
satisfiability ofΦ can be decided by combining a boolean satisfiability solver and aT -solver. This
can be summarized as follows:

• FirstΦ is transformed into a propositional formulaΦ0 by replacing its atomsφ1, . . . , φt with
fresh propositionsp1, . . . , pt.

• A boolean valuation forΦ0 is a mappingb from Φ0’s propositions to{0, 1}. Any suchb
defines a set of atomsΓb = {γ1, . . . , γt}whereγi is φi if b(pi) = 1 andγi is¬φi if b(pi) = 0.
ThenΦ is satisfiable if there is ab that satisfiesΦ0 (in propositional logic) and for whichΓb

is consistent (in theoryT).

The DPLL(T) approach is an efficient method for such integrations that relies on the DPLL proce-
dure.

The efficiency of this approach depends to a large extent on the features of modern DPLL-based
SAT solver, such as, fast unit propagation, good heuristics for selecting decision variables, clause
learning, and non-chronological backtracking. However, a fast SAT solver is not sufficient, several
properties of theT -solver are also important.

2.1 Solvers for DPPL(T)

In the DPLL(T) framework, aT -solver maintains a state that is an internal representation of the
atoms asserted so far. This solver must provide operations for updating the state by asserting new
atoms, checking whether the state is consistent, and for backtracking. Optionally, the solver may
also implementtheory propagation, that is, identify atoms that are implied by the current state. To
interact with the DPLL search, the solver must produceexplanationsfor conflicts and propagated
atoms. In an inconsistent stateS, an explanation is any inconsistent subset of the atoms asserted
in S. Similarly, an explanation for an implied atomγ is a subsetΓ of the asserted atoms such that
Γ |= γ. In both cases, the explanation isminimal if no proper subset ofΓ is itself an explanation.

The solver is assumed initialized for a fixed formulaΦ and we denote byA the set of atoms that
occur inΦ. The set of atoms asserted so far is denoted byα. The solver also maintains a stack of

6

checkpointsthat mark consistent states to which the solver can backtrack. We assume that aT -solver
implements the following API.1

• Assert(γ) asserts atomγ in the current state. It returns eitherok or unsat〈Γ〉 whereΓ is a
subset ofα. In the first case,γ is inserted intoα. In the latter case,α ∪ {γ} is inconsistent
andΓ is the explanation.

• Check() checks whetherα is consistent. If so, it returnsok, otherwise it returnsunsat〈Γ〉. As
previouslyΓ ⊆ α is an explanation for the inconsistency. A new checkpoint is created when
ok is returned.

• Backtrack() backtracks to the consistent state represented by the checkpoint on the top of the
stack.

• Propagate() performs theory propagation. It returns a set{〈Γ1, γ1〉, . . . , 〈Γt, γt〉}whereΓi ⊆
α andγi ∈ A \ α. Everyγi is implied byΓi.

Assertmust be sound but is not required to be complete:Assert(γ) may returnok even ifα∪{γ}
is inconsistent. Similarly,Propagatemust be sound but does not have to be exhaustive. For exam-
ple, a solver without theory propagation can returnPropagate() = ∅ for anyS. On the other hand,
function Checkis required to be sound and complete: ifCheck() = ok thenα must be consis-
tent. This model enables several atoms to be asserted in a single “batch”, using several calls to
Assertfollowed by a single call toCheck. Assertcan then implement only inexpensive (and possi-
bly incomplete) consistency checks whileCheckimplements a complete (and possibly expensive)
consistency-checking procedure. The stateS′ after executingBacktrackmust be logically equivalent
to the stateS when the checkpoint was created, butS′ may be different fromS.

2.2 Existing Simplex Solvers for DPLL(T)

A quantifier-free linear arithmetic formula is a first-order formula whose atoms are either proposi-
tional variables or equalities, disequalities, or inequalities of the form

a1x1 + . . . + anxn ./ b,

wherea1, . . . , an andb are rational numbers,x1, . . . , xn are real (or integer) variables, and./ is
one of the operators=,≤, <, >,≥, or 6=. In the DPLL(T) framework, deciding the satisfiability of
such formulas requires a linear-arithmetic solver. A common approach is to use incremental forms
of Simplex similar to the algorithms described in [15,9,12,1]. Tools based on this approach include
our own tools, Yices and Simplics, and others such as MathSat [6].

In these algorithms, a solver state includes a Simplex tableau that is derived from all equalities
and inequalities asserted so far. A tableau can be written as a set of equalities of the form

xi = bi +
∑

xj∈N
aijxj , xi ∈ B (2.1)

whereB andN are disjoint sets of variables. Elements ofB andN are calledbasicandnon-basic
variables, respectively. Additional constraints are imposed on some variables ofB ∪ N . So-called

1This is similar to the API proposed in [11].

7

slack variablesare required to be non-negative, and the tableau may also containzero variables,
which are all implicitly equal to0. Zero-variables are used to generate explanations (cf. [15]).

A pivoting operationpivot(xr, xs) swaps a basic variablexr and a non-basic variablexs such
thatars 6= 0. After pivoting,xs becomes basic andxr becomes non-basic. The tableau is updated
by replacing equationxr = br +

∑
xj∈N arjxj with

xs = − br

ars
+

xr

ars
−

∑
xj∈N \{xs}

arjxj

ars
(2.2)

then equation (2.2) is used to eliminatexs from the rest of the tableau by substitution.
Assertion of equalities or inequalities adds new equations to the tableau. For example, letγ

be an atom of the formt ≥ 0 wheret is an arithmetic term. The operationAssert(γ) involves
three steps. First,γ is normalized by substituting any basic variablexi occurring int with the term
bi +

∑
xj∈N aijxj . The solver checks then whether the resulting inequalityt′ ≥ 0 is satisfiable.

This step uses the Simplex algorithm to maximizet′ subject to the tableau constraints. Ift′ has
a maximumM andM is negative, thent′ ≥ 0 is not satisfiable and an explanation is generated.
Otherwise, a fresh slack variablesk is created and a row of the formsk = t′′ is added to the
tableau. Some bookkeeping is required to record thatsk is nonnegative and is associated with atom
γ. Processing of equalities and strict inequalities follows the same general principles. Backtracking
removes rows from the tableau. For example, to retractγ, the solver retrieves the slack variablesk

associated withγ. If sk is a basic variable in the current state then the corresponding equation is
removed from the tableau. Otherwise, a pivoting operation is applied first to makesk basic.

Disequalities are treated separately since they cannot be incorporated into the tableau. When a
disequalityt 6= 0 is asserted, it is first normalized as before, then the solver must check whether the
current tableau impliest = 0. This can be implemented via thezero-detection proceduredescribed
in [15] for example.

2.3 Performance

Assertions and backtracking have a significant cost in solvers based on incremental Simplex algo-
rithms. Part of this cost (e.g., the pivoting involved inAssertoperations) cannot be avoided, but there
is also significant overhead in the frequent additions and removals of rows, creations and deletions
of slack variables, and the associated bookkeeping. The remainder of the paper describes a different
type of solver, still based on the Simplex method, which significantly reduces this overhead. The
new approach is simpler and more uniform than incremental Simplex. It is also more economical as
irrelevant variables can be eliminated a priori and fewer slack variables are necessary.

Some of the simplifications are based on lessons we learned from experiments with our previous
tools Simplics and Yices:2

• Minimal explanations are critical. Dramatic improvements were observed when comparing
Simplics and Yices, which generate minimal explanations, and their predecessor ICS, which
does not.

2Both use incremental Simplex and zero detection.

8

• Theory propagation is useful if it can be done cheaply. Figure 2.1 compares the results of
Simplics on the real-arithmetic subset of the SMT-LIB benchmarks3 using different levels of
theory propagation. By default, Simplics uses a heuristic form of propagation that’s relatively
inexpensive but incomplete (no pivoting is used). This is compared in Figure 2.1(a) with
Simplics running with no propagation at all, and in Figure 2.1(b) with Simplics running with
complete propagation (where pivoting is used). On these benchmarks, full propagation is
just too expensive, but no propagation is also a poor choice. Heuristic propagation is clearly
superior.

• Zero detection is expensive and can be avoided. On a few examples in the SMT-LIB bench-
marks, Simplics spends as much as 30% of its time in the zero-detection procedure. A sim-
pler alternative is to rewrite a disequalityt 6= 0 as the disjunction of two strict inequalities
(t < 0) ∨ (t > 0). This transformation may seem wasteful since it may entail additional case
splits, but it works well in practice. After this transformation, Simplics can solve six problems
of the SMT-LIB benchmarks that it cannot solve otherwise.

3These benchmarks are available athttp://combination.cs.uiowa.edu/smtlib/ . The real-arithmetic sub-
set includes two categories of benchmarks known as QFRDL and QFLRA.

9

http://combination.cs.uiowa.edu/smtlib/

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

no
 p

ro
pa

ga
tio

n

heuristic propagation

(a) Heuristic vs. No Propagation

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

fu
ll

pr
op

ag
at

io
n

heuristic propagation

(b) Heuristic vs. Full Propagation

Figure 2.1: Impact of Theory Propagation in Simplics

10

Chapter 3

A Linear-Arithmetic Solver for
DPLL(T)

3.1 Preprocessing

Incremental Simplex algorithms can be avoided by rewriting a linear arithmetic formulaΦ into an
equisatisfiable formula of the formΦA ∧ Φ′, whereΦA is a conjunction of linear equalities, and all
the atoms occurring inΦ′ areelementary atomsof the formy ./ b, wherey is a variable andb is a
rational constant. The transformation is straightforward. For example, letΦ be the formula

x ≥ 0 ∧ (x + y ≤ 2 ∨ x + 2y − z ≥ 6) ∧ (x + y = 2 ∨ x + 2y − z > 4).

We introduce two variabless1 ands2 and rewriteΦ to ΦA ∧ Φ′ as follows.

(s1 = x + y ∧ s2 = x + 2y − z) ∧
(x ≥ 0 ∧ (s1 ≤ 2 ∨ s2 ≥ 6) ∧ (s1 = 2 ∨ s2 > 4))

Clearly, this new formula andΦ are equisatisfiable. In general, starting from a formulaΦ, the
transformation introduces a new variablesi for every linear termti that is not already a variable and
occurs as left-hand side of an atomti ./ b of Φ. ThenΦA is the conjunction of all the equalities
si = ti andΦ′ is obtained by replacing every termti by the correspondingsi in Φ.

Let x1, . . . , xn be the arithmetic variables ofΦA ∧ Φ′, that is, all the variables originally inΦ
andm-additional variabless1, . . . , sm introduced by the previous transformation (m ≤ n). Then
formulaΦA can be written in matrix form asAx = 0, whereA is a fixedm× n rational matrix and
x is a vector inRn. The rows ofA are linearly independent soA has rankm. Checking whetherΦ
is satisfiable amounts to finding anx such thatAx = 0 andx satisfiesΦ′. In other words, checking
the satisfiability ofΦ in linear arithmetic is equivalent to checking the satisfiability ofΦ′ in linear
arithmetic moduloAx = 0. Since all atoms ofΦ′ are elementary, this requires a solver for deciding
the consistency of a set of elementary atomsΓ modulo the constraintsAx = 0. If Γ contains only
equalities and (non-strict) inequalities, this reduces to searching forx ∈ Rn such that

Ax = 0 and lj ≤ xj ≤ uj for j = 1, . . . , n (3.1)

11

procedureupdate(xi, v)
for eachxj ∈ B, β(xj) := β(xj) + aji(v − β(xi))
β(xi) := v

procedurepivotAndUpdate(xi, xj , v)
θ := v−β(xi)

aij

β(xi) := v
β(xj) := β(xj) + θ
for eachxk ∈ B \ {xi}, β(xk) := β(xk) + akjθ
pivot(xi, xj)

Figure 3.1: Auxiliary procedures

wherelj is either−∞ or a rational number, anduj is either+∞ or a rational number. Iflj = uj

thenxj is called afixed variable. If lj = −∞ anduj = +∞ thenxj is afree variable.
Since the elementary atoms ofΦ′ are known in advance, we can immediately simplify the con-

straintsAx = 0 by removing any variablexi that does not occur in any elementary atom ofΦ′.
This is done by Gaussian elimination. In practice, this presimplification can reduce the matrix size
significantly.

The variablessi introduced during the transformation play the same role as the slack variables
of standard Simplex. However, the presence of both lower and upper bounds is beneficial. For
example, incremental Simplex algorithms need two slack variables to represent a constraint such as
1 ≤ x+3y ≤ 4, whereas a singlesk is sufficient if the general form (3.1) is used. Overall, rewriting
Φ into ΦA ∧ Φ′ and relying on the general form leads to problems with fewer variables than the
algorithms discussed previously.

3.2 Basic Solver

We first describe a basic solver that handles equalities and non-strict inequalities with real variables.
Extensions to strict inequalities and integer variables are presented in the next sections. The basic
solver decides the satisfiabilities of problems in form (3.1) and implements the API of Section 2.1
for integration with a DPLL-based SAT solver.

The solver state includes a tableau derived from the constraint matrixA. We will write such a
tableau in the form:

xi =
∑

xj∈N
aijxj xi ∈ B,

whereB andN denote the set of basic and non-basic variables, respectively.1 Since all rows of this
tableau are linear combinations of rows of the original matrixA, the equalityxi =

∑
xj∈N aijxj is

satisfied by anyx such thatAx = 0.

1This is the same as (2.1) withbi = 0 for all xi ∈ B.

12

1. procedureCheck()
2. loop
3. select the smallest basic variablexi such thatβ(xi) < li or β(xi) > ui

4. if there is no suchxi then return satisfiable
5. if β(xi) < li then
6. select the smallest non-basic variablexj such that
7. (aij > 0 andβ(xj) < uj) or (aij < 0 andβ(xj) > lj)
8. if there is no suchxj then return unsatisfiable
9. pivotAndUpdate(xi, xj , li)
10. if β(xi) > ui then
11. select the smallest non-basic variablexj such that
12. (aij < 0 andβ(xj) < uj) or (aij > 0 andβ(xj) > lj)
13. if there is no suchxj then return unsatisfiable
14. pivotAndUpdate(xi, xj , ui)
15. end loop

Figure 3.2: Check procedure

In addition to this tableau, the solver state stores upper and lower boundsli andui for every
variablexi and a mappingβ that assigns a rational valueβ(xi) to every variablexi. The bounds on
non-basic variables are always satisfied byβ, that is, the following invariant is maintained

∀xj ∈ N , lj ≤ β(xj) ≤ uj . (3.2)

Furthermore,β satisfies the constraintAx = 0. In the initial state,lj = −∞, uj = +∞, and
β(xj) = 0 for all j.

Figure 3.1 describes two auxiliary procedures that modifyβ. Procedureupdate(xi, v) sets the
value of a non-basic variablexi to v and adjusts the value of all basic variables so that all equations
remain satisfied. ProcedurepivotAndUpdate(xi, xj , v) applies pivoting to the basic variablexi and
the non-basic variablexj ; it also sets the value ofxi to v and adjusts value of all basic variables to
keep all equations satisfied.

3.2.1 Main Algorithm

The main procedure of our algorithm is based on the dual Simplex algorithm and relies on Bland’s
pivot-selection rule to ensure termination. It relies on a total order on the variables. Assuming an
assignmentβ that satisfies the previous invariants, but whereli ≤ β(xi) ≤ ui may not hold for
some basic variablesxi, procedureChecksearches for a newβ that satisfies all constraints. The
procedure is shown in Figure 3.2.

It either terminates with a new assignment and basis that satisfy all lower and upper bounds (line
4), or finds the constraints to be unsatisfiable (lines 8 and 13). The body of the main loop selects a
basic variablexi that does not satisfy its bounds (line 3). Ifxi is belowli, then it looks for a variable
xj in the rowxi =

∑
xj∈N aijxj that can compensate the gap inxi (lines 6-7). If no suchxj exists

the problem is unsatisfiable (line 8) because the value ofxi is maximal and is below the lower bound
li. Otherwise, the procedure pivotsxi andxj , andxi is set toli (line 9). The case wherexi is above
its upper bound (lines 10-14) is symmetrical.

13

The correctness ofCheckis a consequene of the following property.

Theorem 1 Procedure Check always terminates.

Proof: Every iteration ofCheckmodifies the assignmentβ, the sets of basic and non-basic variables,
and the current tableau. However, there is a unique tableau for any set of basic variablesB. We can
then represent the state of the procedure before thet-th iteration as a pairSt = 〈βt, Bt〉, where
βt is the assignment andBt is the set of basic variables at that point.S0 denotes then the initial
state on entry to the procedure. We also denote byNt the set of non-basic variables inSt, that is,
Nt = {x1, . . . , xn} \Bt.

For a non-basic variablexj ∈ Nt, and anyt we have eitherβt(xj) = β0(xj), or βt(xj) = lj or
β(xj) = uj . For any basic variablexi ∈ Bt, we have

βt(xi) =
∑

xj∈Nt

aijβt(xj)

where the constantsaij are the tableau coefficients inSt. Hence,βt(xi) is uniquely determined by
Bt and the valuesβ(xj) for xj ∈ Nt. There are then finitely many possible assignmentsβt for a
givenBt. Since the number of variables if finite, there are finitely many possible setsBt. Therefore,
the set of states reachable fromS0 is finite. If Checkdoes not terminate, the sequence of states
S0, S1, S2, . . . must contain a cycle, that is, a subsequenceSk, . . . , St, St+1 with St+1 = Sk.

Let xr be the largest variable such thatxr becomes non-basic in one of the statesSk, . . . , St. We
then havexr ∈ Bl andxr ∈ Nl+1 for an indexl ∈ {k, . . . , t}. Sincexr becomes non-basic in state
Sl, we must have eitherβl(xr) < lr or βl(xr) > ur. Also, for any variablexj that is smaller than
xr in the variable ordering we havelj ≤ βl(xj) ≤ uj . This holds ifxj ∈ Bl since otherwisexj

would be selected to become non-basic rather thanxr (Fig. 3.2, line 3). This also holds ifxj ∈ Nl

by invariant (3.2).
Since the sequence of state is cyclic,xr must eventually re-enter the basis. LetSp be the first

state afterSl+1 wherexr becomes basic again:xr ∈ Np andxr ∈ Bp+1. Sincexr stays non-basic
in all statesSl+1, . . . , Sp its value does not change, so we haveβp(xr) = βl+1(xr). Let xs be the
basic variable that is pivoted withxr in Sp and let

xs =
∑

xj∈Np

asjxj (3.3)

be the corresponding row inSp’s tableau. Sincexs leaves the basis in stateSp, we have either
βp(xs) < ls or βp(xs) > us.

We can now decompose the proof into the following four cases.

1. βl(xr) < lr andβp(xs) < ls.

2. βl(xr) < lr andβp(xs) > us.

3. βl(xr) > ur andβp(xs) < ls.

4. βl(xr) > ur andβp(xs) > us.

Let us consider the first case. Sinceβl(xr) < lr we haveβp(xr) = βl+1(xr) = lr. Sincexr is
chosen to enter the basis inSp andβp(xs) < ls, we must haveasr > 0 (Fig. 3.2, line 7).

14

Equation (3.3) is satisfied by anyx such thatAx = 0. It is then satified by bothβl andβp; so
we get

βl(xs)− βp(xs) =
∑

xj∈Np

asj(βl(xj)− βp(xj)) (3.4)

By definition ofxr, we know thatxs is smaller thanxr in the variable ordering, so we havels ≤
βl(xs) ≤ us. Since we have assumedβp(xs) < ls, the left-hand side of equation (3.4) is positive.
Now, let us consider the termsasj(βl(xj) − βp(xj)) that occur in the right-hand side. In all these
terms,xj is a non-basic variable (i.e.,xj ∈ Np). There are three cases:

• xj is smaller thanxr in the variable order. As noted previously, this implieslj ≤ βl(xj) ≤ uj .
Sincexj was not selected to become basic in stateSp, we must have eitherasj > 0 and
βp(xj) ≥ uj or asj < 0 andβp(xj) ≤ lj or asj = 0 (line 7). In all these cases we get

asj(βl(xj)− βp(xj)) ≤ 0.

• xj = xr. We haveasr > 0, βl(xr) < lr, andβp(xr) = lr, so we obtain

asr(βl(xr)− βp(xr)) < 0.

• xj is larger thanxr in the variable order. In this case,xj remains non-basic in all the states of
the cycle so its value never changes. It follows thatβl(xj) = βp(xj) and then

asj(βl(xj)− βp(xj)) = 0.

Thus, for allxj ∈ Np the termasj(βl(xj) − βp(xj)) is negative or zero. This contradicts the fact
that the left-hand side of equation (3.4) is positive.

A similar contradiction is obtained in the other three cases. We can then conclude that a cyclic
sequence of states cannot occur and then thatCheckterminates. ut

3.2.2 Generating Explanations

An inconsistency may be detected byCheckat line 8 or 13. Let us assume a conflict is detected at
line 8. There is then a basic variablexi such thatβ(xi) < li and for all non-basic variablexj we
haveaij > 0 ⇒ β(xj) ≥ uj andaij < 0 ⇒ β(xj) ≤ lj . LetN+ = {xj ∈ N | aij > 0} and
N− = {xj ∈ N | aij < 0}. Sinceβ satisfies all bounds on non-basic variables, we haveβ(xj) = lj
for everyxj ∈ N− andβ(xj) = uj for everyxj ∈ N+. It follows that

β(xi) =
∑

xj∈N
aijβ(xj) =

∑
xj∈N+

aijuj +
∑

xj∈N−

aij lj .

The equationxi =
∑

xj∈N aijxj holds for anyx such thatAx = 0. Therefore, for any suchx, we
have

β(xi)− xi =
∑

xj∈N+

aij(uj − xj) +
∑

xj∈N−

aij(lj − xj),

15

1. procedureAssertUpper(xi ≤ ci)
2. if ci ≥ ui then return satisfiable
3. if ci < li then return unsatisfiable
4. ui := ci

5. if xi is a non-basic variable andβ(xi) > ci then update(xi, ci)
6. return ok

1. procedureAssertLower(xi ≥ ci)
2. if ci ≤ li then return satisfiable
3. if ci > ui then return unsatisfiable
4. li := ci

5. if xi is a non-basic variable andβ(xi) < ci then update(xi, ci)
6. return ok

Figure 3.3: Assertion procedures

from which one can derive the following implication:∧
xj∈N+

xj ≤ uj ∧
∧

xj∈N−

lj ≤ xj ⇒ xi ≤ β(xi).

Sinceβ(xi) < li, this is inconsistent withli ≤ xi. The explanation for the conflict is then the
following set of elementary atoms:

Γ = {xj ≤ uj | j ∈ N+} ∪ {xj ≥ lj | j ∈ N−} ∪ {xi ≥ li}.

It is easy to see thatΓ is minimal. Explanations for conflicts at line 13 are generated in the same
way.

3.2.3 Assertion Procedures

The Assertfunction relies on two procedures shown in Figure 3.3 for updating the boundsli and
ui. ProcedureAssertUpper(xi ≤ ci) has no effect ifui ≤ ci and returns unsatisfiable ifci < li,
otherwise the current upper bound onxi is set toci. If variablexi is non-basic, thenβ is updated
to maintain invariant (3.2). If an immediate conflict is detected at line 3 then generating a minimal
explanation is straightforward.

ProcedureAssertLower(xi ≥ ci) does the same thing for the lower bound. An equalityxi = ci

is asserted by calling bothAssertUpperandAssertLower.

3.2.4 Backtracking

Efficient backtracking is important since the number of backtracks is often very large. In our ap-
proach, backtracking can be efficiently implemented. We just need to save the value ofui (li) on a
stack before it is updated by the procedureAssertUpper(AssertLower). This information is used to
restore the old bounds when backtracking is performed. Backtracking does not require to save the

16

A0 =
{

s1 = −x + y
s2 = x + y

β0 = (x 7→ 0, y 7→ 0, s1 7→ 0, s2 7→ 0)

A1 = A0 x ≤ −4 β1 = (x 7→ −4, y 7→ 0, s1 7→ 4, s2 7→ −4)
A2 = A1 −8 ≤ x ≤ −4 β2 = β1

A3 =
{

y = x + s1

s2 = 2x + s1

−8 ≤ x ≤ −4
s1 ≤ 1 β3 = (x 7→ −4, y 7→ −3, s1 7→ 1, s2 7→ −7)

Figure 3.4: Example

successiveβs on a stack. Only one assignmentβ needs to be stored, namely the one corresponding
to the last successfulCheck. After a successfulCheck, the assignmentβ is a model for the current
set of constraints and for the set of constraints asserted at any previous checkpoint. Since no pivoting
or other expensive operation is used, backtracking is very cheap.

3.2.5 Theory Propagation

Given a set of elementary atomsA from the formulaΦ′, thenunate propagationis very cheap to
implement. For example, if boundxi ≥ ci has been asserted then any unassigned atom ofA of the
form xi ≥ c′ with c′ < ci is immediately implied. Similarly, the negation of any atomxi ≤ u with
u < ci is implied. This type of propagation is useful in practice. It occurs frequently in several
SMT-LIB benchmarks.

Another method is based onbound refinement. Given a row of a tableau, such as,xi =∑
xj∈N aijxj , one can derive a lower or upper bound onxi from the lower or upper bounds on

the non-basic variablesxj . These computed bounds may imply unassigned elementary atoms with
variablexi. This is a heuristic technique as the computed bounds may be weaker than the current
bounds asserted onxi (for example, the computed bounds may be−∞ or +∞). However, bound
refinement is quite general. It is applicable with any equalitya1x1 + . . . + anxn = 0 derived by
linear combination of rows ofA, not just with rows of a tableau.

3.2.6 Example

Figure 3.4 illustrates the algorithm on a small example. Each row represents a state. The columns
contain the tableaux, bounds, and assignments. The first row contains the initial state. Suppose
x ≤ −4 is asserted. Then the value ofx must be adjusted, sinceβ0(x) > −4. Sinces1 ands2

depend onx, their values are also modified. No pivoting is required since the basic variables do not
have bounds, soA1 = A0. Next, x ≥ −8 is asserted. Sinceβ1(x) satisfies this bound, nothing
changes:A2 = A1 andβ2 = β1. Next,s1 ≤ 1 is asserted. The current value ofs1 does not satisfy
this bound, soCheckmust be invoked.Checkpivotss1 andy to decreases1. The resulting stateS3

is shown in the last row; all constraints are satisfied.
If s2 ≥ −3 is asserted inS3 andCheckis called then an inconsistency is detected: TableauA2

does not allows2 to increase since bothx ands1 are at their upper bound. Therefore,s2 ≥ −3 is
inconsistent with stateS3.

17

3.3 Strict Inequalities

The previous method generalizes to strict inequalities using a simple observation.

Lemma 2 A set of linear arithmetic literalsΓ containing strict inequalitiesS = {p1 > 0, . . . , pn >
0} is satisfiable iff there exists a rational numberδ > 0 such that for allδ′ such that0 < δ′ ≤ δ,
Γδ = (Γ ∪ Sδ) \ S is satisfiable, whereSδ = {p1 ≥ δ, . . . , pn ≥ δ}.

This lemma says that we can replace all strict inequalities by non-strict ones if a small enoughδ
is known. Rather than computing an explicit value forδ, we treat it symbolically, as aninfinitesimal
parameter. Bounds and variable assignments now range over the setQδ of pairs of rationals. A pair
(c, k) of Qδ is denoted byc + kδ and the following operations and comparison are defined inQδ:

(c1, k1) + (c1, k2) ≡ (c1 + c2, k1 + k2)
a× (c, k) ≡ (a× c, a× k)

(c1, k1) ≤ (c2, k2) ≡ (c1 < c2) ∨ (c1 = c2 ∧ k1 ≤ k2),

wherea is a rational number.
By the previous definition, if the inequality(c1, k1) ≤ (c2, k2) holds inQδ then there is a rational

numberδ0 > 0 such that the inequality

c1 + k1ε ≤ c2 + k2ε

is satisfied by positive realε less thanδ0. For example, we can defineδ0 as follows:

δ0 =
c2 − c1

k1 − k2
if c1 < c2 andk1 > k2

δ0 = 1 otherwise

More generally, consider2m elements ofQδ, namelyvi = (ci, ki) andwi = (di, hi) for i =
1, . . . ,m. If the m inequalitiesvi ≤ wi hold in Qδ then there is a positive rational numberδ0 such
that the inequalities

c1 + k1ε ≤ d1 + h1ε

...

cm + kmε ≤ dm + hmε

are satisfied for anyε such that0 < ε ≤ δ0. One can take

δ0 = min
{

di − ci

ki − hi
| ci < di andki > hi

}
if the set on the right-hand side is nonempty or setδ0 to an arbitrary positive rational otherwise.

Now, a linear problemS with strict inequalities in the rationals can be converted into a problem
S′ in the general form (3.1) but where the bounds and the variablesxi are elements ofQδ. Strict
bounds inQ are converted to non-strict bounds inQδ. A strict inequalityxi > li is converted to

18

xi ≥ li + δ = l′i, andxi < ui is converted toxi ≤ ui − δ = u′i. The matrixA does not change; all
its coefficients are rational numbers. The new problemS′ can be written

Ax = 0
l′j ≤ xj ≤ u′j for j = 1, . . . , n

and the basic algorithm can be used to determine whetherS′ is feasible inQδ. This is straighforward;
all updates toβ used in the previous algorithm can be performed inQδ.

If S′ is satisfiable, the algorithm produces a satisfying assignmentβ′ that maps variables to
elements ofQδ. Thenβ′ can be converted into a satisfying rational assignmentβ for S. First, the
2n inequalities

l′j ≤ β′(xj) ≤ u′j for j = 1, . . . , n,

are satisfied inQδ. Let us setl′j = (cj , kj), u′j = (dj , hj), andβ′(xj) = (pj , qj). As discussed
previously, there is a positive rational numberδ0 such that

cj + kjε ≤ pj + qjε ≤ dj + hjε for j = 1, . . . , n (3.5)

holds in the reals whenever0 < ε ≤ δ0. In particular, these inequalities hold whenε = δ0. We can
then defineβ by settingβ(xj) = pj + qjδ0 for all xj andβ satisfies all the inequalities (3.5). By
construction ofS′ this implies thatβ satisfies all the strict and non-strict inequalities in the original
problemS. Sinceβ′ satisfies the constraintsAx = 0 in Qδ, it is clear thatβ satisfies the same
constraintsAx = 0 in the reals soβ is a satisfying assignment forS.

Conversely, ifS is satisfiable in the rationals, then any satisfying assignmentβ for S can be
transformed in a straightforward way into a satisfying assignmentβ′ for S′. So if S′ is unsatisfiable
in Qδ, S is not satisfiable either in the rationals.

19

Chapter 4

Integer and Mixed Integer Problems

The previous solver is sound and complete for the reals. If some or all of the variablesxi are required
to be integer, the algorithm is not complete. Nothing ensures that the assignmentβ constructed by
Checkgives an integer value to integer variables. To be complete in the integer or mixed integer
case, we employ abranch and cutstrategy, that is, the combination of branch-and-bound with a
cutting plane generation algorithm [16,13]. The branch-and-bound algorithm works when problems
are solved inQδ rather thanQ. In other words, it can be used when strict inequalities are present.
The cutting-plane method we use is based on mixed integer Gomory cuts. Such a cutting-plane
algorithm is critical as it dramatically accelerate the convergence of branch-and-cut in several cases.

4.1 Branch and Bound

As previously, we consider the constraints

Ax = 0
lj ≤ xj ≤ uj for j = 1, . . . , n,

but in addition, some variables are required to be integer valued. The problem is then to find a
variable assignmentβ that satisfies the linear equalities and bound constraints, and such thatβ(xj) ∈
Z for all j in a fixed setI ⊆ {1, . . . , n}. We denote this problem byS. We can assume without loss
of generality that the boundslj anduj are integer (or infinity) for anyj in I.

The branch-and-bound method starts by solving thelinear programming relaxation(LP relax-
ation) ofS, that is, it searches for a solutionβ in the reals. In our case, this is done using algorithm
Checkof Section 3.2. If the LP relaxation is infeasible, thenS is also infeasible. Otherwise, letβ
be the solution found byCheck. If β happens to satisfy all the integer constraints thenS is feasible.
Otherwise, there isi ∈ I such thatβ(xi) is not an integer. There is then a constantc ∈ Z such that
c < β(xi) < c + 1, that is,c = bβ(xi)c. Givenc, the original problemS is split into the following
two subproblems:

S0 :
Ax = 0

lj ≤ xj ≤ uj for j = 1, . . . , n andj 6= i
li ≤ xi ≤ c

20

S1 :
Ax = 0

lj ≤ xj ≤ uj for j = 1, . . . , n andj 6= i
c + 1 ≤ xi ≤ ui.

ThenS0 or S1 (or both) are solved recursively using the same procedure. IfS0 or S1 is satisfiable
thenS is also satisfiable. If neither is satisfiable thenS is also infeasible.

Thus, the branch-and-bound method recursively dividesS into a set of smaller subproblems
obtained by modifying lower or upper bounds of the integer variables. This recursive division can
be efficiently implemented via a depth-first search. Unlike traditional branch-and-bound methods,
the algorithm does not attempt to minimize or maximize a linear function but stops when the first
integer-feasible solution is found. If a subproblemS′ encountered during the search is infeasible,
thenCheckproduces an explanation, in the form of a minimal set of inconsistent bound constraints.
This explanation is exploited to prune the search via non-chronological backtracking.

The branch-and-bound approach works when strict inequalities are present. In such a case the
LP-relaxation is solved inQδ rather thanQ. As in the real case, we definebβ(xi)c as the largest
integer less thanβ(xi). Assumingβ(xi) = s + kδ, we then get

bβ(xi)c =

 bsc if s 6∈ Z
s if s ∈ Z andk ≥ 0

s− 1 if s ∈ Z andk < 0

This is the only adjustment required for solving interger or mixed integer problems with strict in-
equalities.

4.2 Gomory Cuts

Branch-and-bound terminates if all the integer variables have a lower and an upper bound, that is,
if −∞ < lj anduj < ∞ for all j in I. Without such bounds, the algorithm may fail to terminate,
even on trivial problems. For example, the constraint

1 ≤ 3x− 3y ≤ 2

is not satisfiable ifx andy are integers, but has unbounded real solutions. On this example, a naı̈ve
branch-and-bound implementation loops. Fortunately, we can assume without loss of generality that
lower and upper bounds are given for all variables. IfS is feasible then it has a solution that is an
extreme point of its convex hull, and an explicit bound on the magnitude of such extreme points can
be derived from the coefficients of the matrixA (cf. [16, 13]). However, this bound is typically too
large to ensure quick termination in practice.

To accelerate convergence, modern integer-programming methods combine branch-and-bound
with cutting-plane algorithms. Assumeβ is a solution to the LP-relaxationP of S but not a solution
to S. A cut is a linear inequality

a1x1 + . . . + anxn ≤ b,

that is not satisfied byβ but is satisfied by any element in the convex hull ofS. If one or more
such cuts can be found, then they can be added as new constraints to the original problemS. This
gives a new problemS′ that has the same solutions asS but whose LP-relaxationP ′ is strictly more
constrained thanP . In particular,β is a solution toP but it is not a solution toP ′. Therefore, rather

21

than splittingS into subproblems as previously, one can attempt to find a solutionβ′ to P ′ and
iterate the process. Combining cutting-plane and branch-and-bound methods has led to dramatic
improvements in the size of mixed-integer programming problems that can be efficiently solved in
practice [5].

4.2.1 Derivation of a Gomory Cut

Many cut-generation algorithms have been proposed (see [13]). A general method due to Gomory is
simple to implement, widely applicable, and known to be quite effective in practice. In our context,
let β be the solution returned byCheckto the LP-relaxationP of a problemS. Thus,β is obtained
from a tableau of the form

xi =
∑

xj∈N
aijxj , xi ∈ B.

A mixed integer Gomory cutcan be constructed fromβ and the tableau if the following conditions
are satisfied:

• There is a basic variablexi ∈ B such thati ∈ I andβ(xi) 6∈ Z.

• All non-basic variables occurring in the row corresponding toxi, are assigned to their upper
or lower bound:

∀xj ∈ N , aij 6= 0 ⇒ β(xj) = lj ∨ β(xj) = uj .

• All the numbersβ(xi), andβ(xj) for xj occurring in rowi are rationals (i.e., they are not of
the formc + kδ with k 6= 0).

Let f0 = β(xi) − bβ(xi)c. By the first assumption,f0 is a positive rational number, so we have
0 < f0 < 1. By the second assumption, free variables do not occur in rowi. We can also remove
the fixed variables: letN ′ = N ∩ {xj | lj < uj}. Now, if j is the index of a non-basic variable of
N ′ then two cases are possible: eitherβ(xj) = li or β(xj) = uj . Let us define

J = {j ∈ I | xj ∈ N ′ ∧ β(xj) = li}
K = {j ∈ I | xj ∈ N ′ ∧ β(xj) = ui}.

The row ofxi, that is, the equation

xi =
∑

xj∈N
aijxj (4.1)

is satisfied by anyx such thatAx = 0 and we havexi ∈ Z for any x that satisfiesS. For the
assignmentβ, we also have

β(xi) =
∑

xj∈N
aijβ(xj). (4.2)

22

Subtracting (4.2) from (4.1) we obtain the following equation

xi − β(xi) =
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj),

which can be rewritten as

xi − bβ(xi)c = f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) (4.3)

This equation holds for anyx that satisfiesS and, for any suchx we know thatxi − bβ(xi)c is an
integer and that the following inequalities are satisfied:

xj − lj ≥ 0 for all j ∈ J

uj − xj ≥ 0 for all j ∈ K.

We now consider two cases:

• If
∑

j∈J aij(xj − lj)−
∑

j∈K aij(uj − xj) ≥ 0 then we must have

f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) ≥ 1 (4.4)

since the left-hand-side is an integer. Let us split the setsJ andK as follows:

J+ = {j ∈ J | aij ≥ 0}
J− = {j ∈ J | aij < 0}
K+ = {j ∈ K | aij ≥ 0}
K− = {j ∈ K | aij < 0}.

Then inequality (4.4) implies∑
j∈J+

aij(xj − lj)−
∑

j∈K−

aij(uj − xj) ≥ 1− f0,

or, equivalently, ∑
j∈J+

aij

1− f0
(xj − lj) +

∑
j∈K−

−aij

1− f0
(uj − xj) ≥ 1. (4.5)

• If
∑

j∈J aij(xj − lj)−
∑

j∈K aij(uj − xj) < 0, then we must have

f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj) ≤ 0,

which implies

−
∑

j∈J−

aij(xj − lj) +
∑

j∈K+

aij(uj − xj) ≥ f0,

or ∑
j∈J−

−aij

f0
(xj − lj) +

∑
j∈K+

aij

f0
(uj − xj) ≥ 1. (4.6)

23

Combining (4.5) and (4.6) we obtain the following inequality:∑
j∈J+

aij

1− f0
(xj − lj) +

∑
j∈J−

−aij

f0
(xj − lj) +

∑
j∈K+

aij

f0
(uj − xj) +

∑
j∈K−

−aij

1− f0
(uj − xj) ≥ 1. (4.7)

This is amixed-integer Gomory cut: this inequality is satisfied by anyx that satisfiesS, but it is not
satisfied by the assignmentβ.

4.2.2 A Stronger Gomory Cut

Inequality (4.7) was derived from the fact that

f0 +
∑
j∈J

aij(xj − lj)−
∑
j∈K

aij(uj − xj)

is an integer for anyx that satisfiesS. As long as we maintain this property, we can replace the
coefficientsaij with other rationalsa′ij and derive a different cut. In particular, ifxj is an integer
variable then we know thatlj anduj are integers so we can replaceaij by anya′ij such that(a′ij −
aij) ∈ Z. So we can further split the index setsJ andK by distinguishing between integer and
non-integer variables:

J0 = J ∩ I

J1 = J \ J0

K0 = K ∩ I

K1 = K \K0

Then we can replaceaij by ana′ij such that(a′ij − aij) ∈ Z for anyj ∈ J0 ∪ K0. This preserves
the essential property, namely the fact that

f0 +
∑
j∈J0

a′ij(xj − lj) +
∑
j∈J1

aij(xj − lj)−
∑

j∈K0

a′ij(uj − xj)−
∑

j∈K1

aij(uj − xj) (4.8)

is an integer. From this new term, we can derive a mixed integer cut as before.
For j ∈ J0, the best choice fora′ij is the one that leads to the smallest coefficient of(xj − lj) in

the cut. Ifa′ij is positive, this coefficient isa′ij/(1−f0) otherwise it is−a′ij/f0. Letfi = aij−baijc
then a simple analysis shows that the best choice is given by

a′ij = fi = aij − baijc if fi ≤ 1− f0

a′ij = fi − 1 = aij − daije if fi > 1− f0

For j ∈ K0 the besta′ij can be determined in a similar fashion and it is given by

a′ij = fi = aij − baijc if fi ≤ f0

a′ij = fi − 1 = aij − daije if fi > f0

24

By choosing the coefficientsa′ij as above, we obtain the following inequality, which is the
strongest possible mixed-integer Gomory cut that can be obtained using the previous techniques:∑

j∈J+
1

aij

1− f0
(xj − lj) +

∑
j∈J−1

−aij

f0
(xj − lj) +

∑
j∈K+

1

aij

f0
(uj − xj) +

∑
j∈K−1

−aij

1− f0
(uj − xj) +

∑
j∈J0,fj≤1−f0

fj

1− f0
(xj − lj) +

∑
j∈J0,fj>1−f0

1− fj

f0
(xj − lj) +

∑
j∈K0,fj≤f0

fj

f0
(uj − xj) +

∑
j∈K0,fj>f0

1− fj

1− f0
(uj − xj) ≥ 1.

25

Chapter 5

Experiments

Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 compares a prototype SMT solver that uses the previous algorithms
with other tools that participated in last year’s SMT competition. The comparison uses all the SMT-
LIB benchmarks in the QFRDL (real difference logic), QFIDL (integer difference logic), QFLRA
(linear real arithmetic), and QFLIA (linear integer arithmetic) divisions. The experiments were
conducted on identical PCs, all equipped with a 32bit Pentium 4 processor running at 3 GHz. The
timeout was set to 1 hour and the memory usage was limited to 1 GB. With these timing and memory
constraints, running all the benchmarks required approximately 60 CPU days.

Each point on the graphs represents a benchmark:+ denotes a difference logic problem and×
denotes a problem outside the difference-logic fragment. The axes correspond to the CPU time taken
by the new solver (y-axis) or the other solver (x-axis) on each benchmark. CPU times are measured
in seconds. Points below the diagonal are then SMT-LIB benchmarks where our new solver is faster.
Points on the leftmost vertical edge are problems where a solver aborted, typically by running out
of memory. The graphs comparing our new solver with Barcelogic and Simplics have fewer points,
because Barcelogic supports only difference logic and Simplics does not support integer problems.

Table 5.1 summarizes the results. For each tool, it lists the number of instances solved and
unsolved, and the total runtime. As can be seen, the new algorithm largely outperforms the other
solvers. It is even faster on problems in the difference logic fragment than tools that are specialized
for this fragment. The performance improvement is due to efficient backtracking and to the pres-
implification enabled by our approach, efficient theory propagation based on bound refinement also
has a big impact.

26

sat unsat failed time (secs)
Ario 1.1 186 640 517 1218371
BarcelogicTools 153 417 92 401842
CVC Lite 117 454 772 1193747
MathSAT 3.3.1 330 779 234 739533
Yices 358 756 229 702129
Simplics 240 351 110 476940
New Solver 412 869 62 267198

Table 5.1: Experimental results: Summary

aborttimeout
 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ario-1.1

Figure 5.1: Ario 1.1 vs. New Solver

27

aborttimeout
 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

bclt

Figure 5.2: BarcelogicTools vs. New Solver

aborttimeout
 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

cvcl

Figure 5.3: CVC Lite 2.0 vs. New Solver

28

aborttimeout
 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

mathsat-3.3.1

Figure 5.4: MathSAT 3.3.1 vs. New Solver

aborttimeout
 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

simplics-smtcomp-05

Figure 5.5: Simplics vs. New Solver

29

aborttimeout
 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

yices-smtcomp-05

Figure 5.6: Yices vs. New Solver

30

Chapter 6

Conclusion

We have presented a new Simplex-based solver designed for efficiently solving SMT problems in-
volving linear arithmetic. The main features of the new approach include the possibility to presim-
plify the input problem by eliminating variables, a reduction in the number of slack variables, and
fast backtracking. A simple but useful form of theory propagation can also be implemented cheaply.
Another result of the paper is a simple approach for solving strict inequalities that does not require
modification of the basic Simplex algorithm. This approach is more generally applicable to other
forms of solvers, such as graph-based solvers for difference logic.

Experimental results show that the new Simplex-based solver outperforms the most competitive
solvers from SMT-COMP’05, including specialized solvers on difference logic problems.

Applications for the algorithm presented in this paper go beyond SMT. We are currently extend-
ing the solver to support a form of weighted MAX-SMT, that is, the search for an assignment to an
SMT problem that maximizes a linear objective function. This MAX-SMT solver will be integrated
to SRI’s CALO system1, as part of a module that combines learning and deductive algorithms.

1http://caloproject.sri.com/

31

http://caloproject.sri.com/

Bibliography

[1] G.J. Badros, A. Borning, and P.J. Stuckey. The Cassowary linear arithmetic constraint solv-
ing algorithm. ACM Transactions on Computer-Human Interaction (TOCHI), 8(4):267–306,
December 2001.

[2] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. InInt. Conf. on Computer-Aided Verification (CAV), volume 3114 ofLNCS. Springer,
2004.

[3] C. Barrett, L. de Moura, and A. Stump. Design and results of the 1st satisfiability modulo
theories competition (SMT-COMP 2005). To appear in Journal of Automated Reasoning,
2006.

[4] C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories with equality.
In Int. Conference on Formal Methods in Computer-Aided Design (FMCAD), volume 1166 of
LNCS, pages 187–201, 1996.

[5] R. E. Bixby, M. Fenelon, Z.gu, E. Rothberg, and R. Wunderling. MIP: theory and practice –
closing the gap. In M. J. D. Powell and S. Scholtes, editors,System Modelling and Optimiza-
tion: Methods, Theory, and Applications. Kluwer, 2000.

[6] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Sebas-
tiani. The MathSAT 3 system. InInt. Conference on Automated Deduction (CADE), volume
3632 ofLNCS. Springer, 2005.

[7] V. Chvatal.Linear Programming. W. H. Freeman, 1983.

[8] G.B. Dantzig and B. Curtis. Fourier-Motzkin elimination and its dual.Journal of Combinato-
rial Theory, pages 288–297, 1973.

[9] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Labs, 2003.

[10] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonization and Solving.
In Proc. of CAV’01, volume 2102 ofLNCS, 2001.

[11] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision
procedures. In R. Alur and D. Peled, editors,Int. Conference on Computer Aided Verification
(CAV’04), volume 3114 ofLNCS, pages 175–188. Springer, 2004.

32

[12] G.C. Necula. Compiling with proofs. Technical Report CMU-CS-98-154, School of Computer
Science, Carnegie Mellon University, 1998.

[13] G. Nemhauser and L. Wosley.Integer and Combinatorial Optimization. Wiley, 1999.

[14] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its appli-
cation to difference logic. InInt. Conference on Computer Aided Verification (CAV’05), pages
321–334. Springer, 2005.

[15] H. Rueß and N. Shankar. Solving linear arithmetic constraints. Technical Report SRI-CSL-
04-01, SRI International, 2004.

[16] A. Schrijver.Theory of Linear and Integer Programming. Wiley, New York, 1986.

[17] H. M. Sheini and K. A. Sakallah. A scalable method for solving satisfiability of integer linear
arithmetic logic. InSAT’05, volume 3569 ofLNCS, pages 241–256. Springer, 2005.

[18] A. Stump, C.W. Barrett, and D.L. Dill. CVC: A Cooperating Validity Checker. InInt. Confer-
ence on Computer Aided Verification (CAV’02), volume 2404 ofLNCS. Springer, 2002.

[19] C. Wang, F. Ivancic, M. Ganai, and A. Gupta. Deciding separation logic formulae with SAT
and incremental negative cycle elimination. InLogic for Programming Artificial Intelligence
and Reasoning (LPAR), 2005.

33

	Introduction
	Background
	Solvers for DPPL(T)
	Existing Simplex Solvers for DPLL(T)
	Performance

	A Linear-Arithmetic Solver for DPLL(T)
	Preprocessing
	Basic Solver
	Main Algorithm
	Generating Explanations
	Assertion Procedures
	Backtracking
	Theory Propagation
	Example

	Strict Inequalities

	Integer and Mixed Integer Problems
	Branch and Bound
	Gomory Cuts
	Derivation of a Gomory Cut
	A Stronger Gomory Cut

	Experiments
	Conclusion

