niEmeatliona

CSL Technical Report SRI-CSL-06-01 e May 23, 2006

Integrating Simplex with DPLL(T)

Bruno Dutertre and Leonardo de Moura

This report is based upon work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHDO030010. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of DARPA or the Department of Interior National Business
Center (DOI-NBC).

Computer Science Laboratory e 333 Ravenswood Ave. e Menlo Park, CA 94025 e (650) 326-6200 e Facsimile: (650) 859-2844

/7 7 1T N NN

International
QO 7/

Abstract

We present a new Simplex-based linear arithmetic solver that can be integrated efficiently in the
DPLL(T) framework. The new solver improves over existing approaches by enabling fast back-
tracking, supporting a priori simplification to reduce the problem size, and providing an efficient
form of theory propagation. We also present a new and simple approach for solving strict inequal-
ities. Experimental results show substantial performance improvements over existing tools that use
other Simplex-based solvers in DPLILY decision procedures. The new solver is even competitive
with state-of-the-art tools specialized for the difference logic fragment.

Contents

[I_TInfroducfion] 4
B Q d 6
T SolversTorDPPIM)| o o o 6
[2.2__Existing Simplex Solvers tor DPLEQ[. 7
2.3 Performande 8

[3 A Linear-Arithmetic Solver tor DPLL(T')| 11
[3.1 Preprocessing e 11
BZTBaSICSOIVEr o o v it e 12
[3.2.1 MainAlgorithmh 13

[3.2.2 Generating Explanatigns 0 00 L 15

323 Asserfion Proceduies v v vt 16

[3.24 Backtracking L oo 16

3.25 TheoryPropagatibn., 17
................................... 17

3.3 Strictlnequalitigs 18

|4 Integer and Mixed Integer Problemg 20
41 BranchandBoumd 20
4.2 Gomory Culls 21
421 DerivaionofaGomory Qut 22

Z2.2 ASHONGEr GOMOTY CUL . « « v o oo e e e e e e e 24

26
6 Conclusiorn 31

List of Figures

[2.1 Tmpact of Theory Propagationin Simplics 10
[3.1 Auxiliary procedurgs 12
B2 Checkprocedure 13
3.3 Assertion proceduries e e e e e 16
3.4 Example e 17
.1 Ariol.1vs. NewSolver 27
[0.2 BarcelogicToolsvs. New Solyer 28
B3 _CVCILite2.0VvS. NEeWSOIVESr v oo et e e e e e e 28
B4 MathSAT 3.3.TVS. NEWSONEr . . . o v v v oo e e e e e e 29
0.5 Simplicsvs. New Solver o oo 29
BB YICeSVS.NEWSOIVEr . . . o v v v v e e e e e e e e e 30

List of Tables

[°.1 EXxperimental results: Summary

Chapter 1

Introduction

Decision procedures for quantifier-free linear arithmetic determine whether a boolean combination
of linear equalities, inequalities, and disequalities is satisfiable. Several tools for solving this prob-
lem rely on the DPLL{") approach|[11]: they combine boolean satisfiability solvers based on the
Davis-Putnam-Logemann-Loveland (DPLL) procedure, and arithmetic solvers capable of deciding
the satisfiability of conjunctions of linear constraints. Results of a first satisfiability modulo the-
ories (SMT) competition, comparing several of these tools, are presented in [3]. diiffdrence

logic fragment of linear arithmetic, that is, if all the constraints are of the ferm- x; < b,
specialized solvers such as Barcelo@ic [14] or Slice [19] use graph algorithms such as the Bellman-
Ford algorithm. For general linear arithmetic, existing tools rely either on Fourier-Motzkin elimina-
tion [8] (used by CVClite[[2], CVC[18], SV{ [4]) or on Simplex methods [7] (used by MathSat [6],
ICS [10], Simplics, Yices, ARIQ[17]). In practice, Fourier-Motzkin elimination explodes on many
problems and Simplex is generally superior. The worst-case complexity of Simplex is exponential
but this worst case is rarely encountered in practice. On the other hand, Fourier-Motzkin elimination
tends to generate a very large number of intermediate inequalities which causes it to often fail by
running out of memory.

The common methods for integrating a Simplex solver with DPLL rely on incremental versions
of Simplex such as described [n [15, 9][12, 1]. A tableau is constructed and updated incrementally:
rows are added as DPLL proceeds and are later removed when DPLL bactracks. These frequent
addition and removal of rows and the related bookkeeping have a significant cost. For example,
backtracking may require pivoting operations. This report presents a simpler and more efficient
Simplex-based solver that considerably reduces this overhead. The approach relies on transforming
the original formulad into an equisatisfiabl®’ such that the satisfiability @’ is decided by solving
a series of problems of the form

findxz € R" suchthatdz =0 andi; < xz; <wu;fori=1,...,n,

where the matri¥ is fixed and; andu; are bounds om; that may vary with each problem. Variants

of Simplex can efficiently solve problems in this form. This report describes such a variant designed
to be efficient in the DPLLY’) context: it has low backtracking overhead and enables a simple but
useful form of theory propagation. Furthermore, the new approach makes it possible to simplify
the problem a priori by eliminating irrelevant variables. This pre-simplification leads to substantial
performance improvements on many examples from the SMT-LIB benchmarks.

We first give an overview of the DPLIY) approach and discuss some lessons learned from
our tools Yices and Simplics. Our new solver relies on a simplex-based procedure for real linear
arithmetic described in details in Chapfér 3. Extension to integer and mixed-integer problems is
discussed in Chaptef 4, and experimental results are presented in Chapter 5.

Chapter 2

Background

Given a quantifier-free theory’, a T-solveris a procedure for deciding whether a finite sets of
atoms ofT" is satisfiable. 1f® is a formula built by boolean combination of atomsTofthen the
satisfiability of® can be decided by combining a boolean satisfiability solver dhesalver. This
can be summarized as follows:

e Firstd is transformed into a propositional formulg by replacing its atomsg, . . ., ¢; with
fresh propositiong., ..., p;.

e A boolean valuation fo, is a mappingb from ®4’s propositions to{0, 1}. Any suchb
defines a set of atomy, = {~1,...,v:} wherey; is ¢; if b(p;) = 1 and~; is —=¢; if b(p;) = 0.
Then® is satisfiable if there is athat satisfiesb, (in propositional logic) and for whiclf,
is consistent (in theory’).

The DPLL(I") approach is an efficient method for such integrations that relies on the DPLL proce-
dure.

The efficiency of this approach depends to a large extent on the features of modern DPLL-based
SAT solver, such as, fast unit propagation, good heuristics for selecting decision variables, clause
learning, and non-chronological backtracking. However, a fast SAT solver is not sufficient, several
properties of th&'-solver are also important.

2.1 Solvers for DPPL()

In the DPLL(I") framework, al'-solver maintains a state that is an internal representation of the
atoms asserted so far. This solver must provide operations for updating the state by asserting new
atoms, checking whether the state is consistent, and for backtracking. Optionally, the solver may
also implementheory propagationthat is, identify atoms that are implied by the current state. To
interact with the DPLL search, the solver must prodegplanationdor conflicts and propagated
atoms. In an inconsistent state an explanation is any inconsistent subset of the atoms asserted
in S. Similarly, an explanation for an implied atofnis a subset” of the asserted atoms such that
I E 4. In both cases, the explanatiomisnimalif no proper subset df is itself an explanation.

The solver is assumed initialized for a fixed form@and we denote byl the set of atoms that
occur in®. The set of atoms asserted so far is denoted.by¥he solver also maintains a stack of

checkpointshat mark consistent states to which the solver can backtrack. We assum&'tbalvar
implements the following AFﬁ]

e Asserty) asserts atony in the current state. It returns eithek or unsat(I') whereT is a
subset ofx. In the first casey is inserted intax. In the latter casey U {~} is inconsistent
andT is the explanation.

e ChecK) checks whetheu is consistent. If so, it returnsk, otherwise it returnansat(I'). As
previouslyI” C « is an explanation for the inconsistency. A new checkpoint is created when
ok is returned.

e BacktracK) backtracks to the consistent state represented by the checkpoint on the top of the
stack.

e Propagaté) performs theory propagation. It returns a§@t;, 1), ..., (I't,)} wherel’; C
aandy; € A\ a. Every~; is implied byT;.

Assertmust be sound but is not required to be complégser{y) may returrok even ifa U{~}
is inconsistent. SimilarlyPropagatemust be sound but does not have to be exhaustive. For exam-
ple, a solver without theory propagation can retBropagaté) = () for any S. On the other hand,
function Checkis required to be sound and complete:Cifieck) = ok then « must be consis-
tent. This model enables several atoms to be asserted in a single “batch”, using several calls to
Assertfollowed by a single call t&Check Assertcan then implement only inexpensive (and possi-
bly incomplete) consistency checks whidneckimplements a complete (and possibly expensive)
consistency-checking procedure. The sttafter executind@acktrackmust be logically equivalent
to the stateS when the checkpoint was created, IStitmay be different front.

2.2 Existing Simplex Solvers for DPLL()

A quantifier-free linear arithmetic formula is a first-order formula whose atoms are either proposi-
tional variables or equalities, disequalities, or inequalities of the form

a1+ ...+ apx, DI b,

whereaq,...,a, andb are rational numbers;y, ..., z, are real (or integer) variables, andis
one of the operators, <, <, >, >, or #. In the DPLL(") framework, deciding the satisfiability of
such formulas requires a linear-arithmetic solver. A common approach is to use incremental forms
of Simplex similar to the algorithms described[in|[1%,9[12, 1]. Tools based on this approach include
our own tools, Yices and Simplics, and others such as MathSat [6].

In these algorithms, a solver state includes a Simplex tableau that is derived from all equalities
and inequalities asserted so far. A tableau can be written as a set of equalities of the form

T, = b; + Z QaijTj, T; € B (21)
:L‘jGN

whereB and A are disjoint sets of variables. Elementsiband A are calledbasicandnon-basic
variables, respectively. Additional constraints are imposed on some varialffes &f. So-called

1This is similar to the API proposed inh [[L1].

slack variablesare required to be non-negative, and the tableau may also caairnvariables
which are all implicitly equal td). Zero-variables are used to generate explanations (¢f. [15]).

A pivoting operatiorpivot(x,., zs) swaps a basic variable. and a non-basic variable, such
thata,, # 0. After pivoting, x, becomes basic and. becomes non-basic. The tableau is updated
by replacing equatiom, = b, + sz e N gy With

br T rjdlj
r, = -4y Ll (2.2)
Qrs Qrg Qrs
:rjEN\{ZI?s}

then equatior{ (2]2) is used to eliminatgfrom the rest of the tableau by substitution.

Assertion of equalities or inequalities adds new equations to the tableau. For example, let
be an atom of the form > 0 wheret is an arithmetic term. The operatidksser{~y) involves
three steps. Firsty is normalized by substituting any basic variableoccurring int with the term
b; + ij e\ @ijzj. The solver checks then whether the resulting inequélity 0 is satisfiable.

This step uses the Simplex algorithm to maximizeubject to the tableau constraints. tlfhas

a maximumi/ and M is negative, ther’ > 0 is not satisfiable and an explanation is generated.
Otherwise, a fresh slack variablge is created and a row of the form), = t” is added to the
tableau. Some bookkeeping is required to record4hd nonnegative and is associated with atom

~. Processing of equalities and strict inequalities follows the same general principles. Backtracking
removes rows from the tableau. For example, to retyathe solver retrieves the slack varialsle
associated withy. If s is a basic variable in the current state then the corresponding equation is
removed from the tableau. Otherwise, a pivoting operation is applied first to spdiasic.

Disequalities are treated separately since they cannot be incorporated into the tableau. When a
disequalityt # 0 is asserted, it is first normalized as before, then the solver must check whether the
current tableau implies = 0. This can be implemented via tlzero-detection proceduescribed
in [15] for example.

2.3 Performance

Assertions and backtracking have a significant cost in solvers based on incremental Simplex algo-
rithms. Part of this cost (e.qg., the pivoting involvediissertoperations) cannot be avoided, but there
is also significant overhead in the frequent additions and removals of rows, creations and deletions
of slack variables, and the associated bookkeeping. The remainder of the paper describes a different
type of solver, still based on the Simplex method, which significantly reduces this overhead. The
new approach is simpler and more uniform than incremental Simplex. It is also more economical as
irrelevant variables can be eliminated a priori and fewer slack variables are necessary.

Some of the simplifications are based on lessons we learned from experiments with our previous
tools Simplics and Yicef§:

e Minimal explanations are critical Dramatic improvements were observed when comparing
Simplics and Yices, which generate minimal explanations, and their predecessor ICS, which
does not.

2Both use incremental Simplex and zero detection.

e Theory propagation is useful if it can be done cheagfygure compares the results of
Simplics on the real-arithmetic subset of the SMT-LIB benchnyjaunking different levels of
theory propagation. By default, Simplics uses a heuristic form of propagation that’s relatively
inexpensive but incomplete (no pivoting is used). This is compared in Fgure]|2.1(a) with
Simplics running with no propagation at all, and in Figure 2]1(b) with Simplics running with
complete propagation (where pivoting is used). On these benchmarks, full propagation is
just too expensive, but no propagation is also a poor choice. Heuristic propagation is clearly
superior.

e Zero detection is expensive and can be avoided a few examples in the SMT-LIB bench-
marks, Simplics spends as much as 30% of its time in the zero-detection procedure. A sim-
pler alternative is to rewrite a disequality# 0 as the disjunction of two strict inequalities
(t <0) Vv (t > 0). This transformation may seem wasteful since it may entail additional case
splits, but it works well in practice. After this transformation, Simplics can solve six problems
of the SMT-LIB benchmarks that it cannot solve otherwise.

3These benchmarks are availablégp://combination.cs.uiowa.edu/smtlib/ . The real-arithmetic sub-
set includes two categories of benchmarks known adQE and QELRA.

http://combination.cs.uiowa.edu/smtlib/

1000
X
» 3 X
100 x 0k g
A E
8 % 9 x X
2 10
& x XXX
3 “x :
B = <
= S
0.1 £
X % X%i %% X
R
0.01
0.01 0.1 1 10 100 1000
heuristic propagation
(a) Heuristic vs. No Propagation
1000
100
=
2
= 10
on
S
=9
=
=01
2
0.1
X
0.01
0.01 0.1 1 10 100 1000

heuristic propagation

(b) Heuristic vs. Full Propagation

Figure 2.1: Impact of Theory Propagation in Simplics

10

Chapter 3

A Linear-Arithmetic Solver for
DPLL(T)

3.1 Preprocessing

Incremental Simplex algorithms can be avoided by rewriting a linear arithmetic fordnito an
equisatisfiable formula of the fordh, A @', whered 4 is a conjunction of linear equalities, and all
the atoms occurring i@’ areelementary atomsf the formy < b, wherey is a variable and is a
rational constant. The transformation is straightforward. For exampl@, betthe formula

r>0AN(z+y<2Vze4+2y—z>6)A(z+y=2Va+2y—z>4).
We introduce two variables; ands, and rewrite® to ® 4 A ®' as follows.

(si=x+yAso=ax+2y—2z2) A
(x>0A (81 <2Vsy>26)A(s1 =2V 89 >4))

Clearly, this new formula an@ are equisatisfiable. In general, starting from a formiijathe
transformation introduces a new variableor every linear ternt; that is not already a variable and
occurs as left-hand side of an atdp=< b of &. Then® 4 is the conjunction of all the equalities
s; = t; and®’ is obtained by replacing every tenby the corresponding; in ®.

Letz,...,z, be the arithmetic variables @4 A ®’, that is, all the variables originally i@
andm-additional variables,, . .., s,, introduced by the previous transformation (< n). Then
formula® 4 can be written in matrix form adxz = 0, whereA is a fixedm x n rational matrix and
x is a vector inR™. The rows ofA are linearly independent sé has rankn. Checking whethed®
is satisfiable amounts to finding arsuch thatAz = 0 andz satisfiesd’. In other words, checking
the satisfiability of® in linear arithmetic is equivalent to checking the satisfiability®dfin linear
arithmetic modulodz = 0. Since all atoms ob’ are elementary, this requires a solver for deciding
the consistency of a set of elementary atdimsodulo the constraintdx = 0. If T contains only
equalities and (non-strict) inequalities, this reduces to searching4oR™ such that

Ar=0andl; <z; <u; forj=1,...,n (3.1)

11

procedure updatef;, v)
foreachz; € B, 8(z;) := B(z;) + aji(v — B(x;))
Blx;) =wv

procedure pivotAndUpdateg;, z;, v)
g = v=5lz:)

Blx;) i=w

B(x;) = B(w;) + 0

foreachuz, € B\ {z;}, B(zk) = B(ak) + ar;0
inOt(ZL’i, LJ)

Figure 3.1: Auxiliary procedures

wherel; is either—oo or a rational number, and; is either+oo or a rational number. If; = u;
thenz; is called dfixed variable If [; = —oo andu; = +oo thenz; is afree variable

Since the elementary atoms ®f are known in advance, we can immediately simplify the con-
straintsAz = 0 by removing any variable; that does not occur in any elementary atomdof
This is done by Gaussian elimination. In practice, this presimplification can reduce the matrix size
significantly.

The variabless; introduced during the transformation play the same role as the slack variables
of standard Simplex. However, the presence of both lower and upper bounds is beneficial. For
example, incremental Simplex algorithms need two slack variables to represent a constraint such as
1 < z+3y < 4, whereas a single, is sufficient if the general forn (3.1) is used. Overall, rewriting
® into &4 A @ and relying on the general form leads to problems with fewer variables than the
algorithms discussed previously.

3.2 Basic Solver

We first describe a basic solver that handles equalities and non-strict inequalities with real variables.
Extensions to strict inequalities and integer variables are presented in the next sections. The basic
solver decides the satisfiabilities of problems in fofm](3.1) and implements the API of Seclion 2.1
for integration with a DPLL-based SAT solver.

The solver state includes a tableau derived from the constraint matrixe will write such a
tableau in the form:

xr; = E AijTj T S B,
zje./\/'

whereB and ' denote the set of basic and non-basic variables, respe@i\‘mty:e all rows of this
tableau are linear combinations of rows of the original matrjthe equalityr; = sz N @i 1S
satisfied by any: such thatdx = 0.

1This is the same a@.l) with = 0 for all z; € B.

12

1. procedure Check()

2. loop

3 select the smallest basic variablesuch that3(x;) < I; or 8(x;) > u;
4, if there is no such; then return satisfiable

5 if B(xz) < l; then

6 select the smallest non-basic variabjesuch that

7 (a;; > 0andp(z;) < uy)or (a;; < 0andg(x;) > 1;)

8 if there is no such; then return unsatisfiable

9. pivotAndUpdatet;, x;, I;)

10. if 6(.1?1) > u; then

11. select the smallest non-basic variabesuch that

12. (aij <0 andﬂ(.’[j) < Uj) or (aij >0 andﬂ(l’j) > l])
13. if there is no such; then return unsatisfiable

14. pivotAndUpdateg;, x;, u;)

15. end loop

Figure 3.2: Check procedure

In addition to this tableau, the solver state stores upper and lower béuaddu; for every
variablez; and a mapping that assigns a rational valy¥z;) to every variabler;. The bounds on
non-basic variables are always satisfied#byhat is, the following invariant is maintained

VSC]‘ GN, lj S ﬁ(l']) é Uj. (32)

Furthermore,3 satisfies the constraiz = 0. In the initial state/; = —oo, u; = 400, and
B(xz;) = 0forall j.

Figure describes two auxiliary procedures that modifyProceduraipdatéz;, v) sets the
value of a non-basic variable to v and adjusts the value of all basic variables so that all equations
remain satisfied. Procedupg&votAndUpdater;, z;, v) applies pivoting to the basic variabte and
the non-basic variable;; it also sets the value of; to v and adjusts value of all basic variables to
keep all equations satisfied.

3.2.1 Main Algorithm

The main procedure of our algorithm is based on the dual Simplex algorithm and relies on Bland’s
pivot-selection rule to ensure termination. It relies on a total order on the variables. Assuming an
assignmenp3 that satisfies the previous invariants, but whigrec 3(z;) < u; may not hold for
some basic variables;, procedureChecksearches for a new that satisfies all constraints. The
procedure is shown in Figufe 3.2.

It either terminates with a new assignment and basis that satisfy all lower and upper bounds (line
4), or finds the constraints to be unsatisfiable (lines 8 and 13). The body of the main loop selects a
basic variable:; that does not satisfy its bounds (line 3)zlfis below!;, then it looks for a variable
x; inthe rowz; = sz <\ @ijz; that can compensate the gapin(lines 6-7). If no suchx; exists
the problem is unsatisfiable (line 8) because the valug & maximal and is below the lower bound
l;. Otherwise, the procedure pivatsandz;, andz; is set tol; (line 9). The case whete; is above
its upper bound (lines 10-14) is symmetrical.

13

The correctness dtheckis a consequene of the following property.
Theorem 1 Procedure Check always terminates.

Proof: Every iteration ofCheckmodifies the assignmefit the sets of basic and non-basic variables,
and the current tableau. However, there is a unique tableau for any set of basic v#fidMesan
then represent the state of the procedure beforé-theteration as a pait; = (8;, B;), where
0 is the assignment anB; is the set of basic variables at that poitfy denotes then the initial
state on entry to the procedure. We also denotévpyhe set of non-basic variables i, that is,
Ny ={z1,...,2,} \ Bt.

For a non-basic variable; € NV;, and anyt we have eithep,(x;) = Bo(z;), or B;(z;) = I, or
B(x;) = u;. For any basic variable; € B;, we have

Bilws) = Y ayBilx;)

z;EN

where the constants; are the tableau coefficients . Hence3,(x;) is uniquely determined by
B, and the valuegi(z;) for ; € N,. There are then finitely many possible assignmehtfor a
given B;. Since the number of variables if finite, there are finitely many possible%efsherefore,

the set of states reachable frasp is finite. If Checkdoes not terminate, the sequence of states
So, S1, 52, ... must contain a cycle, that is, a subsequesice . . , S, St1 With S;1 = Sk.

Let x,. be the largest variable such thatbecomes non-basic in one of the sta#gs. . ., S;. We
then haver, € B; andx, € Ny, foranindex € {k,...,t}. Sincex, becomes non-basic in state
S;, we must have eithe®;(z,) < I or §;(z,) > u,. Also, for any variabler; that is smaller than
x, in the variable ordering we have < g;(z;) < u;. This holds ifz; € B; since otherwiser;
would be selected to become non-basic rather thaffrig.[3.2, line 3). This also holds if; € N;
by invariant[(3.R).

Since the sequence of state is cycli¢, must eventually re-enter the basis. l%tbe the first
state afterS;; wherez, becomes basic again;. € N, andz, € B,,. Sincex, stays non-basic

in all statesS; 41, ..., S, its value does not change, so we h@géz,) = 5,41(z,). Letz, be the
basic variable that is pivoted with,. in S, and let
Ty = Z Q5T (3.3)
T;EN,

be the corresponding row ifl,’s tableau. Sincer; leaves the basis in statg,, we have either

Bp(xs) < ls0r Bp(xs) > us.
We can now decompose the proof into the following four cases.

1. Gi(z,) <l andf,(zs) < Is.
2. Bi(zy) <l andfBp(zs) > us.
3. Bi(x,)

)

4. Bi(xr) > u, andfy(xs) > us.

> u, andgy(zs) < ls.

Let us consider the first case. Singgz,) < I, we haveg,(z,) = Bi+1(z,) = .. Sincex, is
chosen to enter the basis$ andj, (zs) < s, we must have,, > 0 (Fig., line 7).

14

Equation [(3.B) is satisfied by anysuch thatAz = 0. It is then satified by botf#; and3,; so
we get

Biws) = Bp(ws) = D asi(Bulz;) — Bp(x)) (3.4)

T;EN,

By definition of z,., we know thatr, is smaller thane,. in the variable ordering, so we havg <
Bi(zs) < us. Since we have assuméy(x;) < I, the left-hand side of equatio.4) is positive.
Now, let us consider the terms; (G;(z;) — 6,(x;)) that occur in the right-hand side. In all these
terms,z; is a non-basic variable (i.ex; € N,). There are three cases:

e z; is smaller thar, in the variable order. As noted previously, this impligs< §;(x;) < u;.
Sincez; was not selected to become basic in stije we must have eithez,; > 0 and
Bp(x;) > uj orag; < 0andBy(x;) <I;orag; = 0 (line 7). In all these cases we get

asj(Bi(zj) — Bp(z;)) < 0.
e z; = z,. We havea,, > 0, §(z,) < I, andBy(z,) = I, SO we obtain

asr(ﬁl(xr)_ﬂp(*rr)) < 0.

e z; is larger thanc, in the variable order. In this case; remains non-basic in all the states of
the cycle so its value never changes. It follows that: ;) = 3,(x;) and then

asi(Bi(x;) = Bp(z;)) = 0.

Thus, for allz; € N, the terma,; (3 (z;) — Bp(x;)) is negative or zero. This contradicts the fact
that the left-hand side of equatidn (8.4) is positive.

A similar contradiction is obtained in the other three cases. We can then conclude that a cyclic
sequence of states cannot occur and thenGhatkterminates. O

3.2.2 Generating Explanations

An inconsistency may be detected Gheckat line 8 or 13. Let us assume a conflict is detected at
line 8. There is then a basic variabte such that3(x;) < I; and for all non-basic variable; we
havea;; > 0 = B(x;) > uj anda;; < 0 = B(z;) < ;. Let N = {z; € N'| a;; > 0} and
N~ ={z; € N'|a;; < 0}. Sinceg satisfies all bounds on non-basic variables, we Iive) = [;

for everyz; € N~ andB(z;) = u; for everyx; € N'*. It follows that

ﬂ(l‘,) = Z aijﬁ(mj) = Z (ZUU]'—F Z aijlj.
z;eN z;eNT z;eN~

The equatiorn; = ij e\ @ijz; holds for anyz such thatdz = 0. Therefore, for any such, we
have

Blai) =z = > aglu—z)+ > ayly— =),
w,eN™T z;eN~

15

. procedure AssertUpper; < ¢;)

if ¢; > u; then return satisfiable

if ¢; < I; then return unsatisfiable

U; = C;

if z; is a non-basic variable ant{x;) > ¢; then updateg;, ¢;)
return ok

SRS AN

1. procedure AssertLowerg; > ¢;)

2. if ¢; <; then return satisfiable

3. if ¢; > u; then return unsatisfiable

4. [;=¢

5. if z; is a non-basic variable an®{z;) < ¢; then updateg;, ¢;)
6. return ok

Figure 3.3: Assertion procedures

from which one can derive the following implication:

/\ z; <uj A /\ lj <z; = x; < B(xy).
z;eNt z;eN~

Since(z;) < l;, this is inconsistent withl; < x,. The explanation for the conflict is then the
following set of elementary atoms:

I' = {z;<wuj|jeNtIU{z; >1i|jeN}U{z; > 1}

It is easy to see thdt is minimal. Explanations for conflicts at line 13 are generated in the same
way.

3.2.3 Assertion Procedures

The Assertfunction relies on two procedures shown in Figlrg 3.3 for updating the bdyredsl
u;. ProcedurédssertUppefz; < ¢;) has no effect ifu; < ¢; and returns unsatisfiabledf < I;,
otherwise the current upper bound onis set toc;. If variablex; is non-basic, the® is updated
to maintain invarian{ (3]2). If an immediate conflict is detected at line 3 then generating a minimal
explanation is straightforward.

ProcedureAssertLowefz; > ¢;) does the same thing for the lower bound. An equality= ¢;
is asserted by calling bothssertUppeandAssertLower

3.2.4 Backtracking

Efficient backtracking is important since the number of backtracks is often very large. In our ap-
proach, backtracking can be efficiently implemented. We just need to save the valug;dbn a

stack before it is updated by the procedAssertUppe(AssertLowey. This information is used to
restore the old bounds when backtracking is performed. Backtracking does not require to save the

16

S$1=—x+
AO:{S;=$+yy ﬁO:(xl—)O,yH()’slHO,SQ,_)())
A = Ap z <-4 |fi=(x— —4,y— 0,81 — 4,85+ —4)
AQ:Al —8§ €T §_4 ﬂ2:61
Jy=x24+s —8< x <-4 [B - -
As_{52:2x+51 51 <1 O3 =(x+— —4,y+— —3,51 — 1,50 — —T)

Figure 3.4: Example

successivess on a stack. Only one assignmehneeds to be stored, namely the one corresponding

to the last successfil@heck After a successfuCheck the assignment is a model for the current

set of constraints and for the set of constraints asserted at any previous checkpoint. Since no pivoting
or other expensive operation is used, backtracking is very cheap.

3.2.5 Theory Propagation

Given a set of elementary atom&from the formula®’, thenunate propagations very cheap to
implement. For example, if bound > ¢; has been asserted then any unassigned atodaffthe
form z; > ¢ with ¢’ < ¢; is immediately implied. Similarly, the negation of any atem< u with
u < ¢; is implied. This type of propagation is useful in practice. It occurs frequently in several
SMT-LIB benchmarks.

Another method is based dmound refinement Given a row of a tableau, such as, =
ijej\/ ai;x;, one can derive a lower or upper bound onfrom the lower or upper bounds on
the non-basic variables;. These computed bounds may imply unassigned elementary atoms with
variablez;. This is a heuristic technique as the computed bounds may be weaker than the current
bounds asserted an (for example, the computed bounds may-bs or +o0). However, bound
refinement is quite general. It is applicable with any equality; + ... + a,z,, = 0 derived by
linear combination of rows afl, not just with rows of a tableau.

3.2.6 Example

Figure[3.4 illustrates the algorithm on a small example. Each row represents a state. The columns
contain the tableaux, bounds, and assignments. The first row contains the initial state. Suppose
x < —4 is asserted. Then the value ofmust be adjusted, sing&(z) > —4. Sinces; andss
depend orx, their values are also modified. No pivoting is required since the basic variables do not
have bounds, sel; = A,. Next,z > —8is asserted. Sincg,; (z) satisfies this bound, nothing
changesA; = A; and@s = (3. Next,s; < 1is asserted. The current valuegfdoes not satisfy
this bound, s&Checkmust be invokedCheckpivots s; andy to decrease;. The resulting staté’s
is shown in the last row; all constraints are satisfied.

If sy > —3 is asserted irb3 andCheckis called then an inconsistency is detected: Tabléau
does not allows, to increase since both ands; are at their upper bound. Thereforg, > —3 is
inconsistent with staté’s.

17

3.3 Strict Inequalities

The previous method generalizes to strict inequalities using a simple observation.

Lemma 2 A set of linear arithmetic literal$' containing strictinequalitie$ = {p; > 0,...,p, >
0} is satisfiable iff there exists a rational numbgr> 0 such that for allé’ such thatd < §" < 4,
Is = (T'USs) \ Sis satisfiable, wher€s = {p; > 4,...,p, > d}.

This lemma says that we can replace all strict inequalities by non-strict ones if a small @nough
is known. Rather than computing an explicit value fowe treat it symbolically, as anfinitesimal
parameter Bounds and variable assignments now range over thigset pairs of rationals. A pair
(¢, k) of Qs is denoted by: + k4 and the following operations and comparison are definé@sin

(c1,k1) + (c1,k2) = (c1+co, k1 + k2)
ax(c,k) = (axcaxk)
(c1,k1) < (c2,k2) = (a1 <c2)V(cr=ca Nk < ko),

whereaq is a rational number.
By the previous definition, if the inequality, k1) < (¢, k2) holds inQ; then there is a rational
numbersy > 0 such that the inequality

c1+kie < cp+ ke

is satisfied by positive realless thary,. For example, we can defirdg as follows:

60 = i if c1 < coandky > ko
k1 — ko
0o = 1 otherwise

More generally, conside2m elements ofQs, namelyv; = (¢;, k;) andw; = (d;, h;) for i =
1,...,m. If them inequalitiesy; < w; hold in Q4 then there is a positive rational numhgrsuch
that the inequalities

c1+kie < di+ hie

Cm +Eme < dp A+ hpe
are satisfied for any such that) < e < §3. One can take

di—Ci

ki — h;

50 = II’liIl{ | c; < d; andk; > hz}
if the set on the right-hand side is nonempty or&etio an arbitrary positive rational otherwise.

Now, a linear problen$ with strict inequalities in the rationals can be converted into a problem
S’ in the general form[(3]1) but where the bounds and the variahlese elements of)s. Strict
bounds inQ are converted to non-strict bounds@y. A strict inequalityz; > [; is converted to

18

x; > l; + 6 =1}, andz; < u; is converted ta; < u; — § = uj. The matrixA does not change; all
its coefficients are rational numbers. The new probkman be written

0
U< Su} forj=1,...,n

and the basic algorithm can be used to determine whéthsifeasible inQs. This is straighforward;
all updates t@3 used in the previous algorithm can be performe@in

If S’ is satisfiable, the algorithm produces a satisfying assignifietttat maps variables to
elements ofs. Thens’ can be converted into a satisfying rational assignngefar S. First, the
2n inequalities

5 < B'(xz) <uj forj=1,...,n,

are satisfied irQQs. Let us set; = (c;, k;), v = (dj, h;), andp'(z;) = (pj,q;). As discussed
previously, there is a positive rational numbgrsuch that

cj+kje<pj+qe<dj+hje forj=1,...,n (3.5)

holds in the reals whenever< ¢ < §,. In particular, these inequalities hold when- §,. We can
then defing3 by setting8(x;) = p; + ¢;00 for all z; and 3 satisfies all the inequalitie.5). By
construction ofS” this implies that3 satisfies all the strict and non-strict inequalities in the original
problemS. Since’ satisfies the constraintdz = 0 in Qg, it is clear that3 satisfies the same
constraintsdz = 0 in the reals s@ is a satisfying assignment fof.

Conversely, ifS is satisfiable in the rationals, then any satisfying assignmeior S can be
transformed in a straightforward way into a satisfying assignmiéfudr S’. So if S’ is unsatisfiable
in Qs, S is not satisfiable either in the rationals.

19

Chapter 4

Integer and Mixed Integer Problems

The previous solver is sound and complete for the reals. If some or all of the variablesrequired

to be integer, the algorithm is not complete. Nothing ensures that the assigAroenstructed by
Checkgives an integer value to integer variables. To be complete in the integer or mixed integer
case, we employ aranch and cutstrategy, that is, the combination of branch-and-bound with a
cutting plane generation algorithin [1L6| 13]. The branch-and-bound algorithm works when problems
are solved inQs rather tharQ. In other words, it can be used when strict inequalities are present.
The cutting-plane method we use is based on mixed integer Gomory cuts. Such a cutting-plane
algorithm is critical as it dramatically accelerate the convergence of branch-and-cut in several cases.

4.1 Branch and Bound

As previously, we consider the constraints

Az = 0
;< z; <wu; forj=1,...,n,

but in addition, some variables are required to be integer valued. The problem is then to find a
variable assignmertt that satisfies the linear equalities and bound constraints, and suglithate
Zfor all j in afixed setl C {1,...,n}. We denote this problem by. We can assume without loss
of generality that the bounds andw; are integer (or infinity) for any in 1.

The branch-and-bound method starts by solvinglitiear programming relaxatiorfLP relax-
ation) of S, that is, it searches for a solutighin the reals. In our case, this is done using algorithm
Checkof Sectior{ 3.R. If the LP relaxation is infeasible, th&ris also infeasible. Otherwise, 6t
be the solution found bZheck If 3 happens to satisfy all the integer constraints thes feasible.
Otherwise, there is € T such that3(z;) is not an integer. There is then a constart Z such that
¢ < f(x;) < c+ 1, thatis,c = | B(x;)]. Givenc, the original problent is split into the following
two subproblems:

Az = 0
So : ZJS T S'LLJ' forjzl,...,nandj#i
L < z <c

20

Ar = 0
Sy : ljé T S’LL]' forjzl,...,nandjyéi
c+1< x; <w.

ThensS, or S; (or both) are solved recursively using the same procedur$,; &fr S; is satisfiable
thenS is also satisfiable. If neither is satisfiable thers also infeasible.

Thus, the branch-and-bound method recursively divifléato a set of smaller subproblems
obtained by modifying lower or upper bounds of the integer variables. This recursive division can
be efficiently implemented via a depth-first search. Unlike traditional branch-and-bound methods,
the algorithm does not attempt to minimize or maximize a linear function but stops when the first
integer-feasible solution is found. If a subproblé&thencountered during the search is infeasible,
thenCheckproduces an explanation, in the form of a minimal set of inconsistent bound constraints.
This explanation is exploited to prune the search via non-chronological backtracking.

The branch-and-bound approach works when strict inequalities are present. In such a case the
LP-relaxation is solved if)s rather thanQ. As in the real case, we defing(z;)| as the largest
integer less thag(x;). Assumingl(z;) = s + kd, we then get

Ls] if s¢Z
18(xi)] = s if s € Zandk >0
s—1 if s €Zandk <0

This is the only adjustment required for solving interger or mixed integer problems with strict in-
equalities.

4.2 Gomory Cuts

Branch-and-bound terminates if all the integer variables have a lower and an upper bound, that is,
if —oo < [; andu; < oo for all j in 1. Without such bounds, the algorithm may fail to terminate,
even on trivial problems. For example, the constraint

1<3x—-3y <2

is not satisfiable ifc andy are integers, but has unbounded real solutions. On this examplajea na
branch-and-bound implementation loops. Fortunately, we can assume without loss of generality that
lower and upper bounds are given for all variablesS i feasible then it has a solution that is an
extreme point of its convex hull, and an explicit bound on the magnitude of such extreme points can
be derived from the coefficients of the matrix(cf. [16,13]). However, this bound is typically too
large to ensure quick termination in practice.

To accelerate convergence, modern integer-programming methods combine branch-and-bound
with cutting-plane algorithms. Assung&is a solution to the LP-relaxatiaR of S but not a solution
to S. A cutis a linear inequality

a1+ ...+ apx, <b,

that is not satisfied by but is satisfied by any element in the convex hull%f If one or more
such cuts can be found, then they can be added as new constraints to the original grobleis
gives a new probleny’ that has the same solutions&but whose LP-relaxatiof”’ is strictly more
constrained that. In particular,3 is a solution toP but it is not a solution t@”’. Therefore, rather

21

than splitting.S into subproblems as previously, one can attempt to find a sol@ido P’ and

iterate the process. Combining cutting-plane and branch-and-bound methods has led to dramatic
improvements in the size of mixed-integer programming problems that can be efficiently solved in
practice [[5].

4.2.1 Derivation of a Gomory Cut

Many cut-generation algorithms have been proposed|(see [13]). A general method due to Gomory is
simple to implement, widely applicable, and known to be quite effective in practice. In our context,
let 5 be the solution returned b@heckto the LP-relaxatiorP of a problemS. Thus,s is obtained

from a tableau of the form

xr; = E QAijTsj, r; € B.
ijN

A mixed integer Gomory cutan be constructed from and the tableau if the following conditions
are satisfied:

e There is a basic variable, € B such that € I andg(x;) & Z.

¢ All non-basic variables occurring in the row corresponding:toare assigned to their upper
or lower bound:

ij E./\/’7 Qjj #0 = ﬁ(xy) = lj \ 5(337) = Uj.

¢ All the numbers3(x;), and3(z;) for =; occurring in row; are rationals (i.e., they are not of
the formce + k6 with k& £ 0).

Let fo = B(x;) — |B(z;)]. By the first assumptionf, is a positive rational number, so we have
0 < fo < 1. By the second assumption, free variables do not occur inirdie can also remove
the fixed variables: le\” = N N {z; | [; < u;}. Now, if j is the index of a non-basic variable of
N then two cases are possible: eitl#r;) = I; or 3(z;) = u;. Let us define

J = {]GI‘iEJENI/\ﬂ(.T]):ZZ}

K = {jel|lxzjeN A B(zj)=u;}.
The row ofz;, that is, the equation

xr; = Z AT (41)
:DjGN

is satisfied by any: such thatAz = 0 and we haver; € Z for any x that satisfiesS. For the
assignmeng, we also have

6($1) = Z aijﬁ(mj). (42)
ijN

22

Subtracting[(4]2) fron{ (4]1) we obtain the following equation
v = Blw) = Y agley—1) =Y ai(u; —),
jeJ jeK

which can be rewritten as

i — [B(xi)] = fo+ Zaij(xj 1) - Z aij(uj — ;) (4.3)

jeJ jEK

This equation holds for any that satisfiesS and, for any such: we know thatx; — |3(x;)] is an
integer and that the following inequalities are satisfied:

x;—1; > 0 foralljeJ
uj—x; > 0 forallje K.

We now consider two cases:

o If > cyaij(z; —1j) — > ek @ij(u; — z;) > 0then we must have

fo+) ai(z =) = > ai(uj —z;) > 1 (4.4)
jeJ JjEK
since the left-hand-side is an integer. Let us split the $et8d K as follows:
Jt = {jeJ|ay; >0}
Jm = {jeJlay; <0}
K+ {j € K|aj; >0}
K~ = {jeK]|a;; <0}

Then inequality[(4}4) implies

D agle—1) = Y ayluy—a;) > 1-fo,

jeJt

or, equivalently,

jeJ+

o If > cyaii(zy —1j) — D cp aij(uj —

Z 1 —wfo (2 =

jEK-

—a
L)+ > —(uj—x;) > L

1—fo

JEK~

x;) < 0, then we must have

fo+ Y aii(xy =) = Y aij(uy —a;) < 0,

jeJ
which implies

=Y aila; -

jeJ-
or

T -

jeJ-

jEK

D)+ Y ag(u—x) > fo,

JEKT

(73]
L+ Y, ZHuj—x) > 1.

o

JEKT

23

(4.5)

(4.6)

Combining [[4.5) and (4]6) we obtain the following inequality:

> 1(?]f0(5fj—lj)+ > _;:j(xj—lj) +

jeJt JjeEJ~
Q5 — Q4
N Tj(uj—mj)+) 17} (uj—z;) = L (4.7)
jex+ 10 jEK- 0

This is amixed-integer Gomory cuthis inequality is satisfied by anythat satisfiesS, but it is not
satisfied by the assignmefit

4.2.2 A Stronger Gomory Cut
Inequality [4.T) was derived from the fact that

fo+ Y ai(ws —1;) =Y aij(u; — ;)

jeJ jeEK

is an integer for any that satisfiesS. As long as we maintain this property, we can replace the
coefficientsa;; with other rationals:;; and derive a different cut. In particular,f; is an integer
variable then we know thdj andu; are integers so we can replacg by anya;; such that(a;; —

a;;) € Z. So we can further split the index setsand K by distinguishing between integer and
non-integer variables:

Jo = JnI
Jo= J\Jo
Ko = KNI
K, = K\Kp

Then we can replace;; by ana;; such thata;; — a;;) € Z for anyj € Jo U Ko. This preserves
the essential property, namely the fact that

fot Y dilay =)+ Y ailay — 1) = Y al(uj—) — Y ag(u;—x;) (4.8)

j€Jo jE€N JjE€EKo JEK,

is an integer. From this new term, we can derive a mixed integer cut as before.

Forj € Jo, the best choice far;; is the one that leads to the smallest coefficiergf— /;) in
the cut. Ifa;; is positive, this coefficient is;; /(1 — fo) otherwise itis—a;, / fo. Let fi = a;; — | ai;]
then a simple analysis shows that the best choice is given by

a;; = fi = aiy—lay] Hfi<l—fo
a;; = fi—1 = aij—Tlaii] Ffi>1-fo
Forj € Ko the best;; can be determined in a similar fashion and it is given by
a;j = fz = Qijj — LaijJ if f’L < fO
aj; = fi—=1 = aij—[ay] if fi>fo

24

By choosing the coefficients]; as above, we obtain the following inequality, which is the

strongest possible mixed-integer Gomory cut that can be obtained using the previous techniques:

A5 —Q4j
P AR AP Vi e

jeJi jeJy

a; Q;
Z JT7(UJ) + Z 17} (uj — ;) +
JEKT JEK;

Lo L=fi
D e AL LD iy e U

J€Jo,fi<1—fo

> %(%‘*%‘)Jr > 1_;;(%'*%’)

JE€EKo,f;<fo J€Ko,fi>fo

Y]
—

25

Chapter 5

Experiments

Figureg 5.1, 512, 518, 5§, 5[5, b.6 compares a prototype SMT solver that uses the previous algorithms
with other tools that participated in last year'’s SMT competition. The comparison uses all the SMT-

LIB benchmarks in the QIRDL (real difference logic), QHDL (integer difference logic), QERA

(linear real arithmetic), and QEIA (linear integer arithmetic) divisions. The experiments were
conducted on identical PCs, all equipped with a 32bit Pentium 4 processor running at 3 GHz. The
timeout was set to 1 hour and the memory usage was limited to 1 GB. With these timing and memory
constraints, running all the benchmarks required approximately 60 CPU days.

Each point on the graphs represents a benchmarttenotes a difference logic problem ard
denotes a problem outside the difference-logic fragment. The axes correspond to the CPU time taken
by the new solverif-axis) or the other solverfaxis) on each benchmark. CPU times are measured
in seconds. Points below the diagonal are then SMT-LIB benchmarks where our new solver is faster.
Points on the leftmost vertical edge are problems where a solver aborted, typically by running out
of memory. The graphs comparing our new solver with Barcelogic and Simplics have fewer points,
because Barcelogic supports only difference logic and Simplics does not support integer problems.

Table[5.1 summarizes the results. For each tool, it lists the number of instances solved and
unsolved, and the total runtime. As can be seen, the new algorithm largely outperforms the other
solvers. It is even faster on problems in the difference logic fragment than tools that are specialized
for this fragment. The performance improvement is due to efficient backtracking and to the pres-
implification enabled by our approach, efficient theory propagation based on bound refinement also
has a big impact.

26

sat| unsat| failed | time (secs)
Ario 1.1 186 640 517 1218371
BarcelogicTools | 153 417 92 401842
CVC Lite 117 454 772 1193747
MathSAT 3.3.1 | 330 779 234 739533
Yices 358 756 229 702129
Simplics 240 351 110 476940
New Solver 412 869 62 267198

Table 5.1: Experimental results: Summary

. abort
timeout

1000 +

PN WA,
AN
L
t

100

10

10 100 1000

ario-1.1

Figure 5.1: Ario 1.1 vs. New Solver

27

. abort

timeout #
1000 T
+H =
-
" ‘ 3
100 + i +++ A+ +
:ﬁ* +++ =
T E S
10 N o+ b Tﬁ&}k }H Lt *J++ T
T oA ﬁﬂi -+ i+4+++ BT
1 {}ﬁt ++++j’ T L e +
o+ - +ﬁj :‘jfiﬁﬁ;;: I + i: + i |
T e S L *
T e A S
0.1 | R w
4+ + "
+ A+ ¢
0.01 —
0.01 0.1 1 10 100 1000
belt
Figure 5.2: BarcelogicTools vs. New Solver
._abort
timeout T
1000 T
100
10
1
0.1
0.01 BOoK : :
0.01 0.1 1 10 100 1000

cvcel

Figure 5.3: CVC Lite 2.0 vs. New Solver

28

. abort
timeout 1
1000 T otq
¥+
&
100 -t
++ X o
+
10 ++§3§;# >§r XX‘&%(
+ +
1 g/t fgﬁ}] ?%&%%% £
1 # ﬁFﬁf g@}} Hfgbjf A
T ﬁi#+ ><>5<><+ ><><><
4 ps %: x X %
4 et
0.1 Sl ‘ X X X | X
Bk, 3B I
+ & x5
1 KRKRORR XX
0.01 » RESORNE
0.01 0.1 1 10 100 1000
mathsat-3.3.1
Figure 5.4: MathSAT 3.3.1 vs. New Solver
. abort
timeout
1000 -
3
3
% X % =
100 L £
RS X T+
X + + %%’Kﬁ:r
10 SR %ix
S R,
1) XX 15’@%++XX %
%4
« R . + X
0 1 ; ><>{<& 8 x +
. X %}Q
L e X
X KKK XX
0.01 *
0.01 0.1 1 10 100 1000

simplics-smtcomp-05

Figure 5.5: Simplics vs. New Solver

29

. abort
timeout

1000 T

100

10

0.01 0.1 1 10 100 1000

yices-smtcomp-05

Figure 5.6: Yices vs. New Solver

30

Chapter 6

Conclusion

We have presented a new Simplex-based solver designed for efficiently solving SMT problems in-
volving linear arithmetic. The main features of the new approach include the possibility to presim-
plify the input problem by eliminating variables, a reduction in the number of slack variables, and
fast backtracking. A simple but useful form of theory propagation can also be implemented cheaply.
Another result of the paper is a simple approach for solving strict inequalities that does not require
modification of the basic Simplex algorithm. This approach is more generally applicable to other
forms of solvers, such as graph-based solvers for difference logic.

Experimental results show that the new Simplex-based solver outperforms the most competitive
solvers from SMT-COMP’05, including specialized solvers on difference logic problems.

Applications for the algorithm presented in this paper go beyond SMT. We are currently extend-
ing the solver to support a form of weighted MAX-SMT, that is, the search for an assignment to an
SMT problem that maximizes a linear objective function. This MAX-SMT solver will be integrated
to SRI's CALO systeﬁ as part of a module that combines learning and deductive algorithms.

Ihttp://caloproject.sri.com/

31

http://caloproject.sri.com/

Bibliography

[1]

[2]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

[11]

G.J. Badros, A. Borning, and P.J. Stuckey. The Cassowary linear arithmetic constraint solv-
ing algorithm. ACM Transactions on Computer-Human Interaction (TOCI8(%):267-306,
December 2001.

C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. Innt. Conf. on Computer-Aided Verification (CAVplume 3114 of NCS Springer,
2004.

C. Barrett, L. de Moura, and A. Stump. Design and results of the 1st satisfiability modulo
theories competition (SMT-COMP 2005). To appear in Journal of Automated Reasoning,
2006.

C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories with equality.
In Int. Conference on Formal Methods in Computer-Aided Design (FMC@)me 1166 of
LNCS pages 187-201, 1996.

R. E. Bixby, M. Fenelon, Z.gu, E. Rothberg, and R. Wunderling. MIP: theory and practice —
closing the gap. In M. J. D. Powell and S. Scholtes, edit®ystem Modelling and Optimiza-
tion: Methods, Theory, and Applicatiorsluwer, 2000.

M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Sebas-
tiani. The MathSAT 3 system. Imt. Conference on Automated Deduction (CADE)Iume
3632 of LNCS Springer, 2005.

V. Chvatal.Linear Programming W. H. Freeman, 1983.

G.B. Dantzig and B. Curtis. Fourier-Motzkin elimination and its duaurnal of Combinato-
rial Theory, pages 288-297, 1973.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Labs, 2003.

J.-C. Fillidtre, S. Owre, H. Ruel3, and N. Shankar. ICS: Integrated Canonization and Solving.
In Proc. of CAV’01 volume 2102 oLNCS 2001.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision
procedures. In R. Alur and D. Peled, editdrd, Conference on Computer Aided Verification
(CAV'04), volume 3114 oL.NCS pages 175-188. Springer, 2004.

32

[12] G.C. Necula. Compiling with proofs. Technical Report CMU-CS-98-154, School of Computer
Science, Carnegie Mellon University, 1998.

[13] G. Nemhauser and L. Wosleinteger and Combinatorial OptimizatioWiley, 1999.

[14] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its appli-
cation to difference logic. lint. Conference on Computer Aided Verification (CAV,(igges
321-334. Springer, 2005.

[15] H. Ruel and N. Shankar. Solving linear arithmetic constraints. Technical Report SRI-CSL-
04-01, SRI International, 2004,

[16] A. Schrijver. Theory of Linear and Integer Programmin@/iley, New York, 1986.

[17] H. M. Sheini and K. A. Sakallah. A scalable method for solving satisfiability of integer linear
arithmetic logic. INSAT’05 volume 3569 of.NCS pages 241-256. Springer, 2005.

[18] A. Stump, C.W. Barrett, and D.L. Dill. CVC: A Cooperating Validity Checkerlrt Confer-
ence on Computer Aided Verification (CAV'02plume 2404 of NCS Springer, 2002.

[19] C. Wang, F. Ivancic, M. Ganai, and A. Gupta. Deciding separation logic formulae with SAT
and incremental negative cycle elimination. Uogic for Programming Artificial Intelligence
and Reasoning (LPAR2005.

33

	Introduction
	Background
	Solvers for DPPL(T)
	Existing Simplex Solvers for DPLL(T)
	Performance

	A Linear-Arithmetic Solver for DPLL(T)
	Preprocessing
	Basic Solver
	Main Algorithm
	Generating Explanations
	Assertion Procedures
	Backtracking
	Theory Propagation
	Example

	Strict Inequalities

	Integer and Mixed Integer Problems
	Branch and Bound
	Gomory Cuts
	Derivation of a Gomory Cut
	A Stronger Gomory Cut

	Experiments
	Conclusion

